
Evolving Stream Classification using Change
Detection

Ahmad Mustafa∗, Ahsanul Haque∗, Latifur Khan∗, Michael Baron†, Bhavani Thuraisingham∗
∗Department of Computer Science
†Mathematical Sciences Department

The University of Texas at Dallas, Richardson, Texas
{ahmad.mustafa, ahsanul.haque, lkhan, mbaron, bxt043000}@utdallas.edu

Abstract—Classifying instances in evolving data stream is a
challenging task because of its properties, e.g., infinite length,
concept drift, and concept evolution. Most of the currently
available approaches to classify stream data instances divide the
stream data into fixed size chunks to fit the data in memory
and process the fixed size chunk one after another. However, this
may lead to failure of capturing the concept drift immediately.
We try to determine the chunk size dynamically by exploiting
change point detection (CPD) techniques on stream data. In
general, the distribution families before and after the change point
are unknown over the stream, therefore non-parametric CPD
algorithms are used in this case. We propose a multi-dimensional
non-parametric CPD technique to determine chunk boundary
over data streams dynamically which leads to better models to
classify instances of evolving data streams. Experimental results
show that our approach can detect the change points and classify
instances of evolving data stream with high accuracy as compared
to other baseline approaches.

I. INTRODUCTION

Data streams are continuous flows of data. Typical example
of data streams include network traffic, sensor data, and call
center records, among others. The sheer volume and through-
put speed pose a great challenge for the data mining com-
munity to extract useful knowledge from such streams. Data
streams demonstrate several unique properties when compared
with traditional data set, such as: infinite length, concept-drift,
and concept-evolution. Concept-drift occurs in data streams
when the underlying concept of data changes over time [1],
[18], [25]–[28], [30]. In concept-evolution, a new class may
emerge over stream [21]. Neither multi-step methodologies
and techniques nor multi-scan algorithms suitable for typical
knowledge discovery and data mining can be readily applied to
data streams due to well-known limitations such as unbounded
memory to handle infinite length, online data processing to
handle concept drift, and the need for one-pass techniques (i.e.,
forgotten raw data).

Data stream classification has been a major research thrust
for the past several years because of increasing demand
in many business and security applications, such as credit
card transaction monitoring, online blog or micro-blog (e.g.,
twitter messages) categorization, and evolving malicious code
detection. Traditional batch classification techniques are not
applicable to the aforementioned domains because of the
evolving nature of the data. In particular for malware detection,
signature-based techniques are widely used and dynamic sig-
nature updating is very common. Antivirus software can adapt
to new malware threats by updating its signature database as

soon as a single instance of the malware has been identified
and analyzed by experts. In contrast, polymorphic malware can
pose some significant challenges to signature updating because
the malware modifies itself during propagation yielding many
variants over time. A malware detector may fail to identify
such malware due to the usage of outdated signatures. One
way to address this problem is to update the signatures,
which achieves superior adaptability over current polymorphic
malware. While this advantage has kept antivirus products
mostly ahead in the virus-antivirus co-evolution race [16] up
to the present time, a malware detector needs to be adaptive
to cope with the changes in the wild.

Stream classification falls into the following categories: sin-
gle model, ensemble classification, and hybrid. Single model
classification techniques maintain and incrementally update the
single classification model and effectively respond to concept
drift [29]. In ensemble based techniques, a number of classi-
fication models are maintained, and over time some outdated
classification models are replaced by new models [21]. Hybrid
methods combine the strength of the above two [10]. In current
state of the art ensemble techniques, data stream is divided into
a number of chunks so that each chunk can be accommodated
in memory and processed online [21], [22]. Each chunk is used
to train one classification model as soon as all the instances in
the chunk are labeled. Concept-drift is handled by maintaining
an ensemble of M such classification models. An unlabeled
instance is classified by taking a majority vote among the
classifiers in the ensemble. The ensemble is continuously
updated so that it represents the most recent concept in the
stream. The update is performed as follows. As soon as a new
model is trained, one of the existing models in the ensemble
is replaced by it, if necessary. The removed model is chosen
by evaluating the error rate of each of the existing models in
the ensemble on the latest labeled chunk, and discarding the
one with the highest error rate.

Almost all the current state of the art stream classification
techniques divide data stream in equal size (i.e., fixed size) [1],
[21], [22]. So, these approaches fail to capture the concept
drift/concept evolution immediately. Moreover, if the chunk is
too small, these approaches may introduce poor quality model
(few training data points) and/or additional computational
overhead to update the ensemble. On the other hand, for large
chunk sizes, these approaches have to wait much longer to
build the next classifier. As a result, the ensemble is updated
less frequently than desired, meaning the ensemble remains
outdated for a longer period of time. This ultimately causes

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257769

increased error rates.

To address the above mentioned problems, we have focused
to determine the chunk size dynamically so that we can keep
track of the change immediately. To do this, we have exploited
change point detection (CPD) approaches over stream data.
Most of the CPD algorithms assume that distributions of
data before and after the change are known [3], [12], [17].
However, in real life, these assumptions may not be a valid
one. If the distributions of data before and after are unknown
entirely, these approaches will not be applicable. In this case,
methods have been developed for detecting change points non-
parametrically over single-dimensional data [2], [5], [9], [13],
[14]. If data is multi-dimensional, these approaches have two
major shortcomings. First, there is no efficient mechanism to
combine all the individual one-dimensional score into one final
score. Second, it is difficult to set the threshold for the multi-
dimensional data that will control the rate of false alarms at
the desired level.

