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Abstract—This paper presents an efficient way to ensure a
good detection performance by implementing algorithms running
in background a reliable noise estimation process. The proposed
solution operates at two different time scales: a slow time scale
to determine in adjacent sub-bands the supposed slowly varying
noise level, and a faster time scale to determine in the band of
interest the presence of signal, using a reliable energy detection
solution. In order to identify the free bands where the noise
variance can be estimated, the paper describes several blind and
semi-blind strategies based on the statistical properties of the
received signal. One of the benefits of the proposed solution is that
the output of the described algorithm can populate the database
of free/occupied bands, which classically needs to be regularly
updated in a cognitive radio architecture.

I. INTRODUCTION

The electromagnetic radio spectrum is a scarce natural

resource, the use of which by telecommunication systems is

licensed by governments. For a long time, spectrum man-

agement was based on rigid partitioning. As a consequence,

most of the spectrum bands are vastly underutilized, even in

urban environments. However, with the increasing demand of

wireless products and services (especially bandwidth-greedy

applications), a need for new technologies and policies meant

to support a greater density of wireless devices has arisen [1].

Fortunately, emerging technologies including Cognitive Radio

and Software-Defined-Radio (SDR) [2], are contributing to

make this possible.

A Cognitive Radio system uses sophisticated signal pro-

cessing at least at the physical layer in order to adapt to the

environmental changes. Cognitive Radio could then provide

means to efficiently use the electromagnetic spectrum by

autonomously detecting and exploiting empty spectrum (spec-

trum White Spaces) or by intelligently sharing spectrum with

other users (e.g., by meeting given interference constraints).

Arising from the evolution of software radio, Cognitive Radio

presents the possibility of numerous revolutionary applica-

tions.

On 23rd September 2010 FCC published a report 10-174

[3] with the scope of finalizing rules to make the unused

spectrum in the TV bands available for unlicensed broadband

wireless devices. The report was favorable to geo-location with

database approach, but leaves a backdoor open for any other

contribution from the spectrum sensing research field.

If the geo-location database access method is not providing

adequate and sufficient reliable protection, spectrum sensing

should be used in order to help identifying the White Spaces

in the considered frequency band. Spectrum sensing has come

a long way and today it is sufficiently developed and reliable

for determining access to the TV bands and other spectrum.

In the Cognitive Radio context, a mobile radio system

occupies as a secondary user a given spectrum band denoted

by B0. This means that the secondary user is currently using

B0 to transmit and receive data because the owner of the band,

the primary user, was previously detected as absent from its

band B0.

The secondary user (or opportunistic user) is allowed to

occupy B0 provided that it is able to stop using B0 imme-

diately if the primary user decides to use B0. The secondary

system may have sensing capabilities and thus be able to detect

the incoming primary user very quickly and with a very high

reliability.

In order to address the situation described above, different

types of signal detectors have been developed. The most

typical detector (and also the simplest one) is the Energy

Detector (ED) [4]. The ED is very fast, but it is very reliable

only if the noise variance is known or well estimated. Aside

from possibly taking a longer acquisition time, the methods

that reliable estimate the noise variance also need to be able

to evaluate the presence/absence of the useful signal in the

analyzed band.

The current state of the art, therefore, consists in making

a compromise: either use a fast detector and accept that the

ED performance is possibly affected by a bad noise variance

estimate, or choose a detector different from ED to obtain

very high performance, which in turn will be slower. In other

words, having a very high probability of detection and a fast

algorithm altogether still remains a challenge.

The remainder of this paper is organized as follows. The

next section describes the system and signals model, the main

assumptions and the addressed problem. Section III presents

the detection issues of the detectors relying on wrong noise

estimation. The proposed method is explained in Section IV.

Finally, simulation results are presented in Section V and the

conclusions are discussed in Section VI.

II. SYSTEM AND SIGNAL DESCRIPTION

A. System description

We consider the system depicted in Fig. 1 with a primary

system transmitting in a frequency band which is also accessed
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by an opportunistic secondary system. We assume that the

Cognitive Radio nodes are endowed with a sensing capability.
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Fig. 1. Cognitive Radio access to a licensed spectrum: Cognitive Radio
senses the spectrum in order to find spectrum holes where it could transmit.

In Fig. 1, the spectrum sensing allows to detect possible

primary signals in order to stop any secondary transmission.

