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Abstract—Data is one of the most valuable assets for organiza- with homeland protection. By collecting and mining data
tion. It can facilitate users or organizations to meet their diverse  concerning user travels and disease outbreaks one carctpredi
goals, ranging from scientific advances to business intelligence. disease spreading across geographical areas. And thgsstare
Due to the tl’emendous grOWth Of data, the nOtion Of b|g data haS a feW examples’ there are Certa|n|y many Other domalns Where

certainly gained momentum in recent years. Cloud computing g4t technologies can play a major role in enhancing sgcurit
is a key technology for storing, managing and analyzing big

data. However, such large, complex, and growing data, typically The use of data for security tasks raises however major
collected from various data sources, such as sensors and social privacy concerns. Collected data, even if anonymized by
media, can often contain personally identifiable information (PII) removing identifiers such as names or social security num-
and thus the organizations collecting the big data may want to bers, when linked with other data may lead to re-identify

protect their outsourced data from the cloud. In this paper, we Do - I :
survey our research towards development of efficient and efféige the individuals to which specific data items are related to.

privacy-enhancing (PE) techniques for management and analysis AISO, as organizations, such as governmental agencies) oft

of big data in cloud computing. We propose our initial approaches ~ Need to collaborate on security tasks, data sets are exetiang
to address two important PE applications: (i) privacy-preserving  across different organizations, resulting in these datatszing

data management and (i) privacy-preserving data analysis under available to many different parties. The big question issthu
the cloud environment. Additionally, we point out research issues  “how to share and analyze big data in a privacy-preserving
that still need to be addressed to develop comprehensive solut®n manner?” A report recently released by the White House [15]
to the problem of effective and efficient privacy-preserving ue has emphasized the need to reconcile research based on big

of data. data with privacy.

. INTRODUCTION When dea_lling with big data management and analysis,
] ) o cloud computing represents today’s one of the most conaénie
With the advances in technology, organizations are able tgomputing and storage infrastructures. However, the use of
collect huge volumes of data; for example, IBM creates 2.5he cloud further complicates the problem of data privacy. A
quintillion bytes of data everyday from different data sms,  solution often advocated to address the problem of datagyiv
such as sensors, weblogs, GPS signals and social media [}} the cloud is based on encryption by which data is encrypted
Due to the tremendous growth of data [2], the notion ofpefore being outsourced to the cloud. Recent research has th
big data has certainly gained momentum in recent years. Bighcused on techniques for querying and managing encrypted
data essentially deals with the efficient management oBlarg gata on the cloud without requiring data decryption (e X}

volume, complex, and growing datasets from multiple sairce[22]). However, a major drawback of those approaches is the
and the extraction of useful knowledge from these data8¢ts [ |ack of scalability and limited applicability.

Many of today’s applications across multiple domains, sagh
social networks [4], healthcare [5], finance [6], manufaciy In this paper, we survey our research towards the goal
[7], cyber security [8], [9], biology [10], and physics [11] ©of developing efficient and effective privacy-enhancind=)P
require the collection, management, integration, andyaisabf  techniques, tools, and systems for the management of beg dat
big datasets. The President Obama’s administration ameoun ©on the cloud and outline research directions.

in 2012 the “Big Data Research & Development” initiative to

exploit big data for enhancing research and innovation.[12] tro The rest of the paper is organized as follows. Section Il in-

duces two architectural frameworks on which the disicunss

In particular, as discussed by Bertino [13], technologi-in this paper is based. Section IlI presents our initial itesand
cal advances and novel applications, such as sensors,- cyb@pen research issues in privacy-preserving data managemen
physical systems, smart mobile devices, cloud systems, dagnd data analytics. Section IV outlines a few conclusions.
analytics, and social networks, are making possible toucapt
and quickly analyze huge amounts of data from which to ex- I
tract information critical for security-related tasks.the area '
of cyber security, such tasks include user authenticatiocess An important observation underlying the discussions ia thi
control, anomaly detection, user monitoring, and protecti paper is that the specific PE technology to use depends on
from insider threat [14]. By analyzing and integrating datathe intended use of data. In this respect, it is important to
collected on the Internet and Web one can identify connestio distinguish between the use of data for analytic purposed s
and relationships among individuals that may in turn helpas performing data mining on the data, and for operational
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make such primitives applicable for use in big datasets, it
is important to investigate implementations based on |gdral
and distributed data processing techniques, such as MapRe-
duce [23], that are typically supported by cloud environtaen
Such strategy requires however that the solutions to bel-deve
oped are amenable to parallelization.

IIl. APPROACHES ANDRESEARCHDIRECTIONS

This section discusses approaches for constructing novel
PPDM and PPDA frameworks for big data in the cloud envi-
ronment. With respect to each proposed framework, we presen

Key Distribution ﬁ ------ & some initial approach and highlight research challenges.