In this paper, we have proposed a novel Stream Classifica-
tion using Change Detection (SC2D) method. We use decision
tree to model changes across multiple dimensions and classify
instances. The dimensions contribute to the prediction based
on their normalized information gain using decision tree. So,
using this approach we do not need to manually set a threshold.
Decision tree partitions and selects the dimensions based on
their information gain. This proposed approach is then used
to determine chunk boundary over data streams dynamically
which leads to better models to classify instances of evolving
data streams. Since it uses dynamic chunk size based on
change in the distribution of the data, it can capture drift in the
concept or detect arrival of a new class immediately. In this
paper, we focus on classifying instances of data streams having
two classes e.g., benign and malicious. Our adaptive stream
classification technique is beneficial to various communities,
including those working in cyber security to analyze massive
amounts of stream data e.g., differentiate between benign and
malicious events.

Primary contributions of this paper are as follows. To the
best of our knowledge, this is the first effort that develops an
adaptive classification technique exploiting multi-dimensional
non parametric change point detection to address concept-
drift/concept-evolution problems in a timely manner. Our ap-
proach exploits dynamic sized chunk. In other words, chunk
size is determined over stream on the fly based on multi-
dimensional non-parametric change point detection. Once a
change point is detected, the algorithm continues to find sub-
sequent change points. Two subsequent change points create
a chunk with variable length. In this paper, we focus on
classifying data streams having instances from two classes.
We consider a scenario where instances from each class come
in a sequence and class of the sequences change alternatively.
In this case, a dynamic chunk determined by detecting change
point represents instances from the same class. Our approach
determines the class label of a chunk by calculating the change
point and taking into account previous chunk’s class labels.
It reduces false alarm rates and overall classification error.
We test performance of our approach on several benchmark
datasets. We compare the experimental results with both su-
pervised and unsupervised techniques. Supervised techniques
include various state of the art approaches implemented in

MOA [7] framework. On the other hand, for unsupervised
techniques, we use variants of multi dimensional change point
detection approaches.

The rest of the paper is organized as follows. In Sec-
tion II, we briefly discuss various approaches for change
point detection and some related terms. In Section III, we
point out the problems of change point detection approaches
available currently. Then we describe our approach and how
it can solve those problems. Section IV demonstrates the
experimental results and efficiency of our proposed approach.
Section V briefly describes some earlier works related to data
stream mining and change point detection. Finally, Section VI
concludes our discussion along with some future research
directions.

II. BACKGROUND

In this paper, we focus to classify instances in stream of
data using change point detection technique. We use change
point detection to capture concept drift in timely manner by
determining chunk size dynamically. We intend to look into
few details of both concept drift and change point detection in
this section.

A. Concept Drift

Concept drift refers to scenario when the relation between
input data X , e.g., feature values and the target variable y, e.g.,
class label changes over time. Formally, concept drift between
time t0 and time t1 can be defined as

∃X : pt0(X, y) 6= pt1(X, y) (1)

where pt0(X, y) denotes the joint distribution between the
set of input variables X and the target variable y at time t0 and
pt1(X, y) denotes the same at time t1 [15]. The components
of this relation are the prior probabilities of classes p(y), the
class conditional probabilities p(X|y), distribution of incoming
data p(X) and the posterior probabilities of classes p(y|X).
Real concept drift refers to the changes in posterior prob-
abilities p(y|X). It may happen for several reasons including
changes in incoming data (i.e., p(X)). However, if there is a
change in incoming data without affecting p(y|X), it is called
a virtual drift.

B. Change Point Detection Algorithms

Change point detection (CPD) is used to detect abrupt
changes in characteristics of data at unknown time instants.
Abrupt change means when changes in characteristics occur
very fast with respect to the sampling period of the measure-
ments. Change point detection is particularly very useful for
quality control, system monitoring, and fault detection. In this
paper, we use this technique to detect changes in distribution
parameters of the data points collected from the system at
different timestamps. This is then used to separate malicious
instances from benign data instances.

Let {xj} be a sequence of data points where xj has a
distribution f for j ≤ ν and a distribution g otherwise. The
problem of change point detection is to discover a change and
to estimate the change point parameter ν from these data. CPD

algorithms in general can be divided into two categories, i.e.,
parametric and non-parametric algorithms. Parametric CPD
algorithms assume that the distribution families before and
after the change point are known beforehand. However, in
many applications, one may know the distribution before the
change, when the process is “in control”, but it is usually
impossible to know the distribution after the change, when
the process goes “out of control”. Sometimes, it may also
be the case that both distribution families before and after
the change point are unknown. In those cases, non-parametric
change point detection algorithms are used to detect the change
point in data.

Several non-parametric change point estimation approaches
have been proposed in the literature [2], [11], [14], [24].
Usually, the pre- and post-change empirical distributions are
compared for each k = 1, . . . , n, where n is the number of
data points. Then the point ν̂ that maximizes some predefined
“metric” or “measure of diversity” between these distributions
is used as an estimator of the actual change point ν. For
example, E. Carlstein [11] proposes a mean-dominant norm
to be used as such a “metric” and achieves the accuracy rate
of |ν̂ − ν| = Op(n

1/2+ε). L. Dümbgen [13] uses a seminorm
and achieves the rate Op(1), which is similar to the maximum
likelihood estimator (MLE) for the case of known distributions.
U-type statistics are used by D. Ferger [14], achieving the rate
of Op(log n).

