
Exploring HPC-based Scientific Software as a Service
using CometCloud

Moustafa AbdelBaky1, Javier Diaz-Montes1, Michael Johnston2, Vipin Sachdeva2, Richard L. Anderson3, Kirk E.
Jordan2, and Manish Parashar1

1Rutgers Discovery Informatics Institute (RDI2), Rutgers University, Piscataway, NJ, USA
2IBM TJ Watson Research Center, Cambridge, MA, USA

3 Science and Technology Facilities Council, Hartree Centre, SciTech Daresbury, Warrington, UK
moustafa.a@rutgers.edu, javidiaz@rdi2.rutgers.edu, michaelj@ie.ibm.com, vsachde@us.ibm.com, richard.anderson@stfc.ac.uk,

kjordan@us.ibm.com, parashar@rutgers.edu

Abstract— The use of in-silico simulations in experimental science
can greatly increase laboratory efficiency and provide additional
insights into interactions not easily described by traditional
methods. Such simulations require significant amounts of
computational resources, accessible only via supercomputers of
large-scale high-performance clusters. Due to the complexity of
the computational experiments, as well as the usage of the
underlying resources, experimental scientists heavily rely on
computational scientists with HPC expertise to perform these
simulations. This additional bottleneck prevents the widespread
adoption of real time in-silico simulation as a driver
for laboratory experimentation. In this paper, we aim to
overcome this bottleneck by presenting the architecture of an
end-to-end framework to enable HPC Software as a Service. This
framework is designed to make it easy for scientific applications
to run on top of dynamically federated HPC resources. The
framework enables HPC resource sharing while maximizing
throughput and utilization. We focus specifically on a use case
where an experimental scientist uses a mobile portal to control
dissipative particle dynamics experiments that are executed on a
remote supercomputer (IBM Blue Gene/Q).

Keywords-software as a service; science as a service; scientific
computing; dissipative particle dymanics

I. INTRODUCTION
Historically, scientific discovery via laboratory

experimentation was a time-consuming and expensive process.
However, recent advancements in computer simulation have
proven that many of these laboratory experiments can be
replicated in-silico using analogous computational algorithms.
Some advantages to the use of computational methods is that a
wider variety of combinations can be explored than can be
created in a laboratory, environmental factors and errors can be
completely contained, and the time taken for processes or
reactions to occur can be adjusted by the computer user. Thus,
modern day scientific discovery can benefit from a
combination of both methods, wherein in-silico experiments
serve as drivers for real-world laboratory experiments, saving
time and reducing product waste.

For example, drug discovery often requires testing a large
number of protein-ligand binding interactions to identify new
potential drug candidates. These interactions can occur over

different time intervals, and in-lab experiments can take
months to show results. On the other hand, computational
methods can be used to narrow down this pool of molecular
candidates by reporting which simulation conditions yield the
desired binding behavior, thus reducing the number of in-lab
experiments that the scientist must perform, and ideally, the
overall time to discover new binding interactions.

A number of conditions must be met in order for in-silico
experiments to be usable in hypothesis testing and decision
support roles. Firstly, they must be substantially cheaper and/or
quicker (in time-to-solution) than their real-world counterparts.
Second, the variance and bias of the experiments must be such
that experimentalists can trust the in-silico results and use them
for guidance. Finally they must be easily accessible and usable
by experimentalists.

Experience shows that usability is a major barrier that
prevents experimental scientists from using computational-
based techniques, because of complexities related to the design
and execution of in-silico experiments. In order to design an in-
silico version of a desired laboratory experiment, simulation-
specific expertise is required to package computational
components in such a way that mimics the conditions of the
laboratory. For example, a typical workflow for computational
simulation involves many stages: (i) the simulation requires
input parameters that must be tuned and adjusted to a particular
experiment, (ii) after the simulation has completed, post-
processing tools must be used to organize the simulation output
into meaningful results, and (iii) various statistical methods
may be employed to aggregate results from multiple
simulations. In addition, simulation of such complex systems
generally necessitates the use of high-performance computing
(HPC) resources, which requires the scientist to have another
level of computational expertise.

As a result of these complexities, an experimental scientist
typically outsources the task of running an in-silico experiment
to a computational collaborator. However, in many cases, this
method incurs its own bottlenecks, in that the experimental
scientist must explain the laboratory experiment to the
computational scientist and wait for the computational scientist
to design and run the in-silico experiment. When the

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257833

experimental scientist receives the post-processed results of the
simulation, he or she may realize that the desired solution was
not reached or that the experiment was misinterpreted by the
computational chemist designing the experiment, which would
require the simulation to be fixed and re-run. Additionally, the
computational chemists often design each experiment in an ad-
hoc manner that varies from experiment to experiment, leaving
little room for reusability or automation. For these reasons, the
present process is unsuccessful in producing the desired
timesaving and increased efficiency needed for its widespread
adoption. Hence, new models and techniques need to be
explored to address this issue.