Then, the cognitive system monitors the primary frequency

band for spectrum White Spaces and uses these frequencies

to transmit. One example of such primary systems is the TV

broadcast. It has already been proven that the TV spectrum

is underused and thus secondary systems can transmit using

digital techniques needing much smaller amount of spectrum

[5]. It can be envisaged to apply the same cognitive strategy

to LTE Network system. The LTE system should use White

Space spectrum (e.g., 470−790MHz) in addition to their own

licensed spectrum. This additional spectrum allows mobile

operators to gain additional bandwidths, which is in the benefit

of the user. In other words, it could be used to enhance the

coverage or capacity for a mobile operator.

It is worth noting that, thanks to its relatively low infras-

tructure cost and compatibility with legacy primary systems,

spectrum sensing is being considered for inclusion in the IEEE

802.22 standard for cognitive wireless regional area networks

operating in unused television channels [6].

B. Signal Description

This section is related to the general description of the

Primary User’s (PU) transmitter. The primary user can be

a DVB-T system transmitting in the 470 − 790MHz band,

or a Programme Making and Special Event (PMSE) system

transmitting in the 470− 790MHz band.

While the DVB-T and LTE systems are using Orthogonal

Frequency Division Multiplexing (OFDM) techniques, the

PMSE devices are usually employing Frequency Modulations

(FM) or Quadrature Phase Shift Keying (QPSK) modulations

[7]. In the next paragraphs we describe the primary user signal

characteristics (i.e., OFDM, FM and QPSK).

1) OFDM Signal Description: DVB-T is the standard for

the broadcast transmission of digital terrestrial television. As

previously mentioned, this standard uses the OFDM modu-

lation scheme for signal transmission. An OFDM baseband

signal can be generated using the expression

sOFDM(t) =
1√
N

K−1
∑

k=0

N−1
∑

n=0

ak,ne
−

2jn(t−TG−kTS)

TU g(t− kTS),

(1)

where TU is the useful OFDM symbol time, TG is the cyclic

prefix length, and TS = TU + TG is the total OFDM symbol

duration time, which is obtained by adding a cyclic prefix to

the useful symbol period. K is the number of OFDM symbols,

N is the number of subcarriers, g(t) is the shaping function

equal to 1 if 0 ≤ t < TS and 0 otherwise. The sequence

ak,n represents the transmitted data symbol at subcarrier n
and OFDM symbol k. For instance, the sequence ak,n could

be provided from a QPSK modulation.

2) PMSE Signal Description: Programme Making and Spe-

cial Events can use digital modulations such as QPSK or

analog modulation such as FM. In the next subsections we

are describing the QPSK and FM signal expressions.

a) QPSK modulation: In QPSK modulation, the infor-

mation is encoded in the phase of the transmitted signal. The

complex constellation after sampling at the QPSK symbol

period TS can be written as [8]

a ∈
{

A√
2
cos

(

2�
n− 1

4

)

+ j
A√
2
sin

(

2�
n− 1

4

)}

, (2)

where n ∈ {1, 2, 3, 4} and A2 is the symbol energy.

b) Frequency Modulation: Let the baseband data signal

be s(t) and the sinusoidal carrier be c(t) = Ac cos (2� fc t),
where fc is the frequency of the carrier and Ac is its amplitude.

The frequency modulation combines the carrier with the

baseband data signal to get the transmitted signal as

sFM(t) = Ac cos

(

2� fc t+ 2� fΔ

∫ t

0

s(�) d�

)

. (3)

The instantaneous frequency is then expressed as f(t) =
fc + fΔ s(t), where fΔ is the frequency deviation.

III. ENERGY DETECTION

Energy detection is a well known detection method [4]

mainly used because of its simplicity. The basic functional

method involves an energy computation block (i.e., a squaring

device and an integrator) and a comparison block. The thresh-

old used in the comparison block is chosen according to a

desired false alarm probability PFA,target [9] and given by


 =

√
2√
N

�2

nQ
−1 {PFA,target}+ �2

n, (4)

where N is the number of samples of the digital signal and

�2
n is the noise variance. We denote by Q−1 the inverse of the

Q function defined by

Q (t) ≡ 1√
2�

∫

∞

t

exp

(

−u2

2

)

du =
1

2

(

1− erf

(

t√
2

))

.

(5)

It can be shown that a precise knowledge of the noise vari-

ance is necessary in order to compute the threshold value 
.



Subsequently, a wrong computed threshold value is affecting

both the detection probability PD and the real false alarm

probability PFA,real, which differs from the PFA,target. In

the next subsections we are going to study reliable noise

estimation methods which are using the statistical properties

of the received signal.