7 Authorized Users A. Privacy-Preserving Basic Cryptographic Primitives

Encrypted Query
Retrieve Output

Fig. 1: The PPDM Architecture As mentioned in the previous section, basic primitives

. . . i (e.g., secure equality and comparison) act as importatd-bui
use in which specific data records may have to retrieved. Thig,g" pjocks in constructing solutions to PPDM and PPDA.

digtinction Ieads to two major categories of PE techpolc(gy: In particular to encrypted data, cryptographic solutions t
privacy-preserving data management (PPDM) and (i) pjvac pasic primitives can offer maximum security when properly
preserving data analytics (PPDA). designed. For example, if the cloud wants to compare two
With respect to PPDM, in what follows we consider the integers given their encrypted values, it can utilize thisteng
setting shown in Figure 1, where the data owner (i.e., affe€cure comparison solutions to compare the two encrypted
organization holding a big dataset) encrypts the data amdsst values in a privacy-preserving manner.
it in the cloud. Relevant research issues in this settinycte 1) Related Work: When data is encrypted using fully
how to support SQL queries and other DBMS functions onyomoemorphic encryption schemes (e.g., [24]), the cloud can
the encrypted data. Moreover, as data is typically sele§tiv erform arbitrary operations over encrypted data in a pyiva

shared among different users of the organization, such g$eserving manner. However, such schemes are very expensiv
customers or employees, techniques for fine-grained acce ] and their usage in big data applications has yet to

control on encrypted data stored in a cloud are critical. be explored. As an alternative, several solutions have been

On the other hand, for PPDA, we consider two differentProposed to basic cryptographic primitives (e.g., [268}[2
settings (see Figure 2): (i) single-user and (ii) multijuse using different techniques, such as additive and mulapive
collaborative setting. In the single-user setting, we have homomorphic encryption schemes (e.g., [29]). Howeverib s
single data owner who wants to outsource (due to lack ofhe diverse needs of PPDM and PPDA in big data applications,
proper resources, such as technical expertise, compughtio such solutions may not be sufficient.

power and storage) her gncrypted_data and analyticgl tasks t 2) Our work: In our recent works [30][32], we proposed
a cloud. Unde_r the multi-user setting, we have multiple daticient solutions to various basic primitives, such asusec
owners, each independently holding their own database, (€.gtipjication and minimum. Note that our solutions canoals
different hospitals holding their patients’ medical datajio ~ he sefyl in many other secure applications that deal with
want to perform a data analytical task on their combined.dataencrypted data, such as secure electronic voting [33]aferiv
The data owners however are not willing to share their OWrL\ctioning and’bidding [34]. In order to meet the needs of

dﬁtabats]es amlong feﬁmhd other, (Tvgn tholt’gh thﬁ.y are willing {94 4ata “we have recently demonstrated [32] how to execute
share the results of the data analysis task. For this purdas® — gqme pasic cryptographic primitives using parallelizatio

owners outsource their respective encrypted data to a elodd improve efficiency by a significant factor. E.g., if the cloud

the cloud can perform the analytical task on their combine ant to compute the minimum value (in encrypted form) out
encrypted data and return the results to each data owner. ¢ . encrypted integers, the cloud can generate an execution
It is however important to notice that any given task cantree and evaluate it (in parallel) using our secure minimum
be broken down into sub-tasks and some of the sub-taskyotocol [32] to get the desired output in a privacy-presegv
(which we refer to as basic primitives) remain common acros$nanner.
different tasks. Thus to construct effective solutions,,ito
solve any given task in PPDM and PPDA, one needs to firsf,, “iynortant objectives for basic primitives in big data
have efficient implementations of all those basic primgive applications
Such basic primitives include secure equality, comparison '
division, and modulo operation. Research needs to carried Efficient Basic Primitives for Big Data. We emphasize
out to identify additional basic primitives that can be ussd that it is critical to develop more efficient solutions to ieas
building blocks to support any given task of PPDM and PPDA.basic cryptographic primitives. We propose three possible
It is also important to notice that, even though implemeottst  directions to achieve this. (i) Develop probabilistic outistic
exist for most (but not all) of the basic primitives, it is based solutions that are expected to be more efficient than
always desirable to either improve existing implementetio existing solutions. For example, in [30], we developed a
or develop more efficient solutions. Furthermore, in order t probabilistic-based solution to the secure bit-decontjosi

3) Research Directions:In what follows, we point out
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Fig. 2: Two types of settings under the PPDA framework

primitive that is much more efficient than the existing so-construct a comprehensive PPDM framework that is effective
lutions. (ii) Develop solutions that can allow cloud to pre- (can support all standard DBMS tasks), efficient, and séalab
compute (as part of offline phase) some expensive operations )

such as encryptions of random numbers and exponentiations, 1) Related Work:Several techniques have been proposed
The more expensive operations we push to offline, the morf address access control (e.g., [37]-[41]) and evaluaiion
efficient the solution is. Due to pre-computation of expeasi SPecific queries (e.g., [42]-{49]) over encrypted data. The
operations in the offline phase, the actual online computati 'dea of utilizing specialized encryption techniques, swach
time of a basic primitive is expected to improve. (i) Aneth ~ Order preserving encryption [50], [51], additive homontuep
direction is to develop parallel solutions to basic priwat. €ncryption [29], and so on, to perform different relatioopér-
That is, one need to develop solutions where the underlyingtions has been firstly introduced in CryptDB [19]. The same

operations can be executed in parallel on multiple threads. 'déa has been extended to support more complex analytical
gueries in MONOMI [52]. While such work has established

