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Abstract—Data is one of the most valuable assets for organiza-
tion. It can facilitate users or organizations to meet their diverse
goals, ranging from scientific advances to business intelligence.
Due to the tremendous growth of data, the notion of big data has
certainly gained momentum in recent years. Cloud computing
is a key technology for storing, managing and analyzing big
data. However, such large, complex, and growing data, typically
collected from various data sources, such as sensors and social
media, can often contain personally identifiable information (PII)
and thus the organizations collecting the big data may want to
protect their outsourced data from the cloud. In this paper, we
survey our research towards development of efficient and effective
privacy-enhancing (PE) techniques for management and analysis
of big data in cloud computing. We propose our initial approaches
to address two important PE applications: (i) privacy-preserving
data management and (ii) privacy-preserving data analysis under
the cloud environment. Additionally, we point out research issues
that still need to be addressed to develop comprehensive solutions
to the problem of effective and efficient privacy-preserving use
of data.

I. I NTRODUCTION

With the advances in technology, organizations are able to
collect huge volumes of data; for example, IBM creates 2.5
quintillion bytes of data everyday from different data sources,
such as sensors, weblogs, GPS signals and social media [1].
Due to the tremendous growth of data [2], the notion of
big data has certainly gained momentum in recent years. Big
data essentially deals with the efficient management of large-
volume, complex, and growing datasets from multiple sources
and the extraction of useful knowledge from these datasets [3].
Many of today’s applications across multiple domains, suchas
social networks [4], healthcare [5], finance [6], manufacturing
[7], cyber security [8], [9], biology [10], and physics [11],
require the collection, management, integration, and analysis of
big datasets. The President Obama’s administration announced
in 2012 the “Big Data Research & Development” initiative to
exploit big data for enhancing research and innovation [12].

In particular, as discussed by Bertino [13], technologi-
cal advances and novel applications, such as sensors, cyber-
physical systems, smart mobile devices, cloud systems, data
analytics, and social networks, are making possible to capture,
and quickly analyze huge amounts of data from which to ex-
tract information critical for security-related tasks. Inthe area
of cyber security, such tasks include user authentication,access
control, anomaly detection, user monitoring, and protection
from insider threat [14]. By analyzing and integrating data
collected on the Internet and Web one can identify connections
and relationships among individuals that may in turn help

with homeland protection. By collecting and mining data
concerning user travels and disease outbreaks one can predict
disease spreading across geographical areas. And those arejust
a few examples; there are certainly many other domains where
data technologies can play a major role in enhancing security.

The use of data for security tasks raises however major
privacy concerns. Collected data, even if anonymized by
removing identifiers such as names or social security num-
bers, when linked with other data may lead to re-identify
the individuals to which specific data items are related to.
Also, as organizations, such as governmental agencies, often
need to collaborate on security tasks, data sets are exchanged
across different organizations, resulting in these data sets being
available to many different parties. The big question is thus
“how to share and analyze big data in a privacy-preserving
manner?” A report recently released by the White House [15]
has emphasized the need to reconcile research based on big
data with privacy.

When dealing with big data management and analysis,
cloud computing represents today’s one of the most convenient
computing and storage infrastructures. However, the use of
the cloud further complicates the problem of data privacy. A
solution often advocated to address the problem of data privacy
in the cloud is based on encryption by which data is encrypted
before being outsourced to the cloud. Recent research has thus
focused on techniques for querying and managing encrypted
data on the cloud without requiring data decryption (e.g., [16]–
[22]). However, a major drawback of those approaches is the
lack of scalability and limited applicability.

In this paper, we survey our research towards the goal
of developing efficient and effective privacy-enhancing (PE)
techniques, tools, and systems for the management of big data
on the cloud and outline research directions.

The rest of the paper is organized as follows. Section II in-
troduces two architectural frameworks on which the discussion
in this paper is based. Section III presents our initial results and
open research issues in privacy-preserving data management
and data analytics. Section IV outlines a few conclusions.

