
Exploring HPC-based Scientific Software as a Service 
using CometCloud 

 

Moustafa AbdelBaky1, Javier Diaz-Montes1, Michael Johnston2, Vipin Sachdeva2, Richard L. Anderson3, Kirk E. 
Jordan2, and Manish Parashar1 

1Rutgers Discovery Informatics Institute (RDI2), Rutgers University, Piscataway, NJ, USA 
2IBM TJ Watson Research Center, Cambridge, MA, USA 

3 Science and Technology Facilities Council, Hartree Centre, SciTech Daresbury, Warrington, UK 
moustafa.a@rutgers.edu, javidiaz@rdi2.rutgers.edu, michaelj@ie.ibm.com, vsachde@us.ibm.com, richard.anderson@stfc.ac.uk, 

kjordan@us.ibm.com, parashar@rutgers.edu
 

 
Abstract— The use of in-silico simulations in experimental science 
can greatly increase laboratory efficiency and provide additional 
insights into interactions not easily described by traditional 
methods. Such simulations require significant amounts of 
computational resources, accessible only via supercomputers of 
large-scale high-performance clusters. Due to the complexity of 
the computational experiments, as well as the usage of the 
underlying resources, experimental scientists heavily rely on 
computational scientists with HPC expertise to perform these 
simulations. This additional bottleneck prevents the widespread 
adoption of real time in-silico simulation as a driver 
for laboratory experimentation. In this paper, we aim to 
overcome this bottleneck by presenting the architecture of an 
end-to-end framework to enable HPC Software as a Service. This 
framework is designed to make it easy for scientific applications 
to run on top of dynamically federated HPC resources. The 
framework enables HPC resource sharing while maximizing 
throughput and utilization. We focus specifically on a use case 
where an experimental scientist uses a mobile portal to control 
dissipative particle dynamics experiments that are executed on a 
remote supercomputer (IBM Blue Gene/Q). 

Keywords-software as a service; science as a service; scientific 
computing; dissipative particle dymanics  

I.  INTRODUCTION 
Historically, scientific discovery via laboratory 

experimentation was a time-consuming and expensive process. 
However, recent advancements in computer simulation have 
proven that many of these laboratory experiments can be 
replicated in-silico using analogous computational algorithms. 
Some advantages to the use of computational methods is that a 
wider variety of combinations can be explored than can be 
created in a laboratory, environmental factors and errors can be 
completely contained, and the time taken for processes or 
reactions to occur can be adjusted by the computer user. Thus, 
modern day scientific discovery can benefit from a 
combination of both methods, wherein in-silico experiments 
serve as drivers for real-world laboratory experiments, saving 
time and reducing product waste.  

For example, drug discovery often requires testing a large 
number of protein-ligand binding interactions to identify new 
potential drug candidates. These interactions can occur over 

different time intervals, and in-lab experiments can take 
months to show results. On the other hand, computational 
methods can be used to narrow down this pool of molecular 
candidates by reporting which simulation conditions yield the 
desired binding behavior, thus reducing the number of in-lab 
experiments that the scientist must perform, and ideally, the 
overall time to discover new binding interactions. 

A number of conditions must be met in order for in-silico 
experiments to be usable in hypothesis testing and decision 
support roles. Firstly, they must be substantially cheaper and/or 
quicker (in time-to-solution) than their real-world counterparts. 
Second, the variance and bias of the experiments must be such 
that experimentalists can trust the in-silico results and use them 
for guidance. Finally they must be easily accessible and usable 
by experimentalists.  

Experience shows that usability is a major barrier that 
prevents experimental scientists from using computational-
based techniques, because of complexities related to the design 
and execution of in-silico experiments. In order to design an in-
silico version of a desired laboratory experiment, simulation-
specific expertise is required to package computational 
components in such a way that mimics the conditions of the 
laboratory. For example, a typical workflow for computational 
simulation involves many stages: (i) the simulation requires 
input parameters that must be tuned and adjusted to a particular 
experiment, (ii) after the simulation has completed, post-
processing tools must be used to organize the simulation output 
into meaningful results, and (iii) various statistical methods 
may be employed to aggregate results from multiple 
simulations. In addition, simulation of such complex systems 
generally necessitates the use of high-performance computing 
(HPC) resources, which requires the scientist to have another 
level of computational expertise. 