Stronger Security Guarantees. Some existing solutions the architectural foundation for systematic query process
to the basic cryptographic primitives (e.g., [26], [28])fesf and access control, those techniques suffer from two major
weak security guarantees by leaking different information limitations. The first is that the minimum access control
the cloud. Also, recent results [35] show that access pattergranularity supported by its encryption based access @ontr
information need to be protected from the cloud to ensurenechanism is the column. Such a granularity is too coarse
maximum security. Informally speaking, if the information to satisfy the requirements of several real-world appibcet
known to the cloud before and after the execution of a basidhe second limitation is the onions of encryption. An onion
primitive remains the same, then we can say that it offerss a multiple layers of encryptions. Each layer is applied fo
strong security [36]. Therefore, while developing effitien a specific query operation or purpose, and the encryption
solutions to basic primitives, it is also important to emstitat  layers from the external layer to the most internal layer are
they satisfy the standard security definitions. increasingly weaker. It is easy to see that, although onions
offer multiple levels of security, the security decreasesro
) _ time when the outer layers are removed. Hence, the real
B. Privacy-Preserving Data Management security level an onion can guarantee is the protectiorredfe

The management of encrypted data stored in a cloud pos@é’ the inner most encryption. Furthermore, to support ger

several challenges, the most important of which are fine9Perations, multiple onions need to be generated (e.gucer

grained access control and query processing. In a typiga-or ©Nion IS necessary to support range queries).

nizational setting, different portions of data are shanewbiag 2) DBMask: DBMask [53] is a recently proposed sys-
e_mploye_es and customers of the organization owning the datg, overcoming the limitations of CryptDB and supporting
(fine-grained access control). Also, from the databaseppers ayribute-based fine-grained access control for data on the
tive, standard SQL queries should be supported over ertypt ¢jo,q. |n what follows we present the key elements of its

data stored in the cloud (query processing). However, iQesign and then outline open research directions.
ensure data confidentiality, both fine-grained access a@ontr

and query processing over encrypted data should be done in a System Architecture. The DBMask system includes four
privacy-preserving manner. Thus, a PPDM framework that caentities: data owney data usey proxy, and data server The
facilitate fine-grained access control and query procgssmer  overview of the DBMask architecture and the interactions
encrypted data in the cloud is of great interest. Given thdewi among different entities are illustrated in Figure 3. Théada
variety of SQL queries and big data, it is always desirable tmwner uses different secret keys to encrypt different postiof
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Fig. 3: The Proposed DBMask Architecture

data, according to the access control policies. The seeset k performed by adding an additional column to every column
are organized in a lattice for efficient management. The datar cell in the table. In the case of row level access conthd, t
owner can also build secure indices over the encrypted data policy attachment is performed by adding a single additiona
improve the search performance. The encrypted data tagetheolumn in the table. Upon receiving an SQL query from a
with their secure indices are uploaded to the data servgr, (e. user for a tablel’, the proxy needs to determine the ABAC
a cloud). A data user with authenticated attributes carfyeri policies attached t@" that are satisfied by the users attributes
itself to the proxy. The successful attribute based vetiboa and restrict the query to only those columns, rows or cells
of the user to the proxy allows the proxy to either derive ordepending on the granularity level by adding a predicate to
obtain one or multiple secret keys required to encrypt thex us the user query. For ease of presentation, we focus on row leve
guery. Given a plaintext query submitted by the user, th&ypro access control in order to discuss DBMask’s ABAC model. In
uses these keys to rewrite the query into an encrypted querthis case, each tuple (row) in a database table is attached an
which can then be executed on the encrypted data in the dafeBAC policy. Informally an ABAC policy @ACP for short)
server. The encrypted query results are returned from ttee daover 7' is defined as a tuplés, o) where:o denotes a set of
server to the proxy, which decrypts the results using thees&c rows in7 ands is a Boolean expression over a set of attribute
established at the time of verification and forwards thenhé t conditions that must be satisfied in order to aceedslso, we
data user. Notice that during the query processing stage, ttobserve that grouping users based on the ABAC policies they
data server learns neither the query being executed nor tteatisfy enhances access control enforcement as it provites
result set of the query. level of indirection. Such a grouping of users allows one to
) ) ) enforce access control policies on a set of users instead tha
Fine-Grained Access Control. DBMask uses attribute o ingividual users. Moreover, relationships between gsou
based access control (ABAC) model [54], [S5] which has theca pe exploited to improve the key management. Considering
following three characteristics: (i) Users have a set ohide e fact that everyACP can be converted into disjunctive
tity attributes that describe properties of users; for ex@m ,5rmal form (DNF), we define aroup G as a set of users

organizational role(s), seniority, age and so on. (i) D&ta hich satisfy a specific conjunction of attribute conditioin
associated with ABAC policies that specify conditions over;, ABaC policy.