II. A D ISCUSSIONFRAMEWORK

An important observation underlying the discussions in this
paper is that the specific PE technology to use depends on
the intended use of data. In this respect, it is important to
distinguish between the use of data for analytic purposes, such
as performing data mining on the data, and for operational
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Fig. 1: The PPDM Architecture

use in which specific data records may have to retrieved. This
distinction leads to two major categories of PE technology:(i)
privacy-preserving data management (PPDM) and (ii) privacy-
preserving data analytics (PPDA).

With respect to PPDM, in what follows we consider the
setting shown in Figure 1, where the data owner (i.e., an
organization holding a big dataset) encrypts the data and stores
it in the cloud. Relevant research issues in this setting include
how to support SQL queries and other DBMS functions on
the encrypted data. Moreover, as data is typically selectively
shared among different users of the organization, such as
customers or employees, techniques for fine-grained access
control on encrypted data stored in a cloud are critical.

On the other hand, for PPDA, we consider two different
settings (see Figure 2): (i) single-user and (ii) multi-user
collaborative setting. In the single-user setting, we havea
single data owner who wants to outsource (due to lack of
proper resources, such as technical expertise, computational
power and storage) her encrypted data and analytical tasks to
a cloud. Under the multi-user setting, we have multiple data
owners, each independently holding their own database (e.g.,
different hospitals holding their patients’ medical data), who
want to perform a data analytical task on their combined data.
The data owners however are not willing to share their own
databases among each other, even though they are willing to
share the results of the data analysis task. For this purpose, data
owners outsource their respective encrypted data to a cloudand
the cloud can perform the analytical task on their combined
encrypted data and return the results to each data owner.

It is however important to notice that any given task can
be broken down into sub-tasks and some of the sub-tasks
(which we refer to as basic primitives) remain common across
different tasks. Thus to construct effective solutions, i.e., to
solve any given task in PPDM and PPDA, one needs to first
have efficient implementations of all those basic primitives.
Such basic primitives include secure equality, comparison,
division, and modulo operation. Research needs to carried
out to identify additional basic primitives that can be usedas
building blocks to support any given task of PPDM and PPDA.
It is also important to notice that, even though implementations
exist for most (but not all) of the basic primitives, it is
always desirable to either improve existing implementations
or develop more efficient solutions. Furthermore, in order to

make such primitives applicable for use in big datasets, it
is important to investigate implementations based on parallel
and distributed data processing techniques, such as MapRe-
duce [23], that are typically supported by cloud environments.
Such strategy requires however that the solutions to be devel-
oped are amenable to parallelization.

III. A PPROACHES ANDRESEARCHDIRECTIONS

This section discusses approaches for constructing novel
PPDM and PPDA frameworks for big data in the cloud envi-
ronment. With respect to each proposed framework, we present
some initial approach and highlight research challenges.

A. Privacy-Preserving Basic Cryptographic Primitives

As mentioned in the previous section, basic primitives
(e.g., secure equality and comparison) act as important build-
ing blocks in constructing solutions to PPDM and PPDA.
In particular to encrypted data, cryptographic solutions to
basic primitives can offer maximum security when properly
designed. For example, if the cloud wants to compare two
integers given their encrypted values, it can utilize the existing
secure comparison solutions to compare the two encrypted
values in a privacy-preserving manner.

1) Related Work: When data is encrypted using fully
homomorphic encryption schemes (e.g., [24]), the cloud can
perform arbitrary operations over encrypted data in a privacy-
preserving manner. However, such schemes are very expensive
[25] and their usage in big data applications has yet to
be explored. As an alternative, several solutions have been
proposed to basic cryptographic primitives (e.g., [26]–[28])
using different techniques, such as additive and multiplicative
homomorphic encryption schemes (e.g., [29]). However, to suit
the diverse needs of PPDM and PPDA in big data applications,
such solutions may not be sufficient.

2) Our work: In our recent works [30]–[32], we proposed
efficient solutions to various basic primitives, such as secure
multiplication and minimum. Note that our solutions can also
be useful in many other secure applications that deal with
encrypted data, such as secure electronic voting [33], private
auctioning and bidding [34]. In order to meet the needs of
big data, we have recently demonstrated [32] how to execute
some basic cryptographic primitives using parallelization to
improve efficiency by a significant factor. E.g., if the cloud
want to compute the minimum value (in encrypted form) out
of k encrypted integers, the cloud can generate an execution
tree and evaluate it (in parallel) using our secure minimum
protocol [32] to get the desired output in a privacy-preserving
manner.