As a result of these complexities, an experimental scientist 
typically outsources the task of running an in-silico experiment 
to a computational collaborator. However, in many cases, this 
method incurs its own bottlenecks, in that the experimental 
scientist must explain the laboratory experiment to the 
computational scientist and wait for the computational scientist 
to design and run the in-silico experiment. When the 
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experimental scientist receives the post-processed results of the 
simulation, he or she may realize that the desired solution was 
not reached or that the experiment was misinterpreted by the 
computational chemist designing the experiment, which would 
require the simulation to be fixed and re-run. Additionally, the 
computational chemists often design each experiment in an ad-
hoc manner that varies from experiment to experiment, leaving 
little room for reusability or automation. For these reasons, the 
present process is unsuccessful in producing the desired 
timesaving and increased efficiency needed for its widespread 
adoption. Hence, new models and techniques need to be 
explored to address this issue. 

One such technique that has been proposed to address such 
issues is to explore the use of computational resources that do 
not require new knowledge or expertise. As a result, many 
users in the scientific community have looked into using clouds 
for scientific applications [5] in order to alleviate some of these 
HPC-related issues [7]. While initial experiments have been 
successful for some classes of scientific applications (e.g., 
loosely coupled or embarrassingly parallel) [6], performance 
remains an issue that prevents widespread of cloud computing 
in the HPC domain [8]. For this reason, in our previous work 
[9], we argue that instead of moving scientific applications to 
typical cloud platforms (i.e., virtualized), we should focus on 
creating cloud abstractions that expose existing bare-metal 
HPC resources using cloud capabilities (e.g., on-demand 
provisioning, elasticity). In this paper, we extend these ideas to 
provide pervasive access to high-end resources in a 
collaborative manner, and propose a complete Software as a 
Service (SaaS) [10] abstraction that allows scientists to easily 
perform in-silico experiments on geographically distributed 
HPC resources. Our approach has three main advantages: (i) 
users are presented with a domain specific interface where they 
can focus exclusively on the science aspect of the experiments; 
(ii) bare-metal resources are transparently allocated on demand 
to efficiently execute the required scientific experiments and 
minimize performance degradation; and (iii) these resources 
are abstracted to the computational scientist at a high level to 
facilitate the deployment of the actual application. These 
characteristics are demonstrated in this paper using a driving 
scenario where experimental chemists use mobile devices to 
perform Dissipative Particle Dynamics (DPD) [1] experiments 
on high-end HPC resources. 

The remainder of this paper is organized as follows: Section 
II discusses related work in providing HPC Software as a 
Service. Section III presents a background on the CometCloud 
framework, while Section IV provides the details of the system 
components and architecture for providing HPC software as a 
service. Section V presents an overview of the DPD Simulation 
application and its requirements as well as the implementation 
of the use case. An evaluation and analysis of the proposed 
framework is then presented in Section VI using the DPD 
Simulation application running on an IBM Blue Gene/Q. The 
paper concludes in Section VII outlining future work. 

II. RELATED WORK 
The majority of research for using cloud computing in 

science and engineering applications has been focused at the 
Infrastructure as a Service (IaaS) layer [8][15][18].  At higher 

levels there have been some successful attempts on providing 
scientific workflows as a service [11][12], the goal of this 
work is to provide tools for building and deploying scientific 
workflows on cloud infrastructure. For example, Neptune [13] 
provides a domain specific language for deploying HPC 
software on cloud platforms. Additionally, some researchers 
have looked into providing scientific data as a service [14], 
where scientific data from previous experiments are stored on 
cloud services and can be easily shared and accessed through 
simple portals. At the software layer, Opal2 [16] was proposed 
as a toolkit that wraps scientific applications as web services. 
Once an application is deployed, the toolkit provides 
mechanisms for launching and monitoring jobs on grid, 
clusters, or cloud resources. Finally, ASAAS [17] was 
proposed as a SaaS implementation for HPC applications. The 
main services of ASAAS include automatic encapsulation and 
deployment service, web services portal for the usage, on-
demand license service and accounting.  

