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Abstract—This paper studies cooperative spectrum sensing in
cognitive radio networks. Both the sensing and the reporting
channels are assumed to be either slow or fast fading channels.
In a practical system, due to the lack of cooperation between the
primary and secondary users, the power of the primary signal,
the channel state information of the sensing channels as well as
the noise power level are unknown. We first provide an analyti-
cally tractable signal model using a Gaussian approximation and
then propose generalized likelihood ratio test (GLRT) methods
for the design of the corresponding detectors. The basic idea lies
in the fact that the unknown parameters can be estimated by
exploiting hidden information in the sample covariance matrix
of the received signals. The effectiveness of the proposed GLRT-
based sensing methods are validated through numerical results.

I. INTRODUCTION

Cognitive radio (CR) is a promising technique to solve
the inefficient spectrum usage problem by exploiting dynamic
spectrum access [1]. The key requirements are the effec-
tiveness in learning from the environment and the guarantee
that the performance degradation perceived by the primary
user (PU) is controlled. Spectrum sensing is a basic learning
function in different paradigms of CR systems [2], [3].

Various individual sensing algorithms for a single secondary
user (SU) have been proposed, see [4] and [5] for an overview.
In cooperative CR networks, the sensing performance is fur-
ther improved by exploiting spatial diversity among multiple
SUs [6]. Specifically, each SU transmits its local decision
or observation to the secondary fusion center (FC) to make
a more reliable global decision. The imperfect sensing and
reporting links can deteriorate the cooperative sensing perfor-
mance [7]. The works in [8]–[10] investigated optimal linear
cooperative sensing algorithms under fading sensing channels
and only noisy reporting channels. If fading effects of both
sensing and reporting channels are considered, a near-optimal
sensing rule with statistical channel state information (CSI)
is designed in [11]. However, most of the previous works
did not consider the practical issue where the information
of the sensing channels and the primary signal is missing.
In such a scenario, the authors in [12] studied a practical
method to estimate the unknown parameters based on the idea
to categorize the sensing observations into two classes. Each
class represents the presence or absence of the PU according
to the final global decision made at the FC. Therefore, the
performance highly depends on the reliability of the global
decision. Alternatively, the generalized likelihood ratio test
(GLRT) principle [13] is widely used to tackle the binary
hypothesis testing problem with unknown parameters, e.g.,

multi-antenna based sensing for a single SU with unknown
transmit covariance matrix [14]. It can also be applied in
cooperative sensing when part of the a priori information on
the signal and the channel is not available.

This paper investigates cooperative sensing methods when
both sensing and reporting channels are modeled as fading
channels. Two kinds of fading channels are applied and
the corresponding CSI type is considered. For slow fading
channels, the CSI refers to the block fading, while for fast
fading channels, the CSI refers to the statistical CSI. We focus
on the study in a practical scenario where only the CSI and
noise variances of the reporting channels are available. This
assumption is justified since the SUs may transmit pilots to
the FC for the estimation of the CSI of the reporting channels,
while the information of the sensing channels are difficult to
obtain due to the lack of cooperation between the PUs and
the SUs. We use a Gaussian approximation to provide an
analytically tractable signal model and then propose GLRT-
based approaches for the design of sensing rules. The unknown
parameters are embedded in the sample covariance matrix of
the received signal and can be estimated. The effectiveness of
the GLRT-based methods is validated by the comparison with
the developed near-optimal approximated likelihood ratio test
(ALRT) method and an energy detection (ED).

Notation: Let (A)T , (A)H , (A)∗, E{A}, and tr{A} refer
to the transpose, conjugate transpose, conjugate, expectation
and trace of A, respectively. [A]i,j is the entry in the ith row
and the jth column of A. diag{a} returns a square matrix
with the elements of a on the diagonal and the other entries
are all zero. IN denotes the identity matrix of size N . (a)+

represents max(a, 0). � indicates the Hadamard product. x ∼
CN (µ,C) means x − µ is zero-mean circularly symmetric
complex Gaussian distributed with covariance matrix C.