identity attributes. (iii) A user whose identity attribstsatisfy

the ABAC policy associated with a data item is allowed to ~ The idea of groups is similar to user-role assignment in
access the data item. role based access control (RBAC) model, but in our approach,

the assignment is performed automatically based on igentit
In DBMask, access can be controlled at different granuattributes. Given the set of data owner defined ABAC policies
larity levels such as column level, row level, and cell level the following steps are followed to identify the groups:
Each column, row, or cell, depending on the desired level of e Convert each ABACACP into DNF. Note that this
access control, has an associated ABAC policy. In the case conversion can be done in polynomial time.
of column and cell level control, the policy attachment is e For each distinct disjunctive clause, create a group.



For example, consider the following twaCPs: ACP, = C; A

(C3 Vv C3) and ACR = Cy with the attribute condition§’;, Cs TABLE I: Sample Patients’ Medical Data

andCs3. The ACPs can be rewritten in DNF form as follows: D Age Diaanosis Groups
ACP, = (C1 AC2)V/(C1ACy) and ACR = Cs. In this example, g d P
there are three grous;, G-, G5 for the set of users satisfying 1 35 HIV Gy
the attribute condition€’; ACy, Cy AC5, andCs, respectively. 2 30 Cancer G, Go
DBMask exploits the hierarchical relationship among 3 40 Asthma G, Gs
groups in order to support hierarchical key derivation and 4 38 Gonorrhea G

improve the performance and efficiency of key management, . h f i hi = |
We introduce the concept Group Poset as follows to achieve %(I)B”EBITMOS a spec:c ¢ crypt(r)]grasp Ic CO?Stmﬁt' ofr ehxarR%e,
this objective. A group poset is defined as the partially mde i, ~Setup refers to the Setup algorithm of the .

set (poset) of groups where the binary relationshig.isn the GKM_scheme). The dar:a owner m:;keshavanable the public
above examplel/; C GG3 and there is no ordering betweéh security parameters to the proxy so that the proxy can gemnera
and G, = trapdoors during data querying and retrieval phase. Tha dat

owner also converts thACPs into DNF and groups users
Hierarchical key encryption techniques reduce the numsatisfying the same disjunctive clauses. As mentionedeearl

ber of keys to be managed. However, a major drawback ighese groups are used to construct the Group poset to perform

that assigning keys to each node and giving them to usefierarchical key derivation along with the AB-GKM based key

beforehand makes it difficult to handle dynamics of addingmanagement.

and revoking users. For example, when a user is revoked, one In the user registrationphase, users first get their identit

needs to update the keys given to other users through privateitr 9 P ! 9 y

communication channels. We address this drawback whil@itributes certified by a trusted identity provider. Thesiied
utilizing the benefits of the hierarchical model by propgsin identity attributes are cryptographic commitments thatehi

a hybrid approach combining broadcast and hierarchical kegwe actual identity attribute value but still bind the valiee

management. A broadcast group key management (BGKM sers. Users register their certified identity attributéth the
allows one to efficiently handle group keys when user dynam—S?B%V;nigtgi'glg[égf _?_ﬁlév'g;; %c\)/vnr]grltmeer?érg'?esse?hgns\,/:é(r)gti
ics change. We utilize a recent expressive scheme called Aj— P : 9

GKM (attribute based GKM) as the broadcast GKM schem or the identity attributes using the AB-GKM scheme and
[56]. Instead of directly assigning keys to each node in thdives the encrypted secrets to users. Users can decrypt and

hierarchy, we assign a AB-GKM instance to each node an&)btaln the secrets only if they present valid certified idgnt

- . . - . _attributes. The data owner maintains a database of usetsec
authorized users can derive the key using the key derlVatloaalues. When a user or an identity attribute is revoked, the

algorithm of AB-GKM. corresponding association(s) from the user-secret dstalsa
SQL-Aware Comparison. DBMask currently supports (are) deleted. The user-secret database is also storec at th
both numerical and keyword comparison and is designed sproxy with the secrets encrypted using a password only each
that any comparison friendly numerical [57], [58] or keywor user possesses. Each user has a different password engrypti
[42], [59], [60] encryption schemes can be utilized to perfo  her own secrets. Every time the user-secret database ahange
relational operations over encrypted data. We refer toethesthe data owner synchronizes its changes with the proxy.
zcr:]r&er;r?\?a?;S:lev:(;)\//iﬂ;eslfg;/wgrg ug%';:rli:g? rzggslé)cn).(e’;ol\tlr(]: Since it is dlfflcult to support both flr)e—gramed access con-
encryption schemes can be summarized into four algorithmé.rOI and comparison under one encryption scheme, in DBMask