 
Our proposed work is different from existing research in 

two ways. First our work uses a high-end supercomputer (IBM 
Blue Gene/Q) that is provisioned and accessed in a similar 
fashion to cloud resources as opposed to running on 
virtualized cloud resources, which does not provide the high 
performance necessary for tightly coupled applications [8]. 
Second, the existing work is focused exposing HPC 
applications by providing portals for launching and monitoring 
jobs. While our proposed work also provides mechanisms for 
launching and monitoring jobs, our focus is to deliver actual 
application functionalities to non-computational scientists to 
bridge the gap between their scientific domain knowledge and 
the use of advanced computing techniques. Using a simple 
mobile device (e.g., a tablet), these scientists gain access to a 
service that allows them to design experiments, modify their 
parameters, execute them, and visualize their results without 
any knowledge about the underlying computational tools and 
infrastructure. At the back-end, computational scientists 
design and deploy computational tools (e.g., Dissipative 
Particle Dynamics (DPD)) that simulate real-world 
phenomena (e.g., wet-lab experiments). The provided 
framework translates experimentalists’ inputs into 
computational inputs and deploys the required experiments on 
supercomputers, maximizing throughput and utilization.  A 
further aspect of this approach is that it allows the 
computational experts to ensure simulations are carried out 
within the regime for which they are reliable. To the best of 
our knowledge there is no research that is focused on 
providing a complete HPC software as a service similar to the 
one presented in this paper. 

III. BACKGROUND: COMETCLOUD 
CometCloud is an autonomic framework for enabling real-

world applications on software-defined federated cyber-
infrastructure, including hybrid infrastructures integrating 
public & private Clouds, data-centers and Grids. The 
overarching goal of CometCloud is to realize a software-
defined federation with cloud abstractions that offer resources 
in an elastic and on-demand manner. It also provides 



abstractions and mechanisms to support a range of 
programming paradigms and application requirements on top 
of the federation [19]. 

Conceptually, CometCloud is composed of a programming 
layer, service layer, and infrastructure layer. The infrastructure 
layer uses the Chord self-organizing overlay [20] and the Squid 
[21] information discovery to create a scalable content-based 
coordination space for wide-area and a content-based routing 
substrate, respectively. The routing engine supports flexible 
content-based routing and complex querying using partial 
keywords, wildcards, or ranges. It also guarantees that all peer 
nodes with data elements that match a query/message will be 
located. The service layer provides a range of services to 
support autonomics at the programming and application level. 
This layer supports a Linda-like [22] tuple space coordination 
model, and provides a virtual shared-space abstraction as well 
as associative access primitives. Dynamically constructed 
transient spaces are also supported to allow applications to 
explicitly exploit context locality to improve system 
performance. Asynchronous (publish/subscribe) messaging and 
event services are also provided by this layer. The 
programming layer provides the basic functionality for 
application development and management. It supports a range 
of paradigms including the master/worker/BOT. Masters 
generate tasks and workers consume them. Masters and 

workers can communicate via virtual shared space or using a 
direct connection. Scheduling and monitoring of tasks are 
supported by the application framework. The task consistency 
service handles lost/failed tasks. CometCloud is not restricted 
to applications that have been developed in a particular 
programming language (e.g. Java), and has been demonstrated 
to work as a wrapper for a number of other languages (e.g. C, 
Matlab, Fortran, etc.) [18].  

IV. SYSTEM COMPONENTS & ARCHITECTURE 
The main goal of this paper is to present the design of an 

end-to-end framework to enable HPC Software as a Service. 
Providing an end-to-end simulation as a service presents many 
challenges, some of which are administrative (e.g., access, 
accounting, billing, etc.), while others are more technical (e.g., 
scheduling, security, etc.). The focus of our work is on the 
technical challenges and how the proposed framework 
addresses these challenges. The technical challenges can be 
divided into two groups: front-end and back-end. Some of the 
challenges at the front-end are: what is the right mechanism for 
delivering the application, what is the right interface for the 
end-user scientist, how do we expose different experiments 
designed by the computational scientists, and how to securely 
connect the front and back-ends. At the back-end, some of the 
challenges are: how to run/monitor the different simulations on 
the given system, how to handle system level failure, how to 

 
 

Figure 1: Overall Framework Architecture and System Components 



visualize results and send them back to the front-end, how to 
support multiple simulations/experiments from (a) 
single/multiple user(s), and how do we support scaling and 
provide high utilizations. Additionally, given that the Blue 
Gene/Q system used for our experiments is a production 
system running a queue-based scheduling software (IBM 
LoadLeveler1), what are the best ways to interact with the 
scheduler in order to minimize wait time and maximize 
throughput? 