3) Research Directions:In what follows, we point out
two important objectives for basic primitives in big data
applications.

Efficient Basic Primitives for Big Data. We emphasize
that it is critical to develop more efficient solutions to various
basic cryptographic primitives. We propose three possible
directions to achieve this. (i) Develop probabilistic or heuristic
based solutions that are expected to be more efficient than
existing solutions. For example, in [30], we developed a
probabilistic-based solution to the secure bit-decomposition
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Fig. 2: Two types of settings under the PPDA framework

primitive that is much more efficient than the existing so-
lutions. (ii) Develop solutions that can allow cloud to pre-
compute (as part of offline phase) some expensive operations,
such as encryptions of random numbers and exponentiations.
The more expensive operations we push to offline, the more
efficient the solution is. Due to pre-computation of expensive
operations in the offline phase, the actual online computation
time of a basic primitive is expected to improve. (iii) Another
direction is to develop parallel solutions to basic primitives.
That is, one need to develop solutions where the underlying
operations can be executed in parallel on multiple threads.

Stronger Security Guarantees. Some existing solutions
to the basic cryptographic primitives (e.g., [26], [28]) offer
weak security guarantees by leaking different informationto
the cloud. Also, recent results [35] show that access pattern
information need to be protected from the cloud to ensure
maximum security. Informally speaking, if the information
known to the cloud before and after the execution of a basic
primitive remains the same, then we can say that it offers
strong security [36]. Therefore, while developing efficient
solutions to basic primitives, it is also important to ensure that
they satisfy the standard security definitions.

B. Privacy-Preserving Data Management

The management of encrypted data stored in a cloud poses
several challenges, the most important of which are fine-
grained access control and query processing. In a typical orga-
nizational setting, different portions of data are shared among
employees and customers of the organization owning the data
(fine-grained access control). Also, from the database perspec-
tive, standard SQL queries should be supported over encrypted
data stored in the cloud (query processing). However, to
ensure data confidentiality, both fine-grained access control
and query processing over encrypted data should be done in a
privacy-preserving manner. Thus, a PPDM framework that can
facilitate fine-grained access control and query processing over
encrypted data in the cloud is of great interest. Given the wide
variety of SQL queries and big data, it is always desirable to

construct a comprehensive PPDM framework that is effective
(can support all standard DBMS tasks), efficient, and scalable.

1) Related Work:Several techniques have been proposed
to address access control (e.g., [37]–[41]) and evaluationof
specific queries (e.g., [42]–[49]) over encrypted data. The
idea of utilizing specialized encryption techniques, suchas
order preserving encryption [50], [51], additive homomorphic
encryption [29], and so on, to perform different relationaloper-
ations has been firstly introduced in CryptDB [19]. The same
idea has been extended to support more complex analytical
queries in MONOMI [52]. While such work has established
the architectural foundation for systematic query processing
and access control, those techniques suffer from two major
limitations. The first is that the minimum access control
granularity supported by its encryption based access control
mechanism is the column. Such a granularity is too coarse
to satisfy the requirements of several real-world applications.
The second limitation is the onions of encryption. An onion
is a multiple layers of encryptions. Each layer is applied for
a specific query operation or purpose, and the encryption
layers from the external layer to the most internal layer are
increasingly weaker. It is easy to see that, although onions
offer multiple levels of security, the security decreases over
time when the outer layers are removed. Hence, the real
security level an onion can guarantee is the protection offered
by the inner most encryption. Furthermore, to support diverse
operations, multiple onions need to be generated (e.g., anorder
onion is necessary to support range queries).

2) DBMask: DBMask [53] is a recently proposed sys-
tem overcoming the limitations of CryptDB and supporting
attribute-based fine-grained access control for data on the
cloud. In what follows we present the key elements of its
design and then outline open research directions.