One such technique that has been proposed to address such
issues is to explore the use of computational resources that do
not require new knowledge or expertise. As a result, many
users in the scientific community have looked into using clouds
for scientific applications [5] in order to alleviate some of these
HPC-related issues [7]. While initial experiments have been
successful for some classes of scientific applications (e.g.,
loosely coupled or embarrassingly parallel) [6], performance
remains an issue that prevents widespread of cloud computing
in the HPC domain [8]. For this reason, in our previous work
[9], we argue that instead of moving scientific applications to
typical cloud platforms (i.e., virtualized), we should focus on
creating cloud abstractions that expose existing bare-metal
HPC resources using cloud capabilities (e.g., on-demand
provisioning, elasticity). In this paper, we extend these ideas to
provide pervasive access to high-end resources in a
collaborative manner, and propose a complete Software as a
Service (SaaS) [10] abstraction that allows scientists to easily
perform in-silico experiments on geographically distributed
HPC resources. Our approach has three main advantages: (i)
users are presented with a domain specific interface where they
can focus exclusively on the science aspect of the experiments;
(ii) bare-metal resources are transparently allocated on demand
to efficiently execute the required scientific experiments and
minimize performance degradation; and (iii) these resources
are abstracted to the computational scientist at a high level to
facilitate the deployment of the actual application. These
characteristics are demonstrated in this paper using a driving
scenario where experimental chemists use mobile devices to
perform Dissipative Particle Dynamics (DPD) [1] experiments
on high-end HPC resources.

The remainder of this paper is organized as follows: Section
II discusses related work in providing HPC Software as a
Service. Section III presents a background on the CometCloud
framework, while Section IV provides the details of the system
components and architecture for providing HPC software as a
service. Section V presents an overview of the DPD Simulation
application and its requirements as well as the implementation
of the use case. An evaluation and analysis of the proposed
framework is then presented in Section VI using the DPD
Simulation application running on an IBM Blue Gene/Q. The
paper concludes in Section VII outlining future work.

II. RELATED WORK
The majority of research for using cloud computing in

science and engineering applications has been focused at the
Infrastructure as a Service (IaaS) layer [8][15][18]. At higher

levels there have been some successful attempts on providing
scientific workflows as a service [11][12], the goal of this
work is to provide tools for building and deploying scientific
workflows on cloud infrastructure. For example, Neptune [13]
provides a domain specific language for deploying HPC
software on cloud platforms. Additionally, some researchers
have looked into providing scientific data as a service [14],
where scientific data from previous experiments are stored on
cloud services and can be easily shared and accessed through
simple portals. At the software layer, Opal2 [16] was proposed
as a toolkit that wraps scientific applications as web services.
Once an application is deployed, the toolkit provides
mechanisms for launching and monitoring jobs on grid,
clusters, or cloud resources. Finally, ASAAS [17] was
proposed as a SaaS implementation for HPC applications. The
main services of ASAAS include automatic encapsulation and
deployment service, web services portal for the usage, on-
demand license service and accounting.

Our proposed work is different from existing research in

two ways. First our work uses a high-end supercomputer (IBM
Blue Gene/Q) that is provisioned and accessed in a similar
fashion to cloud resources as opposed to running on
virtualized cloud resources, which does not provide the high
performance necessary for tightly coupled applications [8].
Second, the existing work is focused exposing HPC
applications by providing portals for launching and monitoring
jobs. While our proposed work also provides mechanisms for
launching and monitoring jobs, our focus is to deliver actual
application functionalities to non-computational scientists to
bridge the gap between their scientific domain knowledge and
the use of advanced computing techniques. Using a simple
mobile device (e.g., a tablet), these scientists gain access to a
service that allows them to design experiments, modify their
parameters, execute them, and visualize their results without
any knowledge about the underlying computational tools and
infrastructure. At the back-end, computational scientists
design and deploy computational tools (e.g., Dissipative
Particle Dynamics (DPD)) that simulate real-world
phenomena (e.g., wet-lab experiments). The provided
framework translates experimentalists’ inputs into
computational inputs and deploys the required experiments on
supercomputers, maximizing throughput and utilization. A
further aspect of this approach is that it allows the
computational experts to ensure simulations are carried out
within the regime for which they are reliable. To the best of
our knowledge there is no research that is focused on
providing a complete HPC software as a service similar to the
one presented in this paper.