In order to address these challenges, we propose the 
framework depicted in Figure 1. This framework is composed 
of the following system components: 

1. A front-end portal: the interface to the end-user, which 
communicates securely with the back-end. 

2. Workflow manager: the manager responsible for the 
design of different scientific experiments and 
workflows. 

3. Execution engine: the engine responsible for running the 
resulting experiments or workflows on the available 
HPC resources. 

4. Scientific simulation application: the application running 
on the compute nodes of the HPC system. 

In order to provide a better understanding of the 
applicability of our framework and the function of each one of 
the system components, we have used a driving use case in the 
context of dissipative particle dynamics.  

V. USE CASE: DISSIPATIVE PARTICLE DYNAMICS (DPD) 
DPD [1][2] is a particle-based simulation technique, which 

focuses on the meso-scale behavior of molecular systems. 
Meso-scale can be defined as the time and length scales that lie 
between the atomic-world (10-10 m) and the macro-world (10-5 

m) in which we exist. These time and size scales are expensive 
and difficult to access using atomistic methods like Molecular 
Dynamics but with DPD they can be simulated at much less 
computational cost [3]. This allows the microstructure and 
hydrodynamics of various soft-matter systems (not completely 

                                                             
1 http://www-03.ibm.com/software/products/en/tivoliworkloadschedulerloadleveler 

liquid or solid) to be investigated. Formulation chemistry deals 
with the behavior and characteristics of mixtures of molecules 
that do not react with each other, but whose interactions yield a 
range of different behaviors. It is important in the 
manufacturing of a wide-range of household products, for 
example detergents and shampoos. DPD has proven effective at 
describing the structure and behavior of a variety of systems in 
formulation chemistry and a number of experiments 
formulation chemists carry out in the lab can be replicated in-
silico using this method. However, using these computational 
tools and the underlying resources is not trivial for 
experimentalists. Hence, in this section we show how we can 
use our approach to ease this undertaking. 

  

A. Front-end Portal 
In our approach to deliver this application to the end-user, 

we focus on two key design points: accessibility and usability. 
By definition, a SaaS solution encapsulates the provisioning of 
software over the Internet [10]. Similarly, our front-end portal 
shown in Figure 2 uses Internet connectivity to communicate 
with the back-end, however, instead of providing a web-based 
application we opted to build a standalone application that can 
offer more customizable features. To provide ease of access, 
the application was designed for tablets. Ease of access enables 
the experimental chemists to run the simulations without 
having to go back and forth between a computer lab and the 
wet-lab. Because of the nature of wet-labs, a tablet proves to be 
a more accessible and portable choice than a standalone 
desktop or laptop computer, as it can be easily carried around 
to multiple workbenches and can be protected from the 
environment. To address usability, computational chemists and 
experimental chemists are providing input and feedback on this 
work.  

In addition to these design points, a team of computational 
scientists designed and created end-to-end experiments that 
simulate important wet-lab experiments using the DL_MESO 
code [4], so that the experimental chemists could simply adjust 
the meaningful wet-lab parameters in order to visualize 
simulation results with minimal overhead. The experimental 
chemists were not exposed to the technical aspects of the 
computational experiment design. Similarly, the HPC resources 

 

Figure 2: Front-end Portal Running the DPD Application 



are completely masked from the experimental chemists to 
simplify the process and help the chemists focus on the end 
results. 

 

B. Workflow Manager 
The workflow manager is responsible for the development and 
deployment of the different experiments (workflows). In this 
use case we use a DPD Workflow Manager. The manager 
creates the workflow shown in Error! Reference source not 
found. and tracks its progress, state e.g. running, waiting on 
resource, and output of the various jobs. Specifically we 
consider the prediction of the structure of a mixture (also 
known as phase, which can yield information about system 
properties, e.g., rheology) of interacting molecules selected by 
the chemist. The inputs provided by the chemist are two 
molecules (selected from a library of molecules relevant to the 
experimentalists field of study). The amount is specified in 
grams where the sum of the weight of the two molecules is <= 
100g. Water is added to make the total weight equal to 100g. 
These are measurements that the experimental chemist would 
usually use in the wet-lab. 
  