IV. BACKGROUND NOISE ESTIMATION METHOD

The proposed approach for energy detection consists in

using two components (a) and (b), which operate in different

bands and on different timescales:

∙ (a): A long term component, in charge of monitoring

the bands Bi in the neighborhood of B0, in order to

identify a band where there is only noise, and estimate

the noise variance in the identified band. This component

is triggered every T2.

∙ (b): A short term component, in charge of detecting

a primary signal in B0 as soon as it appears. This

detector is an ED detector whose input is the noise

variance estimated in the component (a). This component

is triggered every T1. As represented in Fig. 2, typically

T1 << T2 and it is assumed that the noise variance is

stationary during T2.
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Fig. 2. Trigger periods for short and long term (background) components.

The short term component (b) is using the ED because it is

fast, but the detection is reliable only when the noise variance

estimates provided by (a) are very good. In order to achieve

this goal, two main aspects are considered:

1) The noise variance can be well estimated on portions of

bands (different from the band of interest B0) in which

it was previously checked that no signal is present.

2) The noise variance is assumed to vary slower than the

periodicity T1 at which the ED must be triggered.

Because of the 2nd condition, we can address the 1st one

by implementing algorithms which are able to reliably detect

the presence of signal, without knowing the noise variance,

and which possibly take much more time than T1. Therefore,

we divide the component (a), into two main modules:

∙ (a1): the module which performs the identification of the

suitable band for noise variance estimation (see Fig. 3).

This module may consist of any algorithm able to decide

with a good reliability about the presence of signal,

without any prior knowledge of the noise variance.

∙ (a2): The module which performs the noise variance

estimation, once an empty band Bi has been identified

by module (a1). This is performed through very classical

averaging of the observed noise spectral density over the

whole identified band Bi.
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Fig. 3. Fast energy detection using a background process for noise estimation.

Algorithms used by (a1) can be statistical based (e.g. kurto-

sis computation, Expectation Maximization) or could exploit

for example cyclostationary properties. All these methods use

different input parameters described in Table I. While the

statistical methods need the use of Fast Fourier Transform

(FFT), the method exploiting the cyclic properties directly uses

the incoming samples from Bi.

TABLE I
INPUT PARAMETERS FOR IDENTIFICATION OF FREE BAND Bi

Method FFT Input

needed Parameters

Kurtosis Yes Gaussian Noise

Assumption

Expectation Yes A Mixture of 2

Maximization Distributions Assumption

Cyclic No Cyclic Frequencies

Cyclostationary Knowledge

The methods described in Table I are further explained in

the next paragraphs:

1) Kurtosis computation [10], which exploits the fact that

the kurtosis (well known 4tℎ order statistic) is zero for a

Gaussian signal. So if the kurtosis is different from 0, a priori it

means that there is a signal in addition to the noise (see Fig. 5).

It is known that the kurtosis K of a real random variable �
with zero mean has the expression

KDef
=

E[�4]

E[�2]2
− 3. (6)

Exploiting that the real and imaginary FFT parts of a

Gaussian signal remain Gaussian, we use kurtosis on the FFT

samples � of the incoming signal.

2) Expectation Maximization (EM) algorithm [11], [12],

which checks if the incoming signal in bands Bi ∕= B0 is

from a mixture composed of 2 Probability Density Functions

(PDF) with 2 variances and 2 mixing probabilities. If so, it

means that there is not only noise in the considered band. The



benefit of using the EM algorithm for module (a1) is that it

is very easy to implement in a completely blind context (no

assumption about what to look for), and it can also provide

the band occupancy. It can therefore be performed for narrow

frequency bands identification. Note that same as kurtosis

implementation, EM operates on the samples of the FFT of

the incoming signal. In [12] it is showed that EM can be

used for more complex mixtures such as generalized Gaussian

Mixtures, but herein we suppose a mixture of two Gaussians.

For a fixed number of available FFT samples m, let Z be a

variable denoting which one of the 2 distributions the sample

�j (with j = 0, . . . ,m − 1) belongs to. The estimation steps

can then be described as:

Initialization: For ∀i = 1, 2, at the incremental time t = 0,

set variance �t=0
i , mixing probabilities pt=0

i and means �t=0
i

as in [12]. Let the Θ1×6 be the vector of the unknown

parameters Θ1×6 = [(�1, �2) , (�1, �2) , (p1, p2)].
E-step: The computation of the membership probabilities

p(zj = i ∣ �j ,Θt) =
p(�j ∣ zj = i,Θt)pti

∑2

k=1
p(�j ∣ zj = k,Θt)ptk

(7)

for j = 0, . . . ,m− 1 and i = 1, 2.