III. BACKGROUND: COMETCLOUD
CometCloud is an autonomic framework for enabling real-

world applications on software-defined federated cyber-
infrastructure, including hybrid infrastructures integrating
public & private Clouds, data-centers and Grids. The
overarching goal of CometCloud is to realize a software-
defined federation with cloud abstractions that offer resources
in an elastic and on-demand manner. It also provides

abstractions and mechanisms to support a range of
programming paradigms and application requirements on top
of the federation [19].

Conceptually, CometCloud is composed of a programming
layer, service layer, and infrastructure layer. The infrastructure
layer uses the Chord self-organizing overlay [20] and the Squid
[21] information discovery to create a scalable content-based
coordination space for wide-area and a content-based routing
substrate, respectively. The routing engine supports flexible
content-based routing and complex querying using partial
keywords, wildcards, or ranges. It also guarantees that all peer
nodes with data elements that match a query/message will be
located. The service layer provides a range of services to
support autonomics at the programming and application level.
This layer supports a Linda-like [22] tuple space coordination
model, and provides a virtual shared-space abstraction as well
as associative access primitives. Dynamically constructed
transient spaces are also supported to allow applications to
explicitly exploit context locality to improve system
performance. Asynchronous (publish/subscribe) messaging and
event services are also provided by this layer. The
programming layer provides the basic functionality for
application development and management. It supports a range
of paradigms including the master/worker/BOT. Masters
generate tasks and workers consume them. Masters and

workers can communicate via virtual shared space or using a
direct connection. Scheduling and monitoring of tasks are
supported by the application framework. The task consistency
service handles lost/failed tasks. CometCloud is not restricted
to applications that have been developed in a particular
programming language (e.g. Java), and has been demonstrated
to work as a wrapper for a number of other languages (e.g. C,
Matlab, Fortran, etc.) [18].

IV. SYSTEM COMPONENTS & ARCHITECTURE
The main goal of this paper is to present the design of an

end-to-end framework to enable HPC Software as a Service.
Providing an end-to-end simulation as a service presents many
challenges, some of which are administrative (e.g., access,
accounting, billing, etc.), while others are more technical (e.g.,
scheduling, security, etc.). The focus of our work is on the
technical challenges and how the proposed framework
addresses these challenges. The technical challenges can be
divided into two groups: front-end and back-end. Some of the
challenges at the front-end are: what is the right mechanism for
delivering the application, what is the right interface for the
end-user scientist, how do we expose different experiments
designed by the computational scientists, and how to securely
connect the front and back-ends. At the back-end, some of the
challenges are: how to run/monitor the different simulations on
the given system, how to handle system level failure, how to

Figure 1: Overall Framework Architecture and System Components

visualize results and send them back to the front-end, how to
support multiple simulations/experiments from (a)
single/multiple user(s), and how do we support scaling and
provide high utilizations. Additionally, given that the Blue
Gene/Q system used for our experiments is a production
system running a queue-based scheduling software (IBM
LoadLeveler1), what are the best ways to interact with the
scheduler in order to minimize wait time and maximize
throughput?

In order to address these challenges, we propose the
framework depicted in Figure 1. This framework is composed
of the following system components:

1. A front-end portal: the interface to the end-user, which
communicates securely with the back-end.

2. Workflow manager: the manager responsible for the
design of different scientific experiments and
workflows.

3. Execution engine: the engine responsible for running the
resulting experiments or workflows on the available
HPC resources.

4. Scientific simulation application: the application running
on the compute nodes of the HPC system.

In order to provide a better understanding of the
applicability of our framework and the function of each one of
the system components, we have used a driving use case in the
context of dissipative particle dynamics.

V. USE CASE: DISSIPATIVE PARTICLE DYNAMICS (DPD)
DPD [1][2] is a particle-based simulation technique, which

focuses on the meso-scale behavior of molecular systems.
Meso-scale can be defined as the time and length scales that lie
between the atomic-world (10-10 m) and the macro-world (10-5

m) in which we exist. These time and size scales are expensive
and difficult to access using atomistic methods like Molecular
Dynamics but with DPD they can be simulated at much less
computational cost [3]. This allows the microstructure and
hydrodynamics of various soft-matter systems (not completely

1 http://www-03.ibm.com/software/products/en/tivoliworkloadschedulerloadleveler

liquid or solid) to be investigated. Formulation chemistry deals
with the behavior and characteristics of mixtures of molecules
that do not react with each other, but whose interactions yield a
range of different behaviors. It is important in the
manufacturing of a wide-range of household products, for
example detergents and shampoos. DPD has proven effective at
describing the structure and behavior of a variety of systems in
formulation chemistry and a number of experiments
formulation chemists carry out in the lab can be replicated in-
silico using this method. However, using these computational
tools and the underlying resources is not trivial for
experimentalists. Hence, in this section we show how we can
use our approach to ease this undertaking.