The output from the experiment is a prediction of the phase 
the mixture will form along with confidence. The workflow 
consists of three stages: preparation, equilibration and 
production.  

 
Preparation stage: in the preparation stage the inputs for four 
different DPD simulations of the mixture are generated from 
the inputs. The output of a DPD simulation consists of a 
sequence of frames, or snapshots, of the system configuration. 
Physical characteristics of the mixture are calculated by 
performing statistical averaging over all the frames produced 
by the simulation.  Four simulations are launched in order to 
obtain better statistics. 
 
Equilibration stage: the equilibration stage is required because 
the DPD simulations are started in random configurations. The 
simulations must evolve from these initial configurations to 
those that are more representative of the systems behavior. 
Technically the probability of seeing a configuration with a 
given energy must converge to a given distribution (the 
equilibrium distribution). In the equilibration phase the four 
DPD simulations are started. In addition a number of further 
jobs are launched: 

• Equilibration Monitors: An equilibration job is launched 
periodically on the output of each simulation to 
determine if equilibration has been reached. When all 
four simulations have equilibrated the stage is finished. 

• Structure Extraction: A component is periodically 
launched to extract the latest structure in one of the 
simulations 

 
Figure 3: Dissipative Particle Dynamics Workflow 



• Image generation: A component is launched to convert 
the output of the structure extraction into a PNG image 
that can be displayed to the chemist 

 
Production stage: in the production stage the four DPD 
simulations are continued. Again a number of further jobs are 
launched to monitor and process the output of the simulations. 
These include the Structure Extraction and Image Generation 
steps above. In addition, the following jobs are employed in the 
workflow: 

• Phase Determination: For each simulation a phase-
determination program is periodically launched to 
determine the structure of phases present in each frame 
output since last launch (and after equilibration) 

• Output Aggregation: A job is periodically launched 
consuming the output of the Phase Determination jobs. 
This job aggregates the output from the four simulations 

• Phase Processing: A job is periodically launched 
consuming the aggregated output and calculating the 
phase present in the simulation and the confidence value. 
These values are displayed to the user. 

 

C. Execution Engine 
CometCloud is responsible for executing different 

simulations on the Blue Gene/Q system. The DPD Workflow 
Manager generates different experiments and interacts with 
CometCloud to execute these experiments. CometCloud then 
interacts with LoadLeveler (the scheduler running on the Blue 
Gene/Q) to submit and run these jobs. The addition of the 
CometCloud layer between the DPD simulation workflow 
manager and LoadLeveler adds extra overhead, however, there 
are a number of added benefits to using the CometCloud 
framework, which are discussed below. 

CometCloud exposes the hardware as a black box 
component and guarantees the execution of the workflow 
specified by the DPD Workflow Manager. CometCloud is also 
responsible for monitoring the submitted runs (jobs), handling 
system level failures, and resubmitting failed jobs. In addition, 
CometCloud handles the interaction with LoadLeveler and can 
mitigate common queue problems, such as long queue times as 
well as fixed partition sizes. For example, the smallest partition 
size a user can request on this specific installation of Blue 
Gene/Q is 128 nodes (2048 cores). This is due to the limited 
number of available I/O nodes on the system (each partition 
requires at least one I/O node). Therefore, running jobs smaller 
than 2048 cores results in wasted CPUs that are just idling. 
With our design, we were capable of packing multiple smaller 
jobs per partition to increase utilization, all of which is 
transparent to the application and user. In summary, 
CometCloud abstracts the hardware from the computational 
scientists to enable them to focus on designing experiments and 
developing meaningful science while providing them with an 
execution engine that will deploy the application in real-time 
on a federation of available resources while maximizing 
throughput and utilization.  