System Architecture. The DBMask system includes four
entities: data owner, data user, proxy, and data server. The
overview of the DBMask architecture and the interactions
among different entities are illustrated in Figure 3. The data
owner uses different secret keys to encrypt different portions of



Fig. 3: The Proposed DBMask Architecture

data, according to the access control policies. The secret keys
are organized in a lattice for efficient management. The data
owner can also build secure indices over the encrypted data to
improve the search performance. The encrypted data together
with their secure indices are uploaded to the data server (e.g.,
a cloud). A data user with authenticated attributes can verify
itself to the proxy. The successful attribute based verification
of the user to the proxy allows the proxy to either derive or
obtain one or multiple secret keys required to encrypt the user
query. Given a plaintext query submitted by the user, the proxy
uses these keys to rewrite the query into an encrypted query,
which can then be executed on the encrypted data in the data
server. The encrypted query results are returned from the data
server to the proxy, which decrypts the results using the secrets
established at the time of verification and forwards them to the
data user. Notice that during the query processing stage, the
data server learns neither the query being executed nor the
result set of the query.

Fine-Grained Access Control. DBMask uses attribute
based access control (ABAC) model [54], [55] which has the
following three characteristics: (i) Users have a set of iden-
tity attributes that describe properties of users; for example,
organizational role(s), seniority, age and so on. (ii) Datais
associated with ABAC policies that specify conditions over
identity attributes. (iii) A user whose identity attributes satisfy
the ABAC policy associated with a data item is allowed to
access the data item.

In DBMask, access can be controlled at different granu-
larity levels such as column level, row level, and cell level.
Each column, row, or cell, depending on the desired level of
access control, has an associated ABAC policy. In the case
of column and cell level control, the policy attachment is

performed by adding an additional column to every column
or cell in the table. In the case of row level access control, the
policy attachment is performed by adding a single additional
column in the table. Upon receiving an SQL query from a
user for a tableT , the proxy needs to determine the ABAC
policies attached toT that are satisfied by the users attributes
and restrict the query to only those columns, rows or cells
depending on the granularity level by adding a predicate to
the user query. For ease of presentation, we focus on row level
access control in order to discuss DBMask’s ABAC model. In
this case, each tuple (row) in a database table is attached an
ABAC policy. Informally an ABAC policy (ACP for short)
over T is defined as a tuple(s, o) where:o denotes a set of
rows inT ands is a Boolean expression over a set of attribute
conditions that must be satisfied in order to accesso. Also, we
observe that grouping users based on the ABAC policies they
satisfy enhances access control enforcement as it providesone
level of indirection. Such a grouping of users allows one to
enforce access control policies on a set of users instead than
on individual users. Moreover, relationships between groups
can be exploited to improve the key management. Considering
the fact that everyACP can be converted into disjunctive
normal form (DNF), we define agroup G as a set of users
which satisfy a specific conjunction of attribute conditions in
an ABAC policy.

The idea of groups is similar to user-role assignment in
role based access control (RBAC) model, but in our approach,
the assignment is performed automatically based on identity
attributes. Given the set of data owner defined ABAC policies,
the following steps are followed to identify the groups:

• Convert each ABACACP into DNF. Note that this
conversion can be done in polynomial time.

• For each distinct disjunctive clause, create a group.



For example, consider the following twoACPs: ACP1 = C1∧

(C2∨C3) and ACP2 = C2 with the attribute conditionsC1, C2

andC3. The ACPs can be rewritten in DNF form as follows:
ACP1 = (C1∧C2)∨(C1∧C3) and ACP2 = C2. In this example,
there are three groupsG1, G2, G3 for the set of users satisfying
the attribute conditionsC1∧C2, C1∧C3, andC2, respectively.

DBMask exploits the hierarchical relationship among
groups in order to support hierarchical key derivation and
improve the performance and efficiency of key management.
We introduce the concept ofGroup Poset as follows to achieve
this objective. A group poset is defined as the partially ordered
set (poset) of groups where the binary relationship is⊆. In the
above example,G1 ⊆ G3 and there is no ordering betweenG1

andG2.