A. Front-end Portal
In our approach to deliver this application to the end-user,

we focus on two key design points: accessibility and usability.
By definition, a SaaS solution encapsulates the provisioning of
software over the Internet [10]. Similarly, our front-end portal
shown in Figure 2 uses Internet connectivity to communicate
with the back-end, however, instead of providing a web-based
application we opted to build a standalone application that can
offer more customizable features. To provide ease of access,
the application was designed for tablets. Ease of access enables
the experimental chemists to run the simulations without
having to go back and forth between a computer lab and the
wet-lab. Because of the nature of wet-labs, a tablet proves to be
a more accessible and portable choice than a standalone
desktop or laptop computer, as it can be easily carried around
to multiple workbenches and can be protected from the
environment. To address usability, computational chemists and
experimental chemists are providing input and feedback on this
work.

In addition to these design points, a team of computational
scientists designed and created end-to-end experiments that
simulate important wet-lab experiments using the DL_MESO
code [4], so that the experimental chemists could simply adjust
the meaningful wet-lab parameters in order to visualize
simulation results with minimal overhead. The experimental
chemists were not exposed to the technical aspects of the
computational experiment design. Similarly, the HPC resources

Figure 2: Front-end Portal Running the DPD Application

are completely masked from the experimental chemists to
simplify the process and help the chemists focus on the end
results.

B. Workflow Manager
The workflow manager is responsible for the development and
deployment of the different experiments (workflows). In this
use case we use a DPD Workflow Manager. The manager
creates the workflow shown in Error! Reference source not
found. and tracks its progress, state e.g. running, waiting on
resource, and output of the various jobs. Specifically we
consider the prediction of the structure of a mixture (also
known as phase, which can yield information about system
properties, e.g., rheology) of interacting molecules selected by
the chemist. The inputs provided by the chemist are two
molecules (selected from a library of molecules relevant to the
experimentalists field of study). The amount is specified in
grams where the sum of the weight of the two molecules is <=
100g. Water is added to make the total weight equal to 100g.
These are measurements that the experimental chemist would
usually use in the wet-lab.

The output from the experiment is a prediction of the phase
the mixture will form along with confidence. The workflow
consists of three stages: preparation, equilibration and
production.

Preparation stage: in the preparation stage the inputs for four
different DPD simulations of the mixture are generated from
the inputs. The output of a DPD simulation consists of a
sequence of frames, or snapshots, of the system configuration.
Physical characteristics of the mixture are calculated by
performing statistical averaging over all the frames produced
by the simulation. Four simulations are launched in order to
obtain better statistics.

Equilibration stage: the equilibration stage is required because
the DPD simulations are started in random configurations. The
simulations must evolve from these initial configurations to
those that are more representative of the systems behavior.
Technically the probability of seeing a configuration with a
given energy must converge to a given distribution (the
equilibrium distribution). In the equilibration phase the four
DPD simulations are started. In addition a number of further
jobs are launched:

• Equilibration Monitors: An equilibration job is launched
periodically on the output of each simulation to
determine if equilibration has been reached. When all
four simulations have equilibrated the stage is finished.

• Structure Extraction: A component is periodically
launched to extract the latest structure in one of the
simulations

Figure 3: Dissipative Particle Dynamics Workflow

• Image generation: A component is launched to convert
the output of the structure extraction into a PNG image
that can be displayed to the chemist

Production stage: in the production stage the four DPD
simulations are continued. Again a number of further jobs are
launched to monitor and process the output of the simulations.
These include the Structure Extraction and Image Generation
steps above. In addition, the following jobs are employed in the
workflow:

• Phase Determination: For each simulation a phase-
determination program is periodically launched to
determine the structure of phases present in each frame
output since last launch (and after equilibration)

• Output Aggregation: A job is periodically launched
consuming the output of the Phase Determination jobs.
This job aggregates the output from the four simulations

• Phase Processing: A job is periodically launched
consuming the aggregated output and calculating the
phase present in the simulation and the confidence value.
These values are displayed to the user.

C. Execution Engine
CometCloud is responsible for executing different

simulations on the Blue Gene/Q system. The DPD Workflow
Manager generates different experiments and interacts with
CometCloud to execute these experiments. CometCloud then
interacts with LoadLeveler (the scheduler running on the Blue
Gene/Q) to submit and run these jobs. The addition of the
CometCloud layer between the DPD simulation workflow
manager and LoadLeveler adds extra overhead, however, there
are a number of added benefits to using the CometCloud
framework, which are discussed below.