M-step: The upgrades on the means

�i =

∑m−1

j=0
p(zj = i ∣ �j ,Θt)�j

∑m−1

j=0
p(zj = i ∣ �j ,Θt)

, (8)

the upgrades on the variances

�2

i =

∑m−1

j=0
p(zj = i ∣ �j ,Θt) ∣�j − �̂i∣2

∑m−1

j=0
p(zj = i ∣ �j ,Θt)

(9)

and the upgrades on the mixing probabilities

pi =

∑m−1

j=0
p(zj = i ∣ �j ,Θt)

∑2

k=1

∑m−1

j=0
p(zj = k ∣ �j ,Θt)

, (10)

for i = 1, 2.

3) Cyclostationary Detection (CD) [13], [14], which checks

if the incoming signals in bands Bi ∕= B0 exhibit some cyclic

frequencies. Herein we are using the Generalized Likelihood

Ratio Test [13] for one cyclic frequency ∕= 0, from Table II.

If the signal exhibits cyclic properties, this means that there

is not only noise in the considered band, because the noise is

stationary.

TABLE II
CYCLIC FREQUENCIES FOR DIFFERENT SIGNAL TYPES

Type of Signal Cyclic Frequencies

OFDM k/TS , k = ±0, 1, 2, . . .
FM ±2fc

QPSK ±k/TS , k = ±0, 1, 2, . . .
Noise 0

V. NUMERICAL RESULTS

Please note that the kurtosis is computed from the real and

imaginary parts of FFT, separately. In Fig. 4 we have found

by simulation that the kurtosis value is highly dependent of

the frequency band occupancy. If the band occupancy is low,

kurtosis becomes high. For example, for a 10% band occupacy

we were not able to detect an interferer (i.e., transmitter in the

noise estimation band Bi) with INR below −14dB. There-

fore, this method should be prefered for detecting narrowband

signals (e.g., FM by definition, or OFDM signals only if the

analyzed band is wide enough).
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Fig. 4. Adjacent sub-band Bi detection using kurtosis, as a function of INR

and of analyzed frequency band occupancy.

In Fig.5 we have represented the kurtosis detection method,

by estimating the kurtosis in a sliding window 10 times larger

than the interferer frequency band. This graph clearly shows

that kurtosis increases where there are interferers.
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Fig. 5. Adjacent sub-band Bi detection using kurtosis. Use case involving
3 narrowband interferers (FM) each with INR = −15dB.

In Fig. 6, we have used OFDM symbols with 512 sub-

carriers and TG = TU/4. The frequency band occupancy of

the interferer is only 10% of the entire analyzed frequency

band Bi. The same result is also found when representing the

mixing probabilities convergence as seen in Fig. 7. This result

has been obtained for INR = 0dB, but our simulations also

showed that EM cannot provide a good identification of the

interferers, if INR < −10dB.
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Fig. 7. Mixing probabilities are indicating 10% of the analyzed Bi band as
occupied by signal and 90% only by noise.

In Fig. 8 we have compared our proposed algorithms with

the ED having perfect noise estimation. For this simulation

we have considered an interferer with INR = −10dB and a

background process time T2 = 15T1. Since the INR is high

(about −10dB in Bi) and the Bi occupancy is small (about

10%), the kurtosis method is the most reliable, but we expect

an improvement of the cyclostationary method when we are

dealing with T2 >> T1 and higher band occupancy. In this

scenario, for a low INR, the kurtosis method will no longer

be able to detect the interferers from secondary bands Bi.

VI. CONCLUSIONS

This paper presented a reliable sensing method using an en-

ergy detector with a background process for noise estimation.

The novelty of the proposed approach resides in accurately

estimating the noise in the frequency bands where other trans-

mitters are not active. We have proved that the performance

of the ideal energy detector can be asymptotically reached by

using statistical signal properties such as probability density

function and cyclostationarity. Furthermore, our simulations

showed that while expectation maximization method is not

accurate in identifying the free bands for low power levels,
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Fig. 8. Detection probability PD in terms of SNR (in B0), for INR =

−10dB (in Bi); the target false alarm probability PFA,target = 0.1.

kurtosis method is more accurate for low band occupancy,

and that the cyclostationary method is reliable for higher

processing time.
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