M. Baron [2] proposes both off-line and online versions of
an efficient MLE-type non-parametric change point detection
algorithm with an unbeatable |ν̂ − ν| rate of Op(1). These
algorithms are based on a log-likelihood ratio random walk

Sk =

k∑
j=1

log
f

g
(xj). (2)

In non-parametric setup, it is assumed that any or both
of distribution families f and g are unknown. In the algo-
rithms proposed by M. Baron [2], histogram density estimation
procedures are used to estimate f and g for any potential
change-point k. Histogram density estimators are chosen as
they allow to detect changes in the distribution of categorical
and ordinal data as well. Let X be the united support of f and
g with a measure µ on it, and let {Am, m = 1 . . . , r} be a µ-
measurable partition of X of rank r. If supports are not known,
an intentionally larger set X can be taken. For k = 1, . . . , n,
introduce the histogram density estimates

f̂k(x) =
1

kµ(Am)

r∑
m=1

k∑
j=1

I {x ∈ Am, xj ∈ Am} ,

ĝk(x) =
1

(n− k)µ(Am)

r∑
m=1

n∑
j=k+1

I {x ∈ Am, xj ∈ Am}

(3)

The choice of a reference measure µ is arbitrary because
the likelihood ratios are independent of it, and only the data
counts in each bin Am enter the equation. A counts-based
maximum likelihood estimator of a change point can then be
formed by substituting the estimates (3) in equation (2),

ν̂ = argmax
k

Ŝk (4)

where

Ŝk =

k∑
j=1

log
f̂(xj)

ĝ(xj)
=

k∑
j=1

log

∑k
i=1 δ(ξi, ξj)/k∑n

i=k+1 δ(ξi, ξj)/(n− k)
,

(5)
Here ξj = (ξ

(1)
j , . . . , ξ

(r)
j), ξ(m)

j = I {xj ∈ Am}, for m =
1, . . . , r, j = 1, . . . , n, and δ(x, y) = I {x = y}; therefore
δ(ξi, ξj) = 1 when observations xi and xj fall into the same
bin of partition X . It appears that when unknown densities
are replaced by their histogram estimators, the change point
problem reduces to estimating a change point for the multi-
nomial distribution of ξj . Moreover, it can be shown that Ŝk
is proportional to the Kullback-Leibler information κ between
the estimated multinomial distributions before and after the
time k. Hence, the non-parametric estimator ν̂ is actually the
point that maximizes the Kullback-Leibler divergence between
empirical pre- and post-change distributions.

An online version of the algorithm consists of a stopping
time T , which signals a change in distribution “as soon as
possible” after it occurs. An optimal stopping time T must
achieve the best trade-off between minimizing the mean delay

MD(T) = Eν(T − ν)+ (6)

and maximizing the mean time between false alarms

MTBFA(T) = Eν=∞(T) = E{T |no change} (7)

M. Baron [2] proposes a nonparametric analogue of the
CUSUM algorithm ([3], sec. 5.2), whose asymptotic perfor-
mance in the sense of (6) and (7) is similar to that in the case
of known distributions.

First, in the case of known pre-change distribution f and
completely unknown post-change distribution g, the density of
g in (2) is replaced by a histogram density estimator (5). The
CUSUM process is then estimated by

Ŵn = max
1≤k<n

Ŝk:n,

where

Ŝk:n = (n− k)
r∑

m=1

p̂
(m)
k:n log

p̂
(m)
k:n

p(m)
(8)

is the “tail” of the generalized log-likelihood ratio process.
In the above equation, p̂(m)

u:v =
{
ξ
(m)
u+1 + . . .+ ξ

(m)
v

}
/(v − u)

is a histogram density estimator computed from a sub-sample
xu+1, . . . , xv for 0 ≤ u < v ≤ n. Next, a positive threshold h
is chosen and a stopping time is computed as follows,

T̂ (h) = inf
{
n : Ŵn ≥ h

}
(9)

Noticeably, relatively small samples may have no data in
some of the bins, in which case p̂(m)

u:v = 0 and Ŝk = ±∞. A
smoothed version of density estimators can then be used. Let

s be the number of empty bins, which is the number of zeros
among p̂k:n(1), . . . , p̂k:n(r). Then, define

p̃
(m)
k:n =


p̂
(m)
k:n , if s = 0

ε/s(n− k), if p̂(m)
k:n = 0

(1− ε/(n− k)) p̂(m)
k:n , if s > 0; p̂k:n 6= 0

(10)

for some 0 < ε < 1. This definition still preserves
∑
m p̃

(m)
k:n =

1.

Finally, if both distributions f and g are unknown, the
change point problem gets fundamentally more difficult. In this
case, it is possible to miss the actual change point and proceed
without detecting it. In order to achieve the optimal asymptotic
performance in terms of (6) and (7), the process needs to
be observed for a sufficient period before ν. Indeed, for any
finite interval [s; t], if f is estimated by f̂ from (xs, . . . , xt),
then with a positive probability f̂ ≈ g, and no change can be
detected. That is why ĝ should not be compared with f̂ for
small k. In the method proposed by [2], this issue is addressed
by redefining the CUSUM-type process as

Ŵn = max
γn≤k<n

Ŝk:n for some γ ∈ (0; 1), (11)

where a nonlinear function γ(n) can also be used in place
of γn. It signifies that when both of the distribution families
are unknown, changes can be reported at most once per every
γn observations. If a change at the time ν is not detected
before the time ν/γ, then for all k > ν/γ, the density f is
estimated from a sample, at least 100(1 − ν/γn) percent of
which comes from the distribution g. This portion increases
and tends to 100% as n → ∞, which makes it impossible
to detect the change point if it occurred far in the past. So,
for n >> ν, Ŵn behaves like the no-change situation, when
all data follow the distribution g. Therefore, if a change point
is not detected before ν/n, T̂ (h) will increase exponentially
fast in h, like the mean time between false alarms. Thus, an
important characteristic of a stopping time is pr {T > ν/γ},
which is the probability to fail to detect the change point. For
the proposed algorithm, this probability is exponentially small,
when n is large.

Fig. 1. Block diagram of SC2D

With these modifications, in case when both f and g
are unknown, the smoothed density estimator p̃0:k is de-
fined similarly to equation (10), guaranteeing p̃

(m)
0:k > 0 and∑

m p̃
(m)
0:k = 1. Then p(m) in equation (8) is replaced by p̃(m)

0:k .
CUSUM-type process Ŵn introduced in equation (11) along
with the stopping time defined in equation (9) are then used

to detect change point when both of the distribution families
are unknown.