CometCloud exposes the hardware as a black box
component and guarantees the execution of the workflow
specified by the DPD Workflow Manager. CometCloud is also
responsible for monitoring the submitted runs (jobs), handling
system level failures, and resubmitting failed jobs. In addition,
CometCloud handles the interaction with LoadLeveler and can
mitigate common queue problems, such as long queue times as
well as fixed partition sizes. For example, the smallest partition
size a user can request on this specific installation of Blue
Gene/Q is 128 nodes (2048 cores). This is due to the limited
number of available I/O nodes on the system (each partition
requires at least one I/O node). Therefore, running jobs smaller
than 2048 cores results in wasted CPUs that are just idling.
With our design, we were capable of packing multiple smaller
jobs per partition to increase utilization, all of which is
transparent to the application and user. In summary,
CometCloud abstracts the hardware from the computational
scientists to enable them to focus on designing experiments and
developing meaningful science while providing them with an
execution engine that will deploy the application in real-time
on a federation of available resources while maximizing
throughput and utilization.

The specific implementation of CometCloud is presented in
Figure 4. In order to avoid any performance degradation on the

compute nodes, CometCloud runs fully on the Blue Gene/Q
front-end node. CometCloud is composed of the following
components:

Comet Workflow Manager (WFM): The WFM is
responsible for deploying the end-to-end workflow for a single
simulation (passed from the DPD Workflow Manager). Each
stage in the workflow is a set of jobs that can be executed. The
WFM handles the dependency between stages. Stages can be
executed in parallel if there is no dependency, and sequentially
otherwise. Jobs within one stage have no dependency on one
another.

CometSpace (CS): The CS is a shared space that contains
all the jobs that are ready for execution. The CS can be
distributed across multiple machines, however for this
experiment, the CS is limited to the Blue Gene/Q front-end
node. This was done to avoid any performance overhead on the
compute nodes that run the DL_MESO application.

Master (M): The WFM communicates with the master
when a workflow stage is ready to be executed. The master
generates the jobs for the given stage and inserts them into the
CometSpace. The master then notifies the WFM after the jobs
are inserted in the space.

Figure 4: CometCloud-based Implementation

Isolated Workers (IW): The workers are responsible for
executing the jobs on the allocated Blue Gene/Q partitions.
Workers can submit the fetched jobs to LoadLeveler or execute
directly using the runjob command. Workers communicate
with their corresponding Resource Agent (to retrieve jobs).

Request Handler (RH): The RH fetches jobs from the CS

Request Handler Proxy (RHP): The RHP receives requests
from the Resource Agent and submits them to the RH.

Resource Agent (RA): The RA is responsible for
allocating/terminating Comet Workers as well as managing
hardware resources (in our case partitions on the Blue Gene/Q).
There exists one RA for each system; in this paper there is only
one system and therefore one RA. Additionally, the agent is
responsible for fetching jobs from the space through the RHP.
This was done so that different RAs can fetch different types of
jobs based on the type of the underlying system.

Autonomic Scheduler (AS): The AS is used to schedule
jobs on available resources. The WFM notifies the AS when
jobs are ready for execution and the number/size of these jobs.
The RA notifies the AS of all available (active and inactive)
resources for the given system. The AS then schedules the jobs
according to this information and notifies the AS to adjust its
running local resources if necessary (i.e. allocate more
partitions, terminate some partitions, start new Comet Workers,
terminate running workers).

D. Scientific Simulation Application
DL_MESO [4] is a meso-scale simulation package

providing two distinct simulation methods to users: DPD and
lattice Boltzmann equation methods, with the DPD program
being of importance in this work. It is a hybrid parallel program
capable of distributed memory parallelism via MPI and shared
memory parallelism via OpenMP, and can scale to thousands
of processors on high-performance supercomputers. The
package also provides a number of post-processing tools. Of
particular relevance here is the isosurface tool, which provides
a prediction of the phase of a meso-scale DPD system.
DL_MESO is developed by the Science & Technology
Facilities Council at Daresbury Laboratory for the United
Kingdom Collaborative Computational Project (CCP5).

VI. EVALUATION & ANALYSIS
We have performed a set of experiments to evaluate our
approach. These experiments are aimed to show that our
approach is able to enable HPC software as a service, where
resources are dynamically allocated to optimize their usage. All
of the following experiments ran on an IBM Blue Gene/Q at
the Hartree Centre, Science & Technology Facilities Council in
Daresbury, UK. For these experiments we have used an
application instance that requires around five minutes of
computation in 512 cores of the previously mentioned machine.

A. Evaluating CometCloud Overhead
In this experiment we evaluate the overhead of using the
CometCloud framework as opposed to submitting jobs directly

to LoadLeveler from the DPD Workflow Manager. There are
three types of overheads when using CometCloud.