II. SYSTEM MODEL

Fig. 1 depicts a cooperative CR network composed of K
SUs and a secondary FC. The binary hypotheses indicating
the absence and presence of the PU are given by H0 and H1,
respectively.

The cooperative sensing includes two parts: sensing and
reporting. In the sensing procedure, each SU performs spec-
trum sensing based on the observation over M sampling times.
Under H1, the primary signal is assumed to be a zero-mean
temporally and spatially white signal with unit power for each
transmit antenna. The primary transmit signal at the mth time
instant is s̃(m) ∈ CNt×1, where Nt is the number of transmit
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Fig. 1. Cooperative sensing in the secondary network with K SUs and FC
at time instant m.
antennas at the PU. Assuming each SU has a single receive an-
tenna and denoting hk(m) ∈ C1×Nt as the stationary Rayleigh
fading channel from the PU to the kth SU at the mth instant,
we obtain the matrix H(m) = [h1(m)T , · · · ,hK(m)T ]T . The
signal part received by the SUs at the mth instant is

s(m) = H(m)s̃(m) (1)

and ΣS is the covariance matrix of s(m).
Assume that xk(m) is the mth received signal sample at

the kth SU, the received signals at K SUs are stacked into a
vector x(m) = [x1(m), · · · , xK(m)]T as

x(m) =

{
n(m), H0

s(m) + n(m), H1

, m = 1, · · · ,M (2)

where the temporally and spatially white noise is n(m) =
[n1(m), · · · , nK(m)]T with nk(m), k = 1, · · · ,K being the
noise sample for the kth SU at the mth time instant. We
assume n(m) ∼ CN (0, σ2

nIK). {s(m)} and {n(m)} are
mutually independent.

In the reporting procedure, the FC receives the signals
relayed by each SU through the reporting channels in an
orthogonal manner [8],

y(m) = G(m)x(m) + v(m) (3)

where G = diag{g(m)} with g(m) = [g1(m), · · · , gK(m)]T

and gk(m) representing the stationary fading coefficient from
the kth SU to the FC. We remark that gk(m) is not restricted
to Rayleigh fading channels, e.g., a more general Rician fading
channel model can be applied if there is a line of sight between
the SU and the FC. v(m) = [v1(m), · · · , vK(m)]T is the
vector containing the temporally and spatially white noise
samples of the reporting channel and v(m) ∼ CN (0, σ2

vIK).
Two kinds of fading channel models are applied to both

sensing and reporting channels. We also assume different types
of available CSI for two channel models, respectively.
• Fast fading channels: the instantaneous CSI varies for

different time instants and is hard to obtain. Thus, only
statistical CSI is assumed to be available. We use ΣH =
E{H(m)H(m)H}, g(m) ∼ CN (ḡ,Σg). Consequently,
we obtain

ΣS = ΣH , Rg = Σg + ḡḡH (4)

where Rg is the correlation matrix of g(m).
• Slow fading channels, i.e., {H(m)} and {g(m)} are the

block fading values that are fixed for m = 1, · · · ,M .
Therefore, the time argument m in H(m) and g(m) is
dropped for simplicity. We obtain

ΣS = HHH , Rg = ggH . (5)

III. SENSING ALGORITHMS

In this section, we design the sensing rule at the FC to
combine y(m), m = 1, · · · ,M . Two sensing performance
measures are used: the false alarm rate PFA and the detection
probability PD. The optimization is aiming at increasing the
detection probability given a certain PFA. In the first IEEE CR
standard 802.22 Wireless Regional Area Network (WRAN),
the required PFA should be smaller than 0.1 [15].