III. PROBLEM AND APPROACH

A. The Problem

Most of the state of the art approaches to classify instances
in evolving data stream divide stream data into fixed size
chunks to accommodate data into memory and to process with-
out storing data. However, using fixed sized chunks has some
disadvantages. First, this may lead to failure of capturing the
concept drift/concept evolution immediately. Second, quality
of model may depend on size of the data chunks. Based on
the size of data chunk, it may cause under-fitting or over-
fitting problem. So, in this paper we focus to use change point
detection techniques to fix the chunk size dynamically.

Fig. 2. Calculation of cusum type process score

As discussed in Section II-B, Change Point Detection
(CPD) algorithms are generally efficient when used on one
dimensional data. However, real life datasets typically have a
large number of dimensions (e.g., network security datasets).
In the case of multi-dimensional datasets, CPD algorithm is
typically applied separately on each dimension. Thus, if there
are d number of dimensions in the dataset, w(1) . . . w(d) are
computed, where w(i) is the score of CUSUM-type process on
dimension i using equation (11). A final score w(total) is then
computed from the CUSUM-type process scores calculated
on individual dimensions. There are several ways to compute
w(total).

B. Our Approach

One way of calculating w(total) is to take the summation
of all the one-dimensional scores w(1), . . . , w(d)

w(total) =

d∑
i=1

w(i)

which we refer to as CP-SUM. This is motivated by the
joint log-likelihood of multi-dimensional data if components
of the observed vectors are independent and their log-pseudo-
likelihood in the general case. To continue controlling for
the rate of false alarms, the threshold h will be replaced
accordingly by d ∗ h.

Another way of calculating w(total) is to take the maximum
of w(1), . . . , w(d)

w(total) = max
1≤i≤d

w(i)

which we refer as CP-MAX. This scheme is obtained by
the Bonferroni approach for multiple comparisons, where the
probability of a false alarm along at least one dimension is to
be controlled at the given level. According to it, a change point

Fig. 3. Example of Training

will be detected when the most significant of the observed
CUSUM values w(1), . . . , w(d) exceeds the threshold h.

This final CUSUM-type score w(total) is then compared
with a suitably chosen and pre-defined threshold to detect a
change point. There are two major problems associated to
these techniques. First, these techniques assume that all the
dimensions have equal confidence to detect the change point
which is not the case in practical situations. For example, in
cyber security datasets, where malicious instances typically
appear in between sequence of benign instances, different
dimensions, i.e., features may have different discriminating
abilities. Some features have similar values across all the be-
nign and malicious instances. On the other hand, some features
may have substantially different range of values in malicious
instances than in benign instances. These later features are
more useful to detect change between benign to malicious
or vice versa for having more ability to discriminate between
different classes. So, discriminating features should be given
more importance, i.e., weight while detecting the change point.
Second, we need to manually set a threshold to compare with
the w(total) to detect the change point. However, it is difficult
to set a threshold as both the range and the rate of change for
w(total) are unpredictable.

Fig. 4. Example of Training on timeline

We propose a novel Stream Classification using Change
Detection (SC2D) approach which uses the idea of non-
parametric change point detection method as discussed in
Section II-B. SC2D has two phases, i.e., training and testing.
Figure 1 shows the phases of the proposed approach. In the
training phase, it calculates a matrix W on training data points.
Each row of this matrix is a vector which corresponds to

CUSUM type process scores calculated on different dimen-
sions of a data point. For example, the ith row of matrix
W is a vector Wi which corresponds to training point Pi.
Wi consists of scores w(1)

i . . . w
(d)
i where d is the number of

dimensions. Furthermore, our approach assigns either change
or no change as a ground truth label to each training data
point. If the class of data point Pi is same as the class of
data point Pi−1, SC2D assigns label no change to point Pi
to indicate this as not a change point. On the other hand, if
the class of data point Pi is different than the class of data
point Pi−1, SC2D considers point Pi−1 as a change point and
assigns label change to it. For instance, a malicious training
data point is labelled as change point if it is preceded by a
benign data point. While calculating Wj vector for any point
Pj , SC2D considers only the points Plc to Pj as shown in
Figure 2, where Plc is the last change point.

After calculating matrix W and assigning corresponding
ground truth labels to each of the training data points, a
decision tree model is built using both W and assigned ground
truth labels. To build the decision tree, each dimension of
the matrix W is divided into multiple partitions. For each of
these partitions, decision tree computes the information gain.
Then the decision tree is built by selecting the dimensions
in the ascending order of information gain along with the
corresponding partitions.

An example of a training phase on a network security
dataset is shown in Figure 3. Let’s assume that this dataset con-
tains data points from two classes, i.e., Benign and Malicious.
Each point Pi in Dtr is represented by a vector of attribute
values PAtt1i . . . PAttdi and a class label either Benign or
Malicious. As stated earlier, our proposed approach assigns
either no change or change as label to each data point.
no change is assigned as ground truth label to data point Pi
if its class label is different from previous data point Pi−1.
Ground truth label change is assigned if class label of data
point Pi is different than class label of point Pi−1. In the
given example, data points P4 and P8 are change points since
these have different class labels than the previous data points.
This is why the proposed approach assigns label change to

each of these data points. These labels are assigned under
column GT . Beside assigning labels, the proposed approach
calculates CUSUM type process score for each attribute at
each point. While calculating this score for a specific point,
all the points from the last change point to the current point are
considered. For all attributes i of point P7 w

Atti
7 is calculated

by considering all the points from last change point P4 to the
current point P7.

As shown in Figure 4, During the testing phase, the
decision tree model formed in training phase is used to predict
the change/no change labels of the testing data points. SC2D
then predicts the class label for each data point based on
the prediction of change/no change label and class label
predicted to the previous data point. Since we focus on data
streams containing two classes in this paper, if a point is
predicted as a change point then its class label is the opposite
of the class of preceding data point. Otherwise, current data
point is predicted to have the same class as the previous data
point.