Setup EncVal GenTrapdoorand Compare which we use to each cell in an original table is encrypted twice during diagéa

perform comparisons over encrypted values in DBMask. Th&"¢rypPtion and uploaghhase. The first encryption is for fine-
Setupalgorithm takes as input a set of parametétsand grained access control and the second is for privacy-prieser

initializes the underlying encryption scheme. Given a nume _matchmgd C(jo[[res,tpond\l/?/glya eacth c;ﬁlumnlm the orlgﬂpaletfab
ical or keyword valuer, the EncVal(z) algorithm produces 'S &Xpanded 1o two. VVe denote theé column resuiing from
an encrypted value, for x. Given an input (numerical or the encryption for fine-grained access contro_dam-col and_
keyword) valuet, the GenTrapdooralgorithm produces an € ©One resulting for the encryption for privacy-presegvin
encrypted valuee, for ¢, called the trapdoor. Finally, given matching asmatch-col

an encrypted value, and a trapdoor value;, the Compare Let us first discuss the creation of data-col. Given a cell
algorithm compares them and outputs the desired result.  in the original table, its encryption in the correspondirajad

DBMask Protocols. DBMask implements several proto- Ol iS generated by a secret key derived from the AB-GKM
cols that support four main functions of DBMaskystem Scheme [56] as follows. Consider the row containing the cell
initialization, user registration, data encryption and lopd, in the original table. Based on tR&CPs, each row is assigned

and data querying and retrievaNote that, as shown in Figure ON€ OF more group labels. The set of groups decides the

3, DBMask consists of four entities: data owner, data user<€Y: under which the cell in the row is encrypted. If two
proxy, and data server groups are connected in the group poset, only the label of

less privileged group is assigned to the row. The intuition
During the system initializationphase, the data owner behind is that users in the more privileged group can reach
runs the Setup algorithms of the underlying crypto-the less privileged group by following the hierarchicaktéin
graphic constructs, that is, AB-GKM.Setup, PPNC.Setup andh the group poset. After removing the labels of groups with
PPKC.Setup (we use the dot notation to refer to an alhigher privileges, a row can still be associated with mistip



groups. For each remaining grodg;, a group secret key; query filtering step, it populates an in-memory databasé wit
is generated by executing the AB-GKM.KeyGen algorithm.the decrypted result set and refines the query result acgprdi
In order to avoid multiple encryptions (i.e., one group sécr to the constraints in the clauses and/or aggregate fursction
key for one encryption), the AB-GKM.KeyGen algorithm by running the original query. If no term from the query is
(denoting the key generation algorithm of AB-GKM scheme)removed, the decrypted result set is the final result and the
is again executed to generate a master group kaysing  proxy sends the final plaintext result back to the user.

the group keysk;'s as secret attributes to the algorithm. As
a consequence, if a user belongs to any of the groups assigne
to the row, the user can access the row by executing th
key derivation algorithm of AB-GKM algorithm twice. The
first execution generates the group key and second deriees t

d 3) Research Directions:While DBMask is an effective
itial solution and provides a good starting point towards
eveloping a comprehensive solution to PPDM, several re-
earch challenges need to be addressed which we highlight

master key. them below.
For example, consider the sample patient's medical data SuPport for Additional Relational Operations. In our
given in Table |. Each grougy; is assigned a uniqué;. initial solution to DBMask (as discussed above), the cload ¢

Rows 1 and 4 are encrypted using Key Since rows 2 and perform only comparison operations over encrypted datm(l:_)o
3 have multiple groups, in order to avoid multiple encryp_numencal and textual data) and the rest of the SQL opeation
tions/decryptions, a master key is assigned using AB-GKMR€ performed by the proxy. That is, the query execution is a
by considering the group keys as input secrets to the ABIWO-Step approach in DBMask. The ideal scenario for DBMask
GKM.KeyGen algorithm. Row 2 is encrypted using ke would be to execute all the SQL query operations by the cloud
generated from the AB-GKM instance havig and k» as itself. This is especially beneficial when the proxy do notéha

input secrets. Similarly, row 3 is encrypted with keys. enough resources. Also, if the total computations of a SQL
query are performed by the cloud (which is assumed to have

Table Il shows the final encrypted data with both encryptechetter resources than the proxy), then the query-respamse t
data-col's and comparison friendly match-col's that neetlé s expected to improve. However, achieving the ideal séenar
outsourced to the cloud, wheeemp,, andcompy, refer to the  ynder DBMask is challenging. In our future work, we plan
encryption functions under PPNC and PPKC, respectively. to extend DBMask to support additional relational opersio