The specific implementation of CometCloud is presented in 
Figure 4. In order to avoid any performance degradation on the 

compute nodes, CometCloud runs fully on the Blue Gene/Q 
front-end node. CometCloud is composed of the following 
components: 

Comet Workflow Manager (WFM): The WFM is 
responsible for deploying the end-to-end workflow for a single 
simulation (passed from the DPD Workflow Manager). Each 
stage in the workflow is a set of jobs that can be executed. The 
WFM handles the dependency between stages. Stages can be 
executed in parallel if there is no dependency, and sequentially 
otherwise. Jobs within one stage have no dependency on one 
another.  

CometSpace (CS): The CS is a shared space that contains 
all the jobs that are ready for execution. The CS can be 
distributed across multiple machines, however for this 
experiment, the CS is limited to the Blue Gene/Q front-end 
node. This was done to avoid any performance overhead on the 
compute nodes that run the DL_MESO application.  

Master (M): The WFM communicates with the master 
when a workflow stage is ready to be executed. The master 
generates the jobs for the given stage and inserts them into the 
CometSpace. The master then notifies the WFM after the jobs 
are inserted in the space.  

 

 

Figure 4: CometCloud-based Implementation 



Isolated Workers (IW): The workers are responsible for 
executing the jobs on the allocated Blue Gene/Q partitions. 
Workers can submit the fetched jobs to LoadLeveler or execute 
directly using the runjob command. Workers communicate 
with their corresponding Resource Agent (to retrieve jobs). 

Request Handler (RH): The RH fetches jobs from the CS  

Request Handler Proxy (RHP): The RHP receives requests 
from the Resource Agent and submits them to the RH.  

Resource Agent (RA): The RA is responsible for 
allocating/terminating Comet Workers as well as managing 
hardware resources (in our case partitions on the Blue Gene/Q). 
There exists one RA for each system; in this paper there is only 
one system and therefore one RA. Additionally, the agent is 
responsible for fetching jobs from the space through the RHP. 
This was done so that different RAs can fetch different types of 
jobs based on the type of the underlying system. 

Autonomic Scheduler (AS): The AS is used to schedule 
jobs on available resources. The WFM notifies the AS when 
jobs are ready for execution and the number/size of these jobs. 
The RA notifies the AS of all available (active and inactive) 
resources for the given system. The AS then schedules the jobs 
according to this information and notifies the AS to adjust its 
running local resources if necessary (i.e. allocate more 
partitions, terminate some partitions, start new Comet Workers, 
terminate running workers).  

 

D. Scientific Simulation Application 
DL_MESO [4] is a meso-scale simulation package 

providing two distinct simulation methods to users: DPD and 
lattice Boltzmann equation methods, with the DPD program 
being of importance in this work. It is a hybrid parallel program 
capable of distributed memory parallelism via MPI and shared 
memory parallelism via OpenMP, and can scale to thousands 
of processors on high-performance supercomputers. The 
package also provides a number of post-processing tools. Of 
particular relevance here is the isosurface tool, which provides 
a prediction of the phase of a meso-scale DPD system. 
DL_MESO is developed by the Science & Technology 
Facilities Council at Daresbury Laboratory for the United 
Kingdom Collaborative Computational Project (CCP5). 

VI. EVALUATION & ANALYSIS 
We have performed a set of experiments to evaluate our 
approach. These experiments are aimed to show that our 
approach is able to enable HPC software as a service, where 
resources are dynamically allocated to optimize their usage. All 
of the following experiments ran on an IBM Blue Gene/Q at 
the Hartree Centre, Science & Technology Facilities Council in 
Daresbury, UK. For these experiments we have used an 
application instance that requires around five minutes of 
computation in 512 cores of the previously mentioned machine. 

 

A. Evaluating CometCloud Overhead 
In this experiment we evaluate the overhead of using the 
CometCloud framework as opposed to submitting jobs directly 

to LoadLeveler from the DPD Workflow Manager. There are 
three types of overheads when using CometCloud.  

• Startup overhead: is the time needed to launch the 
CometCloud framework. This includes the time to start all 
components of CometCloud, which includes the Workflow 
Manager (WFM), the Autonomic Scheduler (AS), the 
CometSpace (CS), the Master (M), the Request Handler 
(RH), the Request Handler Proxy (RHP), and the Resource 
Agent (RA). Note - Workers (W) are started and 
terminated automatically when new jobs are submitted 
from the DPD Workflow Manager.  