According to the Neyman-Pearson optimality criterion, for
the binary hypothesis testing problem, the optimal test statistic
to maximize the PD given a fixed PFA is the following log LRT
(LLRT) scheme [13]:

ΛLLRT (ỹ) = ln
p(ỹ|H1)

p(ỹ|H0)

H1

≷
H0

γ (6)

where γ is the threshold and ỹ = [yT (1), · · · ,yT (M)]T .
The conditional probability density function (PDF) p(ỹ|Hi),
i = 0, 1 is difficult to calculate since each y(m) contains, e.g.,
a multiplication of two Gaussian distributions [11]. Instead,
we approximate p(ỹ|Hi) by using a Gaussian distribution
pG(ỹ|Hi). Since the observations {y(m)} are independent
with the Gaussian assumption, we have

pG(ỹ|Hi) =
∏M

m=1
pG(y(m)|Hi).

Dropping the time argument m for y(m), we obtain
pG(y|Hi) ∼ CN (µi,Σi), where µi and Σi are

µi = E{y|Hi} (7)

Σi = E{yyH |Hi} − µiµ
H
i . (8)

In Appendix A, (7) and (8) are calculated as

[µi]k = ḡkx̄k,i (9)
[Σi]k,k′ =E{xkx∗k′}E{gkg∗k′}+σ2

vδk,k′ − [µi]k[µi]k′ (10)

where ḡk = E(gk), and x̄k,i = E(xk|Hi).
According to (2), the received signal x can be approximated

by the following Gaussian distribution

x ∼

{
CN (0, σ2

nIK), H0

CN (0,ΣS + σ2
nIK), H1

(11)

Integrating (11) into (9) and (10), the mean and covariance
matrices of y are obtained as

µ0 = 0, Σ0 =σ2
nIK �Rg + σ2

vIK (12)
µ1 = 0, Σ1 =(ΣS + σ2

nIK)�Rg+σ2
vIK (13)

where ΣS and Rg are given in (4) and (5) for two kinds of
fading channels.

A. Approximated Likelihood Ratio Test
If the exact PDF p(ỹ|Hi) is replaced with the Gaussian

approximation pG(ỹ|Hi), it yields the near-optimal ALRT
method for known CSI and noise variances of both sensing and
reporting channels. Specifically, substituting pG(ỹ|Hi) into (6)
and integrating the constant items into the threshold design,
the test statistic of the ALRT detector is given as

ΛALRT (ỹ) =

M∑
m=1

yH(m)(Σ−1
0 −Σ−1

1 )y(m).



B. Energy Detection
If the FC sums up the energy of the signals relayed by each

SU, the detection scheme becomes the widely-used ED

ΛED(ỹ) =

M∑
m=1

yH(m)y(m). (14)

ΛED can be considered as the special case of ALRT when
Σ−1

0 − Σ−1
1 is an identity matrix. ED requires minimum

knowledge of the primary signal such as the center frequency
and bandwidth, but no a priori information on the signal nor
on the CSI.

C. GLRT-Based Detection Algorithms
In a practical CR system, the power of the primary signal

and the CSI of the sensing channels are always hard to obtain
due to the lack of cooperation between the PU and the SUs.
Therefore, the sensing problem becomes a binary hypothesis
testing problem with unknown parameters, which can be
solved with the GLRT principle [13]. Asymptotically, GLRT
is equivalent to the uniformly most powerful among all tests
that are invariant [16]. The GLRT-based method substitutes the
unknown parameters with their maximum likelihood estimates
(MLE)s and applies the LLRT principle in (6). Specifically, if
θ0 and θ1 are the unknown parameters under H0 and H1,
respectively, the GLRT test statistic is written as

ΛGLRT (ỹ) = ln
pG(ỹ|H1, θ̂1)

pG(ỹ|H0, θ̂0)
(15)

with θ̂0 = arg max
θ0

pG(ỹ|H0, θ0) (16)

θ̂1 = arg max
θ1

pG(ỹ|H1, θ1). (17)

Note that the exact distribution p(ỹ|Hi) with i = 0, 1 is re-
placed with the approximated Gaussian distribution pG(ỹ|Hi)
for the sake of computational tractability.