Once the encrypted data is outsourced to the cloud servetuch as RANGE and JOIN queries, on the cloud side.
the next phase islata querying and retrievalDBMask is Efficient Basic Cryptographic Primitives for PPDM.
designed to process a query over encrypted data using \ghjle the existing cryptographic primitives (e.g., PPNC and
filtering-refiningprocedure. Initially, an authorized user sends appk c) are useful for performing certain relational operasi
plaintext SQL query to the proxy, as if the outsourced daeba oyer encrypted data, it is always desirable to develop more
were unencrypted. In other words, encryption and decryiptio eficient solutions for these operations in order to handle
of the data in the database is transparent to the users. T data. For this purpose, it is important to first identify
proxy parses the query and generates an abstract syntax rgg the cryptographic primitives required for evaluatin@IS
of the query as follows. The query is first filtered by removingqueries and then systematically investigate them to inerov
clauses, such a®RDER BY and aggregate functions, that their efficiency either through algorithmic optimizatiooithe

cannot be computed on the server. Then the proxy adds thgsting solutions or by proposing new solutions for them.
columns referenced by filtered clauses or aggregate furgctio

to the projections of the filtered query. The query is therritew Privacy Enhancements. Though the initial design of
ten for the cloud by which each column to be included in theDBMask is such that the contents of the database is hidden
query result (i.e., column following th8ELECT keyword in ~ from the cloud server by encryption, DBMask stores group
the query) is replaced by its corresponding “data-col” amche information in plaintext format and thus leaks data access
predicate in tha\HERE clause is replaced with a user defined patterns [17], [35], [62], [63] to the cloud. Therefore, & i
function (UDF). For each numerical matching predicate, thecritical to investigate techniques to hide such informatamd
UDF includes the trapdoor value computed by the proxy usingncorporate such techniques into DBMask without affectime
PPNC.GenTrapdoor algorithm and invokes the PPNC.Comparether functions offered by DBMask. Also privacy issues teda
algorithm. Similarly, for each keyword matching predicatee  to information leakage to the proxy must be investigated in
UDF includes the trapdoor value computed by the proxy usin@rder to develop an enhanced privacy-aware DBMask system
PPKC.GenTrapdoor algorithm and invokes the PPKC.Comparthat can protect the confidentiality of the outsourced dagtab
algorithm. Also, a predicate is added to tAEERE clause to  and the user’s query from the proxy, the server and any other
determine the group(s) of the user requesting the queryédefoadversary at all times.

the rewritten query is sent to the cloud server. Efficient and Scalable Solutions for PPDM.The specific

Upon receiving the rewritten query, the cloud executes iresearch issues can be better explained with the help of the
over the encrypted database and filters the tuples that do nfllowing example. Suppose the cloud server has to perform
satisfy the predicates in the query before sending back theomparison operation on 1 Million encrypted data records
encrypted result set to the proxy. The proxy generates théstored in the cloud) using an encrypted search input. I suc
necessary keys for decrypting the result set using the ABa case, we need to (i) develop an efficient secure comparison
GKM.KeyDer algorithm with the public information and the protocol and (ii) devise an efficient plan to divide the 1 it
user secrets as well as the hierarchical key derivatiorhdf t secure comparison operations into independent sub-tasks a
proxy has removed some clauses (e@RDER BY) and/or run them in parallel (on multiple nodes) to obtain best perfo
aggregate functions (e.gSUM from the original query in the mance. Also, due to the distributed nature of data procgssin



TABLE II: Encrypted Patients’ Medical Data Outsourced te f@loud Server

ID-enc | ID-com | Age-enc | Age-com Diag-enc Diag-com Groups
By, Q) | compn(1) | Ex,(35) | comp,(35) Ey, (HIV) compy(HIV) G,
By, (2) | compn(2) | Ek,,(30) | comp,(30) | Ey,,(Cancer) compi(Cancer) | Gi, Gy
Ey,.(3) | compp(3) | Ekyy(40) | comp,,(40) | Ej,, (Asthma) compr(Asthma) | Ga, Gs
By, (4) | comp,(4) | Ex,(38) | comp,(38) | Ex,(Gonorrhea)| compi(Gonorrhea) G,

we need to minimize the underlying communication costs and
network delays. It is thus important to develop efficientusol
tions to the basic cryptographic primitives (mentionedva)o
and integrate them in the DBMask architecture. Specifically
it is critical to focus on developing parallel algorithmsr fo
each basic primitive that allows one to exploit threaddeve
parallelism at each node and on how the cloud server can
efficiently decompose a given query into independent sub-
queries and run them on multiple nodes.

m"’?