• Job submission overhead: is the time needed to submit a 
job from the DPD Workflow Manager to LoadLeveler. 
This includes the time to generate a task for the submitted 
job with the correct job parameters, inserting the task into 
the CometSpace (CS), starting a worker (W), fetching the 
task from the space, and submitting the job to 
LoadLeveler.  

• Job status overhead: is the time needed to return the status 
of a complete job back to the DPD Workflow Manager. 
This time includes the Master (M) verifying the 
completion of the task and the termination of the Worker 
(W) thereafter. In case of a job failure, the Master reinserts 
the job back into the CometSpace (CS). 

The startup overhead results are shown in Table 1 

Startup overhead WFM & AS CS, M, RH, & RPH RA 

Time (sec) 0.359 1.801 0.9 

Table 1: CometCloud-based implementation startup overhead 

The job submission overhead results are shown in Figure 5, in 
the left column we submitted 8 tasks sequentially, thus using 
only 1 worker to execute 8 tasks (1 task at a time). In the right 
column, we submitted 8 tasks in parallel, thus using 8 workers 
to execute all tasks (8 tasks at the same time). Using 1 worker, 
the average job submission overhead is 1.877 seconds 
(minimum 1.458 seconds and maximum 2.718 seconds). Using 
8 workers, the average job submission overhead is 1.621 
seconds (minimum 1.385 seconds and maximum 2.249 
seconds). This shows that the overall job submission overhead 
(1.786 seconds) does not vary significantly when increasing the 
number of workers.  

The job status overhead results are also shown in Figure 5, As 
before, the left column shows the results of executing 8 tasks 
sequentially, while the right column shows the results of 
executing 8 tasks in parallel. We can observe that the average 
job status overhead in the sequential case is 1.803 seconds 
versus the 1.571 seconds that takes in the parallel case. 



 
Figure 5: Job submission & job status overheads for the 

CometCloud-based implementation 

B. Evaluating Fault Tolerance 
In this experiment we simulate a system failure by externally 
canceling jobs from LoadLeveler. CometCloud handles system 
failures and reinserts the failed tasks to the CometSpace (CS) to 
be resubmitted to LoadLeveler. Without CometCloud, manual 
user intervention is necessary to resubmit failed jobs. Figure 6 
shows the time to completion for a single job when no failure is 
present, when a failure occurs but no fault tolerance is in place, 
and when a failure occurs with fault tolerance. The average 
time to resubmit a job to LoadLeveler (including reinserting the 
task into the CometSpace and a Worker fetching the task from 
the space) is 0.27 seconds. Waiting time in LoadLeveler queue 
is not shown in Figure 5. Figure 7 shows the total number of 
completed jobs after 100 job submissions and 7 simulated 
failures.  

 
Figure 6: Application time to completion with fault tolerance 

 
Figure 7: Number of complete jobs with fault tolerance 

C. Maximizing Utilization 
In this experiment we take advantage of CometCloud 
capabilities to maximize resource utilization. As we mentioned 
earlier, the minimum size of a Blue Gene/Q partition at 
Daresbury is 128 nodes (2048 cores). Submitting jobs that are 
of smaller size results in a waste of compute cycles. The 
simulations used in the DPD workflow stop scaling at 32 nodes 
(512 cores), which leads to a mismatch in resources. 

In this experiment we examine the effect of packing 4 jobs 
(each of size 32 nodes (512 cores) into a single partition of size 
128 nodes in two scenarios separately. The impact of packing 
on DL_MESO performance is measured by the average time 
per DPD step achieved over 40,000 steps. 

In the first scenario, we compare executing 4 (512 core) jobs 
using 4 partitions simultaneously (no packing) versus using 1 
partition (packing).  Figure 8 shows that packing 4 jobs per 
partition causes a slow down in DL_MESO performance of 
1.38% on average. This is attributed to the fact that the 
partition has only 1 I/O node and therefore I/O operations slow 
down the overall execution of the application. However the 
resource utilization in the case of no packing is 4 times less 
than with packing, see Figure 9.  