1) GLRT1, Unknown ΣS: If the covariance matrix ΣS is
unknown, i.e., the power of the primary signal and the CSI
of the sensing channel are unknown, they can be estimated
by exploiting the structure of the sample covariance matrix of
the received signals. Specifically, the log-likelihood function
(LLF) under H0 is

ln pG(ỹ|H0) =−KM lnπ −M ln det Σ0

−
M∑
m=1

yH(m)Σ−1
0 y(m) (18)

where all parameters in (18) are known, i.e., there is no
parameter θ0 in (15). By using a decomposition of the form

Σ0 = LH1 L1

(18) is reformulated as

ln pG(ỹ|H0)=−KM lnπ−M ln det LH1 L1−M tr{Ry} (19)

where

Ry = L−H1

(
1

M

M∑
m=1

y(m)yH(m)

)
L−1

1 .

Similarly, the LLF under H1 is reformulated as follows due
to the temporal whiteness of s̃(m), m = 1, · · · ,M

ln pG(ỹ|H1)

=−KM lnπ+M ln det
(
L−1

1 BL−H1

)
−M tr{RyB}. (20)

where

B =
(
L−H1 (ΣS �Rg) L−1

1 + IK
)−1

(21)

According to (21), the unknown parameter ΣS is only in-
cluded in B, i.e., the unknown parameter θ1 in (15) is B. The
MLE of B is obtained by solving the following constrained
optimization problem

max
B

ln det B− tr{RyB}

s.t. B � 0

B � IK .

Similar to [14, Appendix], we obtain the MLE of B

B̂ = Uydiag
{

min

(
1

λ1,y
, 1

)
, · · · ,min

(
1

λK,y
, 1

)}
UH
y

(22)
where Uy contains the eigenvectors of Ry and λk,y , k =
1, · · · ,K are the corresponding K eigenvalues listed in de-
scending order, i.e., λ1,y ≥ λ2,y ≥ · · · ≥ λK,y.

Taking the MLE result (22) into (20) and subtracting (19),
results in the test statistic of GLRT1

ΛGLRT1(ỹ) = M ln det B̂−M tr{RyB̂}+M tr{Ry}. (23)

Using (22), we reformulate the two terms containing B̂ as

ln det B̂ = − ln

m1∏
k=1

λk,y (24)

tr{RyB̂} = m1 +

K∑
k=m1+1

λk,y (25)

where m1 refers to the largest m1 such that λm1,y ≥ 1.
Integrating (24) and (25) into (23) results in the final test
statistic of GLRT1

ΛGLRT1(ỹ) = Mm1

 1

m1

m1∑
k=1

λk,y − ln

(
m1∏
k=1

λk,y

) 1
m1

− 1

 .

2) GLRT2, Unknown ΣS and σ2
n: In this case, both noise

variance σ2
n of the sensing channels and ΣS need to be

estimated under both hypotheses H0 and H1.
First, the LLF under H0 with the unknown σ2

n is written as

ln pG(ỹ|H0)=−KM lnπ−M lndetΣ0−M tr{Σ−1
0 Rȳ}. (26)

where

Rȳ =
1

M

M∑
m=1

y(m)yH(m)
(a)
= UȳΛȳU

H
ȳ . (27)

The step (a) in (27) indicates the eigenvalue decomposition
of Rȳ , in which Λȳ = diag{λ1,ȳ, · · · , λK,ȳ} contains all the
eigenvalues of Rȳ as diagonal entries in descending order. By
applying a similar mathematical manipulation as in Section
III-C1, the MLE of σ2

n is derived as



σ̂2
n|H0 =

1

K
tr{C} (28)

with
[C]i,j =

[Uȳdiag{(λ1,ȳ − σ2
v)+, · · · , (λK,ȳ − σ2

v)+}UH
ȳ ]i,j

[Rg]i,j

Similarly, the LLF under H1 with the unknown ΣS and σ2
n is

ln pG(ỹ|H1)=−KM lnπ−M lndetΣ1−M tr{Σ−1
1 Rȳ}. (29)