Server S;

Server S;,;

E|

. . Client C
Support for other Database Functionalities.Apart from fent

the standard SELECT queries, a comprehensive DBMask so-
lution should also support other common functionalitieg).(e
INSERT and UPDATE) of database management systems.
However, while incorporating such functionalities into BB
Mask, we need to ensure that access patterns to data [35] ar
protected properly. For example, if an authorized user svant  Fig. 4: The Proposed Collaborative PPDA Architecture

to update the contents of a particular data record stored in

the cloud, then both the contents of the data record and tH&y Which multiple parties can collaboratively compute aadat

information related to which data record is being updatagtha Mining task without revealing one's private data to others.
to be protected from the cloud. Unfortunately, there has been little work on privacy-presg)

data analytics in the cloud. More specifically, existing ap-
. : . proaches along this direction are either greatly limited to
C. Privacy-Preserving Data Analytics (PPDA) specific tasks, such @snearest neighbors [31], [71], clustering

In our knowledge-driven world, it is typical that organiza- [72] [73], classification [32] and association rule minif2],
tions want to extract useful information by analyzing thaige  [741-[76], or mostly focused on analyzing the trade-offsomg
volumes of data. Also, collaborative data analytical medel different metrics (e.g., [77], [78]). To our knowledge, ®oof
need to be used when data comes from multiple partiedh® €xisting work address the PPDA problem effectively and
Specifically, consider a group of organizations, each hgldi the associated scalability issues for big data application
a private dataset, who want to perform certain analyticsk ta 5y collaborative PPDA - An Initial ApproachWe plan to
on their combined data for mutual benefit or other purposege,ejop a comprehensive PPDA framework that can efficiently
(e.g., in public or government interest). E.g., in a collative 40 any given data analytical task in a privacy-preservin
research effort, hospitals may want to know the age groufis th yanner under the cloud environment. As noted in Section I,
are highly prone for different diseases by applying clasaifi \ye consider the PPDA problem under two different settiniys: (
tion on thelr combined patients’ medical data. On one han,dsingle-user and (i) multi-user. For succinctness, we ictems
organizations may not have enough resources (e.g., t@hnice"single-user setting and describe our proposed frankewor
expertise, computational power and storage) to localljoper 54 initial solution approach for PPDA.
data analytical tasks on big data. Also, in the case of collab
rative setting, since an organization’s data are its mdsiade System Architecture. In our initial research, we consider
asset and due to various privacy concerns, it may not bengilli the data-analytics-as-a-service scenario in cloud coimput
to share its data with others. To overcome these issues, theith n(> 3) multiple servers, as shown in Figure 4, where
problem of privacy-preserving data analytics (PPDA) in thethere exist three types of participants, each playing awfit
cloud has gained significant attention in recent years, &herrole, as follows: (i) a group of cloud data analytical sesver
users can outsource their encrypted data to a cloud and tlwmoperating to provide privacy-preserving data-anadyéis-a-
cloud can perform the analytical task over encrypted data iservice; (i) a cloud database server keeping the user daa i
a privacy-preserving manner. Given the wide variety of datalatabase and playing a role of the gateway between the user
analytical tasks, developing a comprehensive PPDA framlewo and the cloud data analytical servers; and (iii) a cloud user
that is effective, efficient, and scalable remains a topigreit  storing data in the cloud database server and outsourcitag da
interest for big data applications. analytical task to the multiple cloud data analytical sesve

Server S, m‘/ ‘

1) Related Work:There has been significant amount of  Technical Approach. We model the privacy-preserving
work on privacy-preserving data mining (e.g., [27], [6418])  data analytical process in the above system setting into the



following three phases: and efficiently compare two numbers given their encryptions
e Phase 1:The cloud use€ transforms his original data Without need for decryption.

with a secret informatiork (known to the cloud user Unlike the existing solutions [22], [74]-[76], the fake dat
only) and uploads the transformed data to the cloudy oyr solution is added and removed by theervers instead
database server DB. With the secret informatidn  than by the user. The main advantage of our solution is
the transformed data can be restored to the or'g'”ailemoving the requirement for the cloud user to store data and
data. Without the secret information, it is hard t0 54¢ fake data locally. What the cloud user is required to do
decode the transformed data stored by the cloud usejs encrypting its data before uploading it to the cloud and
. decrypting the mined association rules received from thect!
e Phase 2:To outsource an analytical task to the cloud, The user may upload his data to the cloud in a real time way

the cloud user” divides his secret information int@ i the case that the user does not have local data storage.
pieces and distributes them tocloud data analytical

servers, respectively. As long as not all servers collude On the basis of the existing data analytical algorithms,
to recover the transformed data, the user data remairUr initial approach makes use of the several cryptographic
private. Anyt (denoting the threshold) out efservers ~ Primitives, apart from the privacy-preserving techniqiREsT
Cooperate to mine the transformed data stored by th@nd CG, to prOteCt the Confldentlallty of the cloud user'sadat

user in the database server DB and output minedvhen multiple data analytical servers cooperate to mine the
patterns (which are still transformed) to the user. ~ data of the cloud user. The above ideas can be further extende

° Phase 3: Fina”y, the cloud user C recovers the to other PPDA taSkS, such as Clustel’ing and ClaSSificathm, a
returned patterns with his secret informatieh into ~ ¢an also be enhanced to design a PPDA framework for the

plain patterns in the end. multi-user setting.
3) Research Directionstn what follows, we will point out

veral research challenges associated with PPDA by taking
r initial approach for privacy-preserving associatianer