In the second scenario, we compare packing vs. no packing 
when only 1 partition of size 128 nodes (2048 cores) is 
available to execute all 4 jobs. In this case, the jobs with no 
packing will be serialized and therefore packing jobs would 
result in almost four-fold (3.83) speedup, see Figure 10. The 
resource utilization in this scenario is the same as in the first 
scenario. The number of allocated resources with no packing 
will be 8196 cores (2048 cores allocated and released four 
times) but only 2048 cores will be used (512 cores used four 
times). When packing is used 2048 cores will be allocated and 
fully utilized once.  

 
Figure 8: DL_MESO execution time per step in scenario 1  
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Figure 9: Resource utilization in Scenarios 1 and 2 

 
Figure 10: DL_MESO execution time per step in Scenario 2 

D. Minimizing Queue Time 
In this experiment we take advantage of CometCloud 
capabilities to minimize queue wait times. Without using 
CometCloud running 4 jobs involves submitting 4 jobs to 
LoadLeveler, which results in 4 wait_times (1 per job) in the 
queue and 4 run_times (also 1 per job). The wait_time varies 
significantly based on the overall utilization of the system 
whereas the run_time in this experiment is relatively fixed. 
CometCloud can pack multiple jobs per submission (as 
opposed to the previous experiment of multiple jobs per 
partition) and minimize the wait_time to one per multiple jobs, 
Note - run_time remains as 1 per job. This can be used to 
exploit the scheduling of LoadLeveler since the scheduling is 
based on fixed time allocations. For example, in the Daresbury 
installation, all jobs running for less than 20 minutes are 
considered of one class (e.g. small_class), whereas all jobs that 
are larger than 20 minutes but smaller than 1 hour are 
considered of a second class (e.g. medium_class), finally jobs 
that require more than 1 hour are considered of a third class 
(e.g. large_class). This results in that a similar wait_time for 
any job of the small_class whether it will run for 5 minutes or 
20 minutes. CometCloud takes in consideration the policies set 
by LoadLeveler when packing multiple jobs into a single 
submission to try to minimize wait_time. For example, 
CometCloud can pack 4 (5 minutes) jobs into a single 
submission that will run in 20 minutes as opposed to 4 job 
submissions of 5 minutes each. This results in a reduction of 

wait_time by 75% percent. Note – this is only useful for 
heavily utilized systems. 

In Summary – CometCloud can abstract high-end resources 
from the computational scientists while providing fault 
tolerance, high resource utilization, and minimal queue wait 
times. As we previously mentioned the CometCloud 
framework runs fully on the front-end node to avoid any 
performance degradation to the actual DPD application running 
on the compute nodes. The only performance degradation to 
the DL_MESO application occurs when we pack multiple 
smaller jobs into a partition. However, increasing the job 
throughput and the utilization of the partition compensates this 
performance degradation in this case.  

VII. CONCLUSION & FUTURE WORK 
In this paper, we presented the design and implementation 

of a framework that abstracts high-end resources from 
computational scientists in order to facilitate the development 
and deployment of DPD experiments. In addition, we provided 
a complete software stack coupled with high-end HPC 
resources that are provisioned to the end-user, the experimental 
chemist, using portable devices. In our approach the usability is 
a first class citizen, hence users are presented with a domain 
specific interface while the underlying environment details are 
completely hidden from the experimentalists. We show that the 
resulting framework enables HPC resource sharing with a 
small management overhead on the front-end node of the 
supercomputer, but without any performance degradation to the 
actual DPD application running on the compute-nodes.  

Finally, the framework tries to maximize throughput and 
utilization of high-end resources with small performance 
degradation. Providing cloud abstractions for DPD simulations 
allows these experiments to be run directly by the 
experimentalists. In this model the computational experts create 
a workflow for the computational experiment that encapsulates 
both their state-of-the-art knowledge of the computational 
science and the HPC software involved. The experimentalists 
can then treat this easily accessible workflow as a black box 
that returns only the chemically relevant information to them. 
The increased accessibility of these simulations can help drive 
wet-lab experimentation in real-time. The service model 
enables higher utilization of high-end resources and facilitates 
the collaborative sharing of resources  

 Future work includes supporting federation of 
resources and elasticity. This includes running the workflow on 
multiple systems with different capabilities to optimize the 
execution. For example, visualization of the output would be 
run on an IBM iDataplex as opposed to running on the Blue 
Gene/Q system. 
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