Hierarchical key encryption techniques reduce the num-
ber of keys to be managed. However, a major drawback is
that assigning keys to each node and giving them to users
beforehand makes it difficult to handle dynamics of adding
and revoking users. For example, when a user is revoked, one
needs to update the keys given to other users through private
communication channels. We address this drawback while
utilizing the benefits of the hierarchical model by proposing
a hybrid approach combining broadcast and hierarchical key
management. A broadcast group key management (BGKM)
allows one to efficiently handle group keys when user dynam-
ics change. We utilize a recent expressive scheme called AB-
GKM (attribute based GKM) as the broadcast GKM scheme
[56]. Instead of directly assigning keys to each node in the
hierarchy, we assign a AB-GKM instance to each node and
authorized users can derive the key using the key derivation
algorithm of AB-GKM.

SQL-Aware Comparison. DBMask currently supports
both numerical and keyword comparison and is designed so
that any comparison friendly numerical [57], [58] or keyword
[42], [59], [60] encryption schemes can be utilized to perform
relational operations over encrypted data. We refer to these
schemes as privacy-preserving numerical comparison (PPNC)
and privacy-preserving keyword comparison (PPKC). Both
encryption schemes can be summarized into four algorithms:
Setup, EncVal, GenTrapdoorand Compare, which we use to
perform comparisons over encrypted values in DBMask. The
Setupalgorithm takes as input a set of parametersP and
initializes the underlying encryption scheme. Given a numer-
ical or keyword valuex, the EncVal(x) algorithm produces
an encrypted valueex for x. Given an input (numerical or
keyword) valuet, the GenTrapdooralgorithm produces an
encrypted valueet for t, called the trapdoor. Finally, given
an encrypted valueex and a trapdoor valueet, the Compare
algorithm compares them and outputs the desired result.

DBMask Protocols. DBMask implements several proto-
cols that support four main functions of DBMask:system
initialization, user registration, data encryption and upload,
and data querying and retrieval. Note that, as shown in Figure
3, DBMask consists of four entities: data owner, data user,
proxy, and data server.

During the system initializationphase, the data owner
runs the Setup algorithms of the underlying crypto-
graphic constructs, that is, AB-GKM.Setup, PPNC.Setup and
PPKC.Setup (we use the dot notation to refer to an al-

TABLE I: Sample Patients’ Medical Data

ID Age Diagnosis Groups

1 35 HIV G1

2 30 Cancer G1, G2

3 40 Asthma G2, G3

4 38 Gonorrhea G1

gorithm of a specific cryptographic construct. For example,
AB-GKM.Setup refers to the Setup algorithm of the AB-
GKM scheme). The data owner makes available the public
security parameters to the proxy so that the proxy can generate
trapdoors during data querying and retrieval phase. The data
owner also converts theACPs into DNF and groups users
satisfying the same disjunctive clauses. As mentioned earlier,
these groups are used to construct the Group poset to perform
hierarchical key derivation along with the AB-GKM based key
management.

In the user registrationphase, users first get their identity
attributes certified by a trusted identity provider. These certified
identity attributes are cryptographic commitments that hide
the actual identity attribute value but still bind the valueto
users. Users register their certified identity attributes with the
data owner using the oblivious commitment based envelope
(OCBE) protocol [61]. The data owner generates the secrets
for the identity attributes using the AB-GKM scheme and
gives the encrypted secrets to users. Users can decrypt and
obtain the secrets only if they present valid certified identity
attributes. The data owner maintains a database of user-secret
values. When a user or an identity attribute is revoked, the
corresponding association(s) from the user-secret database is
(are) deleted. The user-secret database is also stored at the
proxy with the secrets encrypted using a password only each
user possesses. Each user has a different password encrypting
her own secrets. Every time the user-secret database changes,
the data owner synchronizes its changes with the proxy.

Since it is difficult to support both fine-grained access con-
trol and comparison under one encryption scheme, in DBMask
each cell in an original table is encrypted twice during thedata
encryption and uploadphase. The first encryption is for fine-
grained access control and the second is for privacy-preserving
matching. Correspondingly, each column in the original table
is expanded to two. We denote the column resulting from
the encryption for fine-grained access control asdata-col, and
the one resulting for the encryption for privacy-preserving
matching asmatch-col.