• Startup overhead: is the time needed to launch the
CometCloud framework. This includes the time to start all
components of CometCloud, which includes the Workflow
Manager (WFM), the Autonomic Scheduler (AS), the
CometSpace (CS), the Master (M), the Request Handler
(RH), the Request Handler Proxy (RHP), and the Resource
Agent (RA). Note - Workers (W) are started and
terminated automatically when new jobs are submitted
from the DPD Workflow Manager.

• Job submission overhead: is the time needed to submit a
job from the DPD Workflow Manager to LoadLeveler.
This includes the time to generate a task for the submitted
job with the correct job parameters, inserting the task into
the CometSpace (CS), starting a worker (W), fetching the
task from the space, and submitting the job to
LoadLeveler.

• Job status overhead: is the time needed to return the status
of a complete job back to the DPD Workflow Manager.
This time includes the Master (M) verifying the
completion of the task and the termination of the Worker
(W) thereafter. In case of a job failure, the Master reinserts
the job back into the CometSpace (CS).

The startup overhead results are shown in Table 1

Startup overhead WFM & AS CS, M, RH, & RPH RA

Time (sec) 0.359 1.801 0.9

Table 1: CometCloud-based implementation startup overhead

The job submission overhead results are shown in Figure 5, in
the left column we submitted 8 tasks sequentially, thus using
only 1 worker to execute 8 tasks (1 task at a time). In the right
column, we submitted 8 tasks in parallel, thus using 8 workers
to execute all tasks (8 tasks at the same time). Using 1 worker,
the average job submission overhead is 1.877 seconds
(minimum 1.458 seconds and maximum 2.718 seconds). Using
8 workers, the average job submission overhead is 1.621
seconds (minimum 1.385 seconds and maximum 2.249
seconds). This shows that the overall job submission overhead
(1.786 seconds) does not vary significantly when increasing the
number of workers.

The job status overhead results are also shown in Figure 5, As
before, the left column shows the results of executing 8 tasks
sequentially, while the right column shows the results of
executing 8 tasks in parallel. We can observe that the average
job status overhead in the sequential case is 1.803 seconds
versus the 1.571 seconds that takes in the parallel case.

Figure 5: Job submission & job status overheads for the

CometCloud-based implementation

B. Evaluating Fault Tolerance
In this experiment we simulate a system failure by externally
canceling jobs from LoadLeveler. CometCloud handles system
failures and reinserts the failed tasks to the CometSpace (CS) to
be resubmitted to LoadLeveler. Without CometCloud, manual
user intervention is necessary to resubmit failed jobs. Figure 6
shows the time to completion for a single job when no failure is
present, when a failure occurs but no fault tolerance is in place,
and when a failure occurs with fault tolerance. The average
time to resubmit a job to LoadLeveler (including reinserting the
task into the CometSpace and a Worker fetching the task from
the space) is 0.27 seconds. Waiting time in LoadLeveler queue
is not shown in Figure 5. Figure 7 shows the total number of
completed jobs after 100 job submissions and 7 simulated
failures.

Figure 6: Application time to completion with fault tolerance

Figure 7: Number of complete jobs with fault tolerance

C. Maximizing Utilization
In this experiment we take advantage of CometCloud
capabilities to maximize resource utilization. As we mentioned
earlier, the minimum size of a Blue Gene/Q partition at
Daresbury is 128 nodes (2048 cores). Submitting jobs that are
of smaller size results in a waste of compute cycles. The
simulations used in the DPD workflow stop scaling at 32 nodes
(512 cores), which leads to a mismatch in resources.

In this experiment we examine the effect of packing 4 jobs
(each of size 32 nodes (512 cores) into a single partition of size
128 nodes in two scenarios separately. The impact of packing
on DL_MESO performance is measured by the average time
per DPD step achieved over 40,000 steps.

In the first scenario, we compare executing 4 (512 core) jobs
using 4 partitions simultaneously (no packing) versus using 1
partition (packing). Figure 8 shows that packing 4 jobs per
partition causes a slow down in DL_MESO performance of
1.38% on average. This is attributed to the fact that the
partition has only 1 I/O node and therefore I/O operations slow
down the overall execution of the application. However the
resource utilization in the case of no packing is 4 times less
than with packing, see Figure 9.

In the second scenario, we compare packing vs. no packing
when only 1 partition of size 128 nodes (2048 cores) is
available to execute all 4 jobs. In this case, the jobs with no
packing will be serialized and therefore packing jobs would
result in almost four-fold (3.83) speedup, see Figure 10. The
resource utilization in this scenario is the same as in the first
scenario. The number of allocated resources with no packing
will be 8196 cores (2048 cores allocated and released four
times) but only 2048 cores will be used (512 cores used four
times). When packing is used 2048 cores will be allocated and
fully utilized once.