The MLE of the unknown parameters under H1 is

̂ΣS + σ2
nIK |H1 = C. (30)

Integrating (28) and (30) into (26) and (29), the GLRT test
statistic is given as

ΛGLRT2(ỹ) =−M ln

m2∏
k=1

λk,ȳ
σ2
v

−Mm2−M
K∑

k=m2+1

λk,ȳ
σ2
v

+M ln

K∏
k=1

λk,e+M tr{E−1Rȳ}

where E = (σ̂2
n|H0)IK �Rg + σ2

vIK

and λk,e, k = 1, · · · ,K are the eigenvalues of E. m2 refers
to the largest m2 such that λm2,ȳ ≥ σ2

v .
3) Remarks on the GLRT-Based Methods: The performance

of the GLRT-based methods depends on whether the statistical
properties of the estimated parameters are distinguishable un-
der both hypotheses. Specifically, the following two properties
are exploited: under H1, the received signals from multiple
SUs at the FC are correlated and have unbalanced power levels
due to different properties of the sensing and the reporting
channels; under H0, the received noises are uncorrelated and
their variances are same. However, in fast fading scenario,
if the reporting channel has low spatial correlation, i.e., Rg

is a scaled identity matrix, the correlation effect diminishes
at the FC according to (12) and (13). This results in a
performance degradation of the GLRT-based methods, since
only the property of unbalanced power levels is used to
identify the presence/absence of the PU signal. Nevertheless,
the performance can be improved by other approaches, e.g.,
prolonging the sensing length.

IV. NUMERICAL RESULTS

We consider a CR network with K = 4 SUs detecting
one PU with a single transmit antenna. The primary signals
are quadrature phase-shift keying modulated signals with unit
variance. Each channel hk(m) or gk(m) is assumed to be
a Rayleigh fading channel. The SNRs of the sensing and the
reporting channels are specified in each figure. The noise vari-
ance of the reporting links is σ2

v = 0.8. The noise uncertainty
effect of the sensing links is considered, i.e., the estimated
noise variance is σ2

n = 1.5 and the true noise variance is
σ̃2
n = 1

ασ
2
n, where 10 log10 α is uniformly distributed in

[−B,B] with noise uncertainty factor B in dB [17]. B = 0 dB
indicates that the noise variance is precisely known.

We compare four sensing algorithms for the performance
evaluation. More specifically, we have
• ALRT: known matrix ΣS , CSI of the reporting channels

Σg , and noise variances σ2
n (estimated) and σ2

v .
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Fig. 2. ROC curve with noise uncertainty for slow fading channels. The
SNRs of the sensing links are set to [-18, -11, -16, -10] dB and the SNRs of
the reporting links are [5, 8, 6, 7] dB, M=1000.
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Fig. 3. ROC curve with noise uncertainty for fast fading channels. The
SNRs of the sensing links are set to [-18, -11, -16, -10] dB and the SNRs of
the reporting links are [8, 10, 12, 6] dB, M=5000. The legend is the same as
in Fig. 3.

• ED: no a priori information on the primary signal and
the CSI.

• GLRT1: known CSI of the reporting channels Σg and
noise variances σ2

n (estimated) and σ2
v , but unknown ΣS .

• GLRT2: known CSI and noise variance of the reporting
channels Σg and σ2

v , but unknown ΣS and σ2
n.

Fig. 2 plots the receive operating characteristic (ROC)
curves for slow fading channels. The observation length is
M = 1000. Two cases of noise uncertainty are considered:
B = 0 dB and B = 1 dB. In the legend, the value of B is
denoted in parentheses. We observe that if the noise variance
σ2
n is perfectly known, the ALRT method performs the best

due to complete a priori knowledge. Without the knowledge of
ΣS , GLRT1 uses the hidden knowledge in the received signals
and outperforms ED. If a noise uncertainty exists, GLRT2
always performs the best in the region of interest since the
noise variance is estimated. As expected, GLRT2 is shown



to be insensitive to the uncertainty, while the performance of
the other three methods degrades severely. Similar observation
are obtained from Fig. 3, where the ROC curves for fast
fading channels are depicted. The corresponding correlation
matrix ΣH or Σg is a Toeplitz matrix [ΣH ]i,j = 0.1|i−j|

and [Σg]i,j = 0.1|i−j|, respectively. The observation length is
M = 5000. The requirement of a long sensing length is due
to the effect explained in Section III-C3.