As described above, a decision tree model is built during
the training phase. However, as the data stream evolves, the
feature values and class boundaries may change. So, we update
the decision tree frequently using the new data. Several ap-
proaches can be followed to update the model. One possibility
is to append the new labeled data to the old points then use both
of them to build a new decision tree. However, the number of
data points in the stream is huge. Therefore, storing all the data
is not possible. So, instead of keeping all the historical data we
store a sample of the old data. Then we use the sample along
with the new data to build a new decision tree. Keeping an
ensemble of updated models is infeasible because the number
of new change points is significantly less than the number of
no change points. In other words, the new data is skewed and
do not contain enough change points to learn from.

We assume that there exist at least three no change
points between each two change points. Therefore, we do
not calculate the change score w for the first three points in
training and testing phases. In other words, we leave a cushion
of three points because change detection is very sensitive when
the distributions are calculated from few points.

Algorithm 1: Algorithm for Training
input : Training Dataset Dtr, that contains data points

from two classes
output: The Decision tree Model M

1 begin
2 D ← ∅;
3 for each point P ∈ Dtr do
4 D ← D ∪ P ;
5 wp ← CalculateW (D);
6 gtp ← IsChangeOfClass (P);
7 if gtp is true then
8 D ← {P};
9 W ←W ∪ wp;

10 GT ← GT ∪ gtp;
11 M ← TrainDecisionTree (W,GT);

Pseudocode for training phase is shown in Algorithm 1.

The input is the training dataset Dtr. It contains the attribute
values and the class labels of each data point. A vector of
CUSUM type process scores wp corresponding to point P is
calculated at line 5 using all the points in D where D contains
all the data points starting from the last change point to the
current point P as discussed above. IsChangeOfClass (P)
function checks if the class label of point P is different from
the class label of the previous point. In other words, this
function returns true if the current data point is a change point,
otherwise, it returns false. The returned value is stored in gtp
(line 6). If gtp is true then current data point P is a change
point and D is re-initialized containing only point P (i.e., a
new D starting from P) in line 8. On the other hand, if false
is assigned to gtp, it means that point P is not a change point
in the training data. In this way, values of wp and gtp are
stored in W and GT respectively (lines 9 and 10). Finally, a
decision tree model is trained using W and GT (line 11).

Algorithm 2: Algorithm for Testing
input : Decision Tree Model M and set of newly

arrived points Dnew

output: label of newly arrived points

1 begin
2 PrevLabel← −1;
3 D ← ∅;
4 for each point P ∈ Dnew do
5 D ← D ∪ P ;
6 Wp ← CalculateW (D);
7 IsChange← ApplyModel (M,Wp);
8 if IsChange then
9 Labelp ← −1 ∗ PrevLabel;

10 else
11 Labelp ← PrevLabel;
12 PrevLabel← Labelp;
13 D ← ResetD (LastTrueChangePoint);
14 if IsUpdateNeeded then
15 S ← Sample(HistoricalData);
16 R←MostRecentpoints);
17 M ← UpdateModelbyAlgo.1 (R+ S);

Pseudocode for testing phase is shown in Algorithm 2. We
represent the testing data class labels by +1 and −1. In data
streams, data points continuously enter into the system. Let
Dnew in line 4 be the set of newly arrived data points which
need classification. For each point P in Dnew, score WP is
computed in line 6. While calculating these scores, all the
points from the last true change point to the current point are
taken into account (see D in line 5). we use ResetD in line 13
to make sure that D starts from the true change point. WP is
then fed into the decision tree model M to detect if P is a
change point (line 7). If it is a change point, P is assigned a
label by toggling the label of the previous data point (line 9).
On the other hand, if it is not a change point, then P is assigned
the same label as the previous data point (line 11). Please note
that we focus on classifying data streams containing instances
from only two classes in this paper. Classifying instances of
a data stream containing more than two classes is beyond the
scope of this paper. We intend to investigate it in future work.

IV. EXPERIMENTAL RESULTS

We have evaluated performance of our approach SC2D
on a number of datasets which are shown in Table I. Name
of the datasets are System calls, Synthetic, KDD and PAMAP.
In the Systemcalls dataset, each instance is a snapshot of
system calls collected from a running executable during its
first two minutes of execution. Each instance is a vector of
continuous real values representing the frequency of system
calls during execution. There are a total of 284 possible system
calls. Each instance is also labeled as either benign (nega-
tive) or malicious (positive). Synthetic dataset is generated
using RandomRBFGenerator of MOA [7]. KDD dataset is
formed by considering the normal instances as negative and
other instances as positive from KDD Cup 99 [4] dataset.
The last dataset PAMAP is formed by considering cycling as
negative and lying as positive instances from Physical Activity
Monitoring dataset (PAMAP) [23] dataset.

TABLE I. SIZES OF DATASETS

Dataset Training Testing
#Negative #Positive #Change

Points
#Negative #Positive #Change

Points
System
calls

64,185 64,185 2567 32,092 32,092 1283

Synthetic 23,324 12,016 706 9,900 5,100 300
KDD 8,356 7,092 309 4,190 3,557 155
PAMAP 8,184 8,178 327 4,216 4,212 169

We have compared performance of our approach (SC2D)
with number of supervised and unsupervised approaches. To
compare with supervised approaches, we have used MOA [7]
implementation of Hoeffding Adaptive Tree (HAT-ADWIN),
Active Classifier, OzaBag, Weighted Majority Algorithms. On
the other hand, we have also compared performance of our
approach with two unsupervised approaches, i.e., CP-SUM
and CP-MAX. We have used two different variations of CP-
SUM and CP-MAX approaches. One of the variations is
change detection with resetting, where W is calculated by
considering the points from the last true change point. These
variations are named as (CP-SUMwr and CP-MAXwr). The
other variation is change detection without resetting, where W
is calculated by considering the points from the last detected
change point. These variations are named as (CP-SUMwor and
CP-MAXwor). Change detection without resetting variations
may include cumulative error because the classification is done
by toggling whenever a change point is detected. If there is any
delay in detecting current change point, this may contribute in
delayed detection of subsequent change points as well. For
example in Figure 3, assume that P4 was not detected as a
change point. All the points from P4 to P7 will be misclassified
because we did not toggle the class label in P4. Moreover,
missing a true change point may result in missing subsequent
change points because the examined data points may now
include multiple distributions.