Figure 8: DL_MESO execution time per step in scenario 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

Job Submition Job Status

T
i
m

e

(
s
)

1 Worker Sequentially

8 Workers Parallel

Time%to%Comple+on%TTC%(mins)%

5%

7.27%2%

Failure%with%fault%tolerance%

No%failure%

N
um

be
r%o

f%c
or
es
%u
se
d%

2048%

2.27%

2048%

0	

20	

40	

60	

80	

100	

120	

no	
 failure	
 fault	

tolerance	

no	
 fault	

tolerance	

N
um

be
r	
 o

f	
 c
om

pl
et
ed

	

jo
bs
	

 200

 220

 240

 260

 280

 300

 320

 340

Average Execution Time of a Job

Ti
m

e
(s

)

One Job in Partition
Four Job in Partition

Figure 9: Resource utilization in Scenarios 1 and 2

Figure 10: DL_MESO execution time per step in Scenario 2

D. Minimizing Queue Time
In this experiment we take advantage of CometCloud
capabilities to minimize queue wait times. Without using
CometCloud running 4 jobs involves submitting 4 jobs to
LoadLeveler, which results in 4 wait_times (1 per job) in the
queue and 4 run_times (also 1 per job). The wait_time varies
significantly based on the overall utilization of the system
whereas the run_time in this experiment is relatively fixed.
CometCloud can pack multiple jobs per submission (as
opposed to the previous experiment of multiple jobs per
partition) and minimize the wait_time to one per multiple jobs,
Note - run_time remains as 1 per job. This can be used to
exploit the scheduling of LoadLeveler since the scheduling is
based on fixed time allocations. For example, in the Daresbury
installation, all jobs running for less than 20 minutes are
considered of one class (e.g. small_class), whereas all jobs that
are larger than 20 minutes but smaller than 1 hour are
considered of a second class (e.g. medium_class), finally jobs
that require more than 1 hour are considered of a third class
(e.g. large_class). This results in that a similar wait_time for
any job of the small_class whether it will run for 5 minutes or
20 minutes. CometCloud takes in consideration the policies set
by LoadLeveler when packing multiple jobs into a single
submission to try to minimize wait_time. For example,
CometCloud can pack 4 (5 minutes) jobs into a single
submission that will run in 20 minutes as opposed to 4 job
submissions of 5 minutes each. This results in a reduction of

wait_time by 75% percent. Note – this is only useful for
heavily utilized systems.

In Summary – CometCloud can abstract high-end resources
from the computational scientists while providing fault
tolerance, high resource utilization, and minimal queue wait
times. As we previously mentioned the CometCloud
framework runs fully on the front-end node to avoid any
performance degradation to the actual DPD application running
on the compute nodes. The only performance degradation to
the DL_MESO application occurs when we pack multiple
smaller jobs into a partition. However, increasing the job
throughput and the utilization of the partition compensates this
performance degradation in this case.

VII. CONCLUSION & FUTURE WORK
In this paper, we presented the design and implementation

of a framework that abstracts high-end resources from
computational scientists in order to facilitate the development
and deployment of DPD experiments. In addition, we provided
a complete software stack coupled with high-end HPC
resources that are provisioned to the end-user, the experimental
chemist, using portable devices. In our approach the usability is
a first class citizen, hence users are presented with a domain
specific interface while the underlying environment details are
completely hidden from the experimentalists. We show that the
resulting framework enables HPC resource sharing with a
small management overhead on the front-end node of the
supercomputer, but without any performance degradation to the
actual DPD application running on the compute-nodes.

Finally, the framework tries to maximize throughput and
utilization of high-end resources with small performance
degradation. Providing cloud abstractions for DPD simulations
allows these experiments to be run directly by the
experimentalists. In this model the computational experts create
a workflow for the computational experiment that encapsulates
both their state-of-the-art knowledge of the computational
science and the HPC software involved. The experimentalists
can then treat this easily accessible workflow as a black box
that returns only the chemically relevant information to them.
The increased accessibility of these simulations can help drive
wet-lab experimentation in real-time. The service model
enables higher utilization of high-end resources and facilitates
the collaborative sharing of resources

 Future work includes supporting federation of
resources and elasticity. This includes running the workflow on
multiple systems with different capabilities to optimize the
execution. For example, visualization of the output would be
run on an IBM iDataplex as opposed to running on the Blue
Gene/Q system.