V. CONCLUSION

In this paper, we have investigated cooperative spectrum
sensing in a CR network with both sensing and reporting chan-
nels modeled as slow or fast fading channels. We considered
two practical scenarios: first, the power of the primary signal
and the CSI of the sensing channels are unknown, secondly,
additionally to the first case, the noise variances of the sensing
channels are unknown. A GLRT algorithm was proposed for
each scenario by estimating the unknown parameters with
the sample covariance matrix of the received signals and
then applying the LLRT principle. Numerical results showed
the effectiveness of both proposed methods, as well as the
robustness to noise uncertainty for the second GLRT method.

APPENDIX A
DERIVATION OF (9) AND (10)

The mean and the covariance matrix of the received signals
at the FC are derived under both hypotheses Hi with i = 0, 1.
Specifically, the k-th element of µi is

[µi]k = E(yk|Hi)

=

∫
xk,gk,yk

ykp(yk|xk, gk,Hi)p(xk, gk|Hi)dykdgkdxk

=

∫
xk

p(xk|Hi)
∫
gk

p(gk)

∫
yk

ykp(yk|xk, gk,Hi)dykdgkdxk

=

∫
xk

p(xk|Hi)
∫
gk

gkxkp(gk)dgkdxk

= ḡkx̄k,i.

where ḡk = E(gk) and x̄k,i = E(xk|Hi).
The k-th row and k

′
-th column of the covariance matrix is

[Σi]k,k′ = [E{yyH |Hi} − µiµ
H
i ]k,k′

=

∫
yk,yk′

(yk − [µi]k)(yk′ − [µi]k′ )
∗p(yk, yk′ |Hi)dykdyk′

(a)
=

∫
yk,yk′

(yk − [µi]k)(yk′ − [µi]k′ )
∗

∫
xk,xk

′ ,gk,gk′

p(yk, yk′ |xk, xk′ , gk, gk′ ,Hi)

p(xk, xk′ , gk, gk′ |Hi)dxkdxk′dgkdgk′dykdyk′
(b)
=

∫
xk,xk

′

p(xk, xk′ |Hi)
∫
gk,gk′

p(gk, gk′ )∫
yk,yk′

(yk − gkxk + gkxk − [µi]k)

(yk′ − gk′xk′ + gk′xk′ − [µi]k′ )
∗

p(yk, yk′ |xk, xk′ , gk, gk′ ,Hi)dykdyk′dgkdgk′dxkdxk′
(c)
=

∫
xk,xk

′

p(xk, xk′ |Hi)
∫
gk,gk′

p(gk, gk′ )∫
yk,yk′

(vkvk′∗ + (gkxk − [µi]k)(gk′xk′ − [µi]k′ )
∗)

p(yk, yk′ |xk, xk′ , gk, gk′ ,Hi)dykdyk′dgkdgk′dxkdxk′
= σ2

vδk,k′ + E(xkx
∗
k′)E(gkg

∗
k′)− [µi]k[µi]k′

where step (a) uses the Bayesian rule to expand the conditional
probability p(yk, yk′ |Hi) as a function of xk, xk′ , gk, and
gk′ . Step (b) expresses p(xk, xk′ , gk, gk′ |Hi) as the product
of p(xk, xk′ |Hi) and p(gk, gk′ ) by exploiting the mutual
independency between the received signals and the reporting
channels. The next step (c) simplifies the third integral in
the last step by considering that yk − gkxk = vk for all k
and removes the items including the first order of vk and v

′

k
because theirs means are both equal to zero.
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