Both of CP-SUM and CP-MAX approaches need a thresh-
old to detect change points. Threshold for CP-MAX approach
hmax is calculated by taking − log(α) where α is the prob-
ability of false alarm before Wn = 0. On the other hand,
threshold for CP-SUM approach hsum is calculated by taking
− log(α) ∗ d where d is the number of dimensions. In our
experiments, we have used α = 0.05 to set the thresholds of
the variations of CP-SUM and CP-MAX approaches.

For performance evaluation, we have used True Positive
Ratio (TPR), False Positive Ratio (FPR), False Negative Ratio
(FNR), and True Negative Ratio (TNR). To evaluate the overall
performance of the methods we have used total accuracy and
Fβ-measure (equation (12)) with β = 2 as in equation (13).
In network security domain, the ability to classify malicious
data is more important than the ability to classify benign data.
Because the misclassified malicious data may have harmful
results. Using F2 allows us to put more emphasis on the
successful and failure attempts to protect the host from the
malicious data because it weighs both true positive (TP) and
false negative (FN) higher than false positive (FP).

Fβ =
(1 + β2) ∗ TP

(1 + β2) ∗ TP + β2 ∗ FN + FP
(12)

F2 =
5 ∗ TP

5 ∗ TP + 4 ∗ FN + FP
(13)

Overall Performance: Performance of all approaches in
terms of accuracy is shown in table II. It shows that, our pro-
posed approach SC2D outperforms all the other approaches
by a large margin in case of System calls dataset. SC2D also
shows better performance than other approaches on PAMAP
dataset, where it classifies all the instances correctly. On
KDD and Synthetic datasets also, SC2D shows superior
performance than the unsupervised approaches, i.e., CP-SUM,
CP-MAX and competitive performance comparing with the
supervised approaches, i.e., HAT-ADWIN, Active Classifier,
OzaBag, Weighted Majority Algorithms. Finally, we present
the average accuracy of these approaches on all the datasets.
SC2D outperforms all the other approaches by a large margin
in terms of average accuracy.

Recall that, in this paper we focus on a specific scenario
where instances from each of the classes come in a sequence,
i.e., sequence of instances from a class followed by sequence
of instances from another class. System calls dataset has
instances from two classes, i.e., benign and malicious. In-
stances from each of the classes come in a sequence. Original
Physical Activity Monitoring dataset (PAMAP) dataset also
contains sequence of instances from different classes since
each of the physical activity, i.e., class label in this case is
performed for some time. So, System calls and PAMAP
datasets comply with the specific scenario we are considering
in this paper. This is the reason why our proposed approach
SC2D shows very good performance on System calls and
PAMAP datasets. Moreover, in PAMAP dataset each class
has a unique distribution which differentiates each class from
other classes. Recall that change point detection is used to
find concept drift/concept evolution immediately over evolving
stream in our approach. As a result, the number of discovered
true positives has increased without adding false positives in
case of SC2D. On the other hand, in original KDD Cup
99 [4] and Synthetic datasets do not comply with the above
scenario. In these datasets, instances from different classes
do not come in sequence, still SC2D shows competitive
performance comparing with the other supervised approaches.

V. RELATED WORKS

In this paper, we have proposed an approach which exploits
change point detection technique along with data mining

TABLE II. EXPERIMENTAL RESULTS

Data set Method Accuracy F2 TPR FPR FNR TNR

System calls

SC2D 0.97 0.97 0.98 0.04 0.02 0.95
CP-SUMwr 0.66 0.66 0.68 0.37 0.32 0.63
CP-MAXwr 0.55 0.54 0.55 0.456 0.443 0.543
CP-SUMwor 0.49 0.38 0.49 0.50 0.50 0.49
CP-MAXwor 0.50 0.39 0.49 0.49 0.50 0.50

Act-Class 0.74 0.60 0.57 0.10 0.42 0.89
HAT-ADWIN 0.76 0.68 0.66 0.15 0.33 0.84

Ozabag 0.66 0.36 0.31 0.03 0.68 0.96
W-Majorit 0.55 0.03 0.02 0.00 0.97 0.99

Synthetic

SC2D 0.97 0.97 0.98 0.05 0.01 0.95
CP-SUMwr 0.59 0.54 0.619 0.448 0.38 0.55
CP-MAXwr 0.55 0.49 0.569 0.479 0.43 0.52
CP-SUMwor 0.51 0.46 0.51 0.49 0.49 0.51
CP-MAXwor 0.50 0.45 0.51 0.51 0.49 0.49

Act-Class 0.98 0.97 0.96 0 0.03 1
HAT-ADWIN 0.99 0.99 0.99 0 0.00 1

Ozabag 0.99 0.99 0.99 0 0.00 1
W-Majorit 0.99 0.99 0.99 0 0.00 1

KDD

SC2D 0.94 0.94 0.94 0.059 0.058 0.94
CP-SUMwr 0.61 0.603 0.602 0.392 0.398 0.608
CP-MAXwr 0.54 0.55 0.544 0.457 0.456 0.543
CP-SUMwor 0.50 0.50 0.49 0.49 0.50 0.50
CP-MAXwor 0.50 0.50 0.50 0.49 0.49 0.50