ACKNOWLEDGMENT
This work is supported in part by the NSF under OCI

1339036, OCI 1310283, OCI 1441376, IIP 0758566, and by
IBM via OCR and Faculty awards. The authors would like to
thank the Hartree Centre Science & Technology Facilities
Council in Daresbury, UK for the access and allocations on the
IBM Blue Gene/Q. M. AbdelBaky would like to thank IBM T.
J. Watson for their support through the EPIC internship
program.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

No Packing Packing

N
u
m

b
e
r

o
f

C

o
r
e
s

Used Cores

Idle Cores

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

No-Packing Packing

Sp
ee

du
p

REFERENCES
[1] P. J. Hoogerbrugge and J. Koelman, “Simulating Microscopic

Hydrodynamic Phenomena with Dissipative Particle Dynamics,”
Europhysics Letters, 19, 155-160, (1992)

[2] P. B. Warren, “Dissipative particle dynamics,” Current opinion in
colloid & interface science 3.6 (1998): 620-624.

[3] R. D. Groot and P. B. Warren, “Dissipative particle dynamics: bridging
the gap between atomistic and mesoscopic simulation,” Journal of
Chemical Physics, 107(11), 4423.

[4] M. A. Seaton, R. L. Anderson, S. Metz, and W. Smith, “DL_MESO:
highly scalable mesoscale simulations,” Molecular Simulation 39, no. 10
(2013): 796-821.

[5] C. Evangelinos and C. Hill, “Cloud computing for parallel scientific hpc
applications: Feasibility of running coupled atmosphere-ocean climate
models on amazon’s EC2,” In Cloud Computing and its Applications
(CCA-08), Chicago, IL, USA, Oct 2008

[6] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost of
doing science on the Cloud: the montage example,” In SC ’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
pages 1–12, Piscataway, NJ, USA, 2008. IEEE Press

[7] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa,
“Science clouds: Early experiences in cloud computing for scientific
applications,” Cloud computing and applications 2008 (2008): 825-830.

[8] G. Fox and D. Gannon, “Cloud Programming Paradigms for Technical
Computing Applications,” technical report.

[9] M. AbdelBaky, M. Parashar, K. E. Jordan, H. Kim, H. Jamjoom, Z. Y.
Shae, G. Pencheva et al. "Enabling high-performance computing as a
service." Computer 45, no. 10 (2012): 72-80.

[10] P. Buxmann, T. Hess, and S. Lehmann, “Software as a Service,”
Wirtschaftsinformatik 50.6 (2008): 500-503.

[11] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, ,
and J. Good, “On the use of cloud computing for scientific workflows,”

In eScience, 2008. eScience'08. IEEE Fourth International Conference
on (pp. 640-645). IEEE.

[12] G. Juve and E. Deelman, “Scientific workflows and clouds,” Crossroads
16, no. 3 (2010): 14-18.

[13] C. Bunch, N. Chohan, C. Krintz, and K. Shams, “Neptune: a domain
specific language for deploying hpc software on cloud platforms,” In
Proceedings of the 2nd international workshop on Scientific cloud
computing, pp. 59-68. ACM, 2011.

[14] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy, R.
Kettimuthu, J. Kordas et al., “Software as a service for data scientists,”
Communications of the ACM 55, no. 2 (2012): 81-88.

[15] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl,
“Scientific Cloud Computing: Early Definition and Experience,” In
HPCC, vol. 8, pp. 825-830. 2008.

[16] S. Krishnan, L. Clementi, J. Ren, P. Papadopoulos, and W. Li, “Design
and evaluation of opal2: A toolkit for scientific software as a service,” In
Services-I, 2009 World Conference on, pp. 709-716. IEEE, 2009.

[17] Z. Hou, X. Zhou, J. Gu, Y. Wang, and T. Zhao, “ASAAS: Application
software as a service for high performance cloud computing,” In High
Performance Computing and Communications (HPCC), 2010 12th IEEE
International Conference on, pp. 156-163. IEEE, 2010.

[18] M. Parashar, M. AbdelBaky, I. Rodero, and A. Devarakonda, “Cloud
paradigms and practices for computational and data-enabled science and
engineering,” Computing in Science & Engineering 15, no. 4 (2013): 10-
18.

[19] H. Kim, and M. Parashar, “CometCloud: An autonomic cloud engine,”
Cloud Computing: Principles and Paradigms (2011): 275-297.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet
applications,” 2001, pp. 149–160.

[21] C. Schmidt and M. Parashar, “Squid: Enabling search in dht-based
systems,” J. Parallel Distrib. Comput., vol. 68, no. 7, pp. 962–975,
2008.

[22] N. Carriero and D. Gelernter, “Linda in context,” Commun. ACM, vol.
32, no. 4, pp. 444–458, 1989.