In our model, we assume that some analytical servers in thg
. e
cloud are trusted not to collude with other servers to recove

the transformed data. This assumption is reasonable and h%%ning as a baseline. In order to develop a comprehensive

been commonly used in electronic election protocols, SLIC[P-’PDA framework for big data applications, we need to address
as [79], [80], which even requires higher user privacy. Base e following research challenaes
on the above model, we have achieved some initial researcth1 9 ges.

outcomes. One of the initial outcomes is privacy-presgrvin  Efficient Basic Cryptographic Primitives for PPDA. Itis
association rule mining in cloud computing (where= n) critical to investigate the set of basic cryptographic [itivas
[81], which can be briefly described as follows: (e.g., PET, CG and secure division) needed for the PPDA
e Initialization. The cloud userC' generates his pub- framework and propose efficient solutions to each one of them
lic/private key pair(pk, sk) at first. Next, he splits the Here one can utilize the ideas mentioned in Section Il1-A3.

private keysk into n sub-keyssk,, ..., sk, such that Develop a Suite of PPDA Protocols.We emphasize that
sk = ski +--- + sk, and distributessky, ..., sk, it is critical to construct a suite of privacy-preservingtala
to n cloud servers, respectively, through the secureynajytical algorithms over encrypted data in the cloud. un o
channels. We assume that at least one out ofithe jnjtia| research [81], we have successfully constructegeh
servers is trusted not to collude with other serversgoytions for privacy-preserving association rule minifog
Then he encrypts his data with the EIGamal encryptionejo,q data. However, different data analytical tasks wel r
scheme [82] and the public keyk and uploads the qyire different privacy-preserving solutions. Nonetisslenost
encrypted data to the cloud database server. After thapt these tasks share some common cryptographic primitives
he encrypts the minimum supportand broadcasts it \which have to be identified first and then efficient solutions
to n cloud servers. . need to be designed for each one of them. One can utilize

e Frequent Itemset Mining. On the basis of the sub-  the primitives as well as strategies from our initial saatito
keys, then cloud data mining servers cooperate t0golye other privacy-preserving data analytical problexesy
anonymize the encrypted data of the user (stored iRecently, we have proposed an alternative approach to tdve
the database server) by adding encryption of fake dat@_nearest neighbor classification problem over encrypted da
and then find out the frequent encrypted itemsets withnger the single-user setting [32]. While our solutions [32]
the Aprori algorithm [83] on the basis of the encrypted [g1] act as a good starting point, we believe that more resear
minimum supports. The encrypted frequent itemsets need to be done to develop new privacy-preserving algosthm
are then returned to the user. for clustering, classification, association rule learniagomaly

e Frequent Iltemset Retrieval. Finally, the user de- detection, regression, summarization, future learnirtygraph
crypts the encrypted frequent itemsets with the privateynalysis problems, under both the single-user and mugti-us
key sk. settings in the cloud environment.

Besides the Aprori algorithm, our frequent itemset mining Implementation and Performance Evaluation. To evalu-

is built on two privacy-preserving techniques - the Plaihte ate the efficiency and scalability of PPDA solutions, onetbas
Equality Test (PET) [84] and the Conditional Gate (CG) [85]—develop prototype implementations of privacy-presendatp-

[87]. With the PET, then analytical servers can cooperate to analytics-as-a-service as a platform, composed of th pestyf
determine whether two ciphertexts are the encryption of theoftware - the user software, the database server software a
same item without having to decrypt the two ciphertexts. Bythe data analytics server software. In particular to thalokte

the CG, then analytical servers can cooperate to effectivelyand data analytics servers software, one has to implement



the underlying parallel computations using multi-threadi [10]
(for parallel computations on a server) and MapReduce (for
parallel computations on multiple servers) techniquesidges  [11]
performing theoretic computation and communication agialy

one has to execute the prototypes on real big datasets [88] &2
see the actual running time.

[13]
IV. CONCLUSIONS ANDFUTURE WORK [14]
Big data deals with data collection from multiple sources,[15]

probably containing sensitive or personally identifiabiéoi-
mation (PII). Cloud computing is naturally the first choice
to store and analyze big data. However, for various privacy
reasons, users typically encrypt their data before stdtiog  [16]
the cloud. This raises an important question: “how can the
cloud manage big data in an effective and efficient manner?(17]
The development of privacy-preserving techniques, tamts]
systems over encrypted data in cloud has gained tremendous
interest in recent years. 18

In this paper, we surveyed our approaches towards ad-
dressing two specific problems: (i) privacy-preservingadat [19]
management (PPDM) and (i) privacy-preserving data aitalyt
(PPDA). Also, we pointed out various open issues that still
need to be addressed to develop comprehensive solutions &
PPDM and PPDA. Addressing these issues will be the primarY21]
focus of our future work. Though in this paper we focus on
encrypted data, other data transformation techniques asch 22]
anonymization can also be considered. We will investigath s
alternative techniques and analyze their applicabilitP RDM
and PPDA.

[23]
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