Act-Class 0.98 0.98 0.99 0.01 0.00 0.98
HAT-ADWIN 0.99 0.99 0.99 0.00 0.00 0.99

Ozabag 0.99 0.99 0.99 0.00 0.00 0.99
W-Majorit 0.99 0.99 0.99 0.00 0.00 0.99

PAMAP

SC2D 1.0 1.0 1.0 0 0 1.0
CP-SUMwr 0.59 0.569 0.56 0.386 0.437 0.614
CP-MAXwr 0.54 0.535 0.534 0.447 0.466 0.553
CP-SUMwor 0.46 0.47 0.47 0.56 0.53 0.44
CP-MAXwor 0.50 0.49 0.49 0.49 0.50 0.50

Act-Class 0.99 0.98 0.98 0.00 0.01 0.99
HAT-ADWIN 0.99 0.99 0.99 0 0.00 1

Ozabag 0.99 0.99 0.99 0.00 0.00 0.99
W-Majorit 0.99 0.99 0.99 0.00 0.00 0.99

Average

SC2D 0.97 0.97 0.97 0.03 0.02 0.96
CP-SUMwr 0.61 0.59 0.61 0.39 0.38 0.60
CP-MAXwr 0.54 0.52 0.54 0.45 0.44 0.53
CP-SUMwor 0.49 0.45 0.49 0.51 0.50 0.48
CP-MAXwor 0.50 0.45 0.49 0.49 0.49 0.49

Act-Class 0.92 0.88 0.87 0.03 0.12 0.96
HAT-ADWIN 0.93 0.91 0.91 0.03 0.08 0.96

Ozabag 0.91 0.83 0.82 0.00 0.17 0.99
W-Majorit 0.88 0.75 0.75 0.00 0.24 0.99

techniques to classify data instances from data streams. In this
section, first we intend to look into some related works on
change point detection techniques. We will also look into some
related data stream classification techniques.

There are many change point detection (CPD) algorithms
available in the literature. However, most of the work is
based upon certain assumptions. For example, CPD method
proposed by Hinkley [17] assumes that distribution families
before and after the change point belong to known parametric
families, e.g., normal, binomial. On the other hand, CPD
algorithm proposed by Bhattacharyya et. al. [5] assumes that
the variables after the change are stochastically larger than
those before. In other words, distribution families before and
after the change point differ only in their levels, e.g., mean or
median. M. Baron proposes an online non-parametric change
point detection approach in [2] which is free from above
assumptions. This approach uses histogram density estimation
procedures to estimate distribution families before and after the
change. These assumptions are then used in a CUSUM-type
process to estimate the change point with a stopping time.

These above mentioned approaches work on uni-
dimensional data only. However, most of the real life datasets

are multi-dimensional. In the literature, several change detec-
tion methods exist to deal with multidimensional data also.
Song et. al. [24] propose a log-likelihood change detection
method, called density test, which makes use of EM algorithm
and kernel density estimator to infer the distribution. However,
it is efficient for low dimensional data. Kuncheva et. al. [20]
apply principle component analysis (PCA) to multidimensional
data and keep the components with the smaller variance. Then
the approach uses semi-parametric log-likelihood detector
(SPLL) [19] to detect the distribution change. However, SPLL
loses theoretical precision in order to achieve computational
simplicity as the assumptions are rarely met. This makes it
difficult to set up a threshold.

Extracting useful information efficiently from data stream
has become a research focus since data streams are becoming
more and more common in today’s connected digital world.
Masud et. al. propose an efficient stream mining approach
DXMiner [21], where the authors proposed techniques to find
novel classes over stream. It uses hyper-spheres to capture the
decision boundary for classes as the stream is processed. They
divide the stream into equal sized chunks (fixed length chunk).
In other words, they have not considered dynamic length chunk
size to address concept drift issues. SluiceBox [22] is a method
for data stream mining which builds a hierarchy of ensemble
classifiers. They divide stream data into equal chunk size (fixed
one) and do classification.

Bifet et. al. propose MOA: Massive Online Analysis [7],
which is a framework for stream classification and clustering.
It implements a wide range of classification and clustering
methods for data streams. Bifet et. al. [8] present a framework
to implement multiple change point detection methods using
MOA. ADWIN [6] is a change detection method that uses
only one parameter (confidence bound). (HAT-ADWIN) is an
adaptively learning method that uses ADWIN to detect changes
and update the model. SC2P differs from ADWIN in the
following ways: First, SC2P exploits entirely nonparametric
change point detection; ADWIN uses CUSUM and EWMA
as non-parametric methods for detecting specific changes in
the location parameter - drifts. However, the drift detection
method uses Binomial distribution so it is parametric. Second,
on one hand, SC2P does not use threshold and strive to
detect change point immediately or with minimum delay. On
the other hand, ADWIN may encounter delay to reach the
threshold or confidence. Experimental results also show that
SC2P outperforms HAT-ADWIN.

Our approach presented in this paper uses Change Point
Detection (CPD) to classify instances in data streams. Our
approach incorporates both statistical CPD algorithm and clas-
sical data mining methods. It does not need to divide the stream
into equal chunks to address infinite length which may lead to
poor performance. The proposed approach detects change point
on multi-dimensional data without reducing dimensionality
or using subspace. Moreover, as our approach uses decision
tree algorithm, each dimension contributes to the final label
prediction according to its information gain. Experimental
results show that this approach can efficiently be used to detect
security threats, e.g., classify malicious or spam instances.

VI. CONCLUSION

In this paper, we have presented an approach to classify
data points in data streams having two classes. To do this,
we have proposed an efficient method to detect change point
in a multi-dimensional data set without using any pre defined
threshold value. Moreover, our approach does not have the
criteria of dividing the infinite length data stream into fixed size
chunks. It uses the idea of change point detection in the data
stream by sequential partitioning that determines an appropri-
ate length for a chunk on the fly. Experimental result shows
that the proposed approach is an efficient framework to classify
data points of data stream containing two classes, e.g., data
stream containing data points having classes benign/malicious.
In the future, we intend to continue our work to classify
data points and separate novel classes from concept drift in
data stream having multi classes by exploiting ensemble based
techniques.

ACKNOWLEDGMENTS

This Research is based upon work supported by the Na-
tional Science Foundation under Grants DMS-1322353, DUE-
1129435, and CNS-1229652.

REFERENCES

[1] C. C. Aggarwal and P. S. Yu. On classification of high-cardinality data
streams. In SDM, pages 802–813. SIAM, 2010.

[2] M. I. Baron. Nonparametric adaptive change point estimation and on
line detection. Sequential Analysis, 19(1-2):1–23, 2000.

[3] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes: Theory
and Application. PTR Prentice-Hall, Inc., Englewood Cliffs, NJ, 1993.

[4] S. D. Bay, D. F. Kibler, M. J. Pazzani, and P. Smyth. The uci kdd
archive of large data sets for data mining research and experimentation.
SIGKDD Explorations, 2:81, 2000.

[5] G. K. Bhattacharyya and R. A. Johnson. Nonparametric tests for shift
at an unknown time point. The Annals of Mathematical Statistics,
39(5):1731–1743, 10 1968.

[6] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà. New
ensemble methods for evolving data streams. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’09, pages 139–148, New York, NY, USA, 2009.
ACM.

[7] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen,
and T. Seidl. Moa: Massive online analysis, a framework for stream
classification and clustering. In Journal of Machine Learning Research
(JMLR) Workshop and Conference Proceedings, Volume 11: Workshop
on Applications of Pattern Analysis, pages 44–50. Journal of Machine
Learning Research, 2010.

[8] A. Bifet, J. Read, B. Pfahringer, G. Holmes, and I. Zliobaite. Cd-moa:
Change detection framework for massive online analysis. In IDA, pages
92–103, 2013.

[9] B. E. Brodsky and B. S. Darkhovsky. Nonparametric Methods in
Change-Point Problems. Kluwer Academic Publishers, The Nether-
lands, 1993.

[10] D. Brzezinski and J. Stefanowski. Combining block-based and online
methods in learning ensembles from concept drifting data streams.
Information Sciences, 265(0):50 – 67, 2014.

[11] E. Carlstein. Nonparametric estimation of a change-point. Ann. Statist.,
16:188–197, 1988.

[12] J. Chen and A. K. Gupta. Parametric Statistical Change Point Analysis:
With Applications to Genetics, Medicine, and Finance. Birkhäuser,
Boston, MA, 2012.

[13] L. Dumbgen. The asymptotic behavior of some nonparametric change-
point estimators. The Annals of Statistics, 19(3):1471–1495, 09 1991.

[14] D. Ferger. Nonparametric change-point detection based on U-statistics.
PhD thesis, University of Giessen, 1991.

[15] J. a. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia.
A survey on concept drift adaptation. ACM Comput. Surv., 46(4):44:1–
44:37, Mar. 2014.

[16] K. W. Hamlen, V. Mohan, M. M. Masud, L. Khan, and B. Thurais-
ingham. Exploiting an antivirus interface. Computer Standards &
Interfaces, 31(6):1182–1189, April 2009.

[17] D. V. Hinkley. Inference about the change-point in a sequence of
random variables. Biometrika, 57(1):pp. 1–17, 1970.

[18] J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: An
ensemble method for drifting concepts. J. Mach. Learn. Res., 8:2755–
2790, Dec. 2007.

[19] L. I. Kuncheva. Change Detection in Streaming Multivariate Data
Using Likelihood Detectors. Knowledge and Data Engineering, IEEE
Transactions on, 25(5):1175–1180, May 2013.

[20] L. I. Kuncheva and W. J. Faithfull. PCA feature extraction for change
detection in multidimensional unlabelled data. IEEE Transactions on
Neural Networks and Learning Systems, 2013.

[21] M. M. Masud, J. Gao, L. Khan, J. Han, and B. M. Thuraisingham.
Classification and novel class detection in concept-drifting data streams
under time constraints. IEEE Trans. Knowl. Data Eng., 23(6):859–874,
2011.

[22] B. Parker, A. M. Mustafa, and L. Khan. Novel class detection and
feature via a tiered ensemble approach for stream mining. In ICTAI,
pages 1171–1178, 2012.

[23] A. Reiss and D. Stricker. Introducing a new benchmarked dataset
for activity monitoring. In Wearable Computers (ISWC), 2012 16th
International Symposium on, pages 108–109, June 2012.

[24] X. Song, M. Wu, C. Jermaine, and S. Ranka. Statistical change detection
for multi-dimensional data. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’07, pages 667–676, New York, NY, USA, 2007. ACM.

[25] W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for
large-scale classification. In Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’01, pages 377–382, New York, NY, USA, 2001. ACM.

[26] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data
streams using ensemble classifiers. In Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’03, pages 226–235, New York, NY, USA, 2003. ACM.

[27] H. Wang, J. Yin, J. Pei, P. S. Yu, and J. X. Yu. Suppressing model
overfitting in mining concept-drifting data streams. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, pages 736–741, New York,
NY, USA, 2006. ACM.

[28] P. Wang, H. Wang, X. Wu, W. W. 0009, and B. Shi. A low-
granularity classifier for data streams with concept drifts and biased
class distribution. IEEE Trans. Knowl. Data Eng., 19(9):1202–1213,
2007.

[29] Y. Yang, X. Wu, and X. Zhu. Combining proactive and reactive
predictions for data streams. In Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data
Mining, KDD ’05, pages 710–715. ACM, 2005.

[30] P. Zhang, J. Li, P. Wang, B. J. Gao, X. Zhu, and L. Guo. Enabling fast
prediction for ensemble models on data streams. In Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’11, pages 177–185, New York, NY, USA,
2011. ACM.