Let us first discuss the creation of data-col. Given a cell
in the original table, its encryption in the corresponding data-
col is generated by a secret key derived from the AB-GKM
scheme [56] as follows. Consider the row containing the cell
in the original table. Based on theACPs, each row is assigned
one or more group labels. The set of groups decides the
key, under which the cell in the row is encrypted. If two
groups are connected in the group poset, only the label of
less privileged group is assigned to the row. The intuition
behind is that users in the more privileged group can reach
the less privileged group by following the hierarchical relation
in the group poset. After removing the labels of groups with
higher privileges, a row can still be associated with multiple



groups. For each remaining groupGi, a group secret keyki
is generated by executing the AB-GKM.KeyGen algorithm.
In order to avoid multiple encryptions (i.e., one group secret
key for one encryption), the AB-GKM.KeyGen algorithm
(denoting the key generation algorithm of AB-GKM scheme)
is again executed to generate a master group keyk using
the group keyski’s as secret attributes to the algorithm. As
a consequence, if a user belongs to any of the groups assigned
to the row, the user can access the row by executing the
key derivation algorithm of AB-GKM algorithm twice. The
first execution generates the group key and second derives the
master key.

For example, consider the sample patient’s medical data
given in Table I. Each groupGi is assigned a uniqueki.
Rows 1 and 4 are encrypted using keyk1. Since rows 2 and
3 have multiple groups, in order to avoid multiple encryp-
tions/decryptions, a master key is assigned using AB-GKM
by considering the group keys as input secrets to the AB-
GKM.KeyGen algorithm. Row 2 is encrypted using keyk12
generated from the AB-GKM instance havingk1 and k2 as
input secrets. Similarly, row 3 is encrypted with keyk23.

Table II shows the final encrypted data with both encrypted
data-col’s and comparison friendly match-col’s that need to be
outsourced to the cloud, wherecompn andcompk refer to the
encryption functions under PPNC and PPKC, respectively.

Once the encrypted data is outsourced to the cloud server,
the next phase isdata querying and retrieval. DBMask is
designed to process a query over encrypted data using a
filtering-refiningprocedure. Initially, an authorized user sends a
plaintext SQL query to the proxy, as if the outsourced database
were unencrypted. In other words, encryption and decryption
of the data in the database is transparent to the users. The
proxy parses the query and generates an abstract syntax tree
of the query as follows. The query is first filtered by removing
clauses, such asORDER BY and aggregate functions, that
cannot be computed on the server. Then the proxy adds the
columns referenced by filtered clauses or aggregate functions
to the projections of the filtered query. The query is then rewrit-
ten for the cloud by which each column to be included in the
query result (i.e., column following theSELECT keyword in
the query) is replaced by its corresponding “data-col” and each
predicate in theWHERE clause is replaced with a user defined
function (UDF). For each numerical matching predicate, the
UDF includes the trapdoor value computed by the proxy using
PPNC.GenTrapdoor algorithm and invokes the PPNC.Compare
algorithm. Similarly, for each keyword matching predicate, the
UDF includes the trapdoor value computed by the proxy using
PPKC.GenTrapdoor algorithm and invokes the PPKC.Compare
algorithm. Also, a predicate is added to theWHERE clause to
determine the group(s) of the user requesting the query before
the rewritten query is sent to the cloud server.

Upon receiving the rewritten query, the cloud executes it
over the encrypted database and filters the tuples that do not
satisfy the predicates in the query before sending back the
encrypted result set to the proxy. The proxy generates the
necessary keys for decrypting the result set using the AB-
GKM.KeyDer algorithm with the public information and the
user secrets as well as the hierarchical key derivation. If the
proxy has removed some clauses (e.g.,ORDER BY) and/or
aggregate functions (e.g.,SUM) from the original query in the

query filtering step, it populates an in-memory database with
the decrypted result set and refines the query result according
to the constraints in the clauses and/or aggregate functions
by running the original query. If no term from the query is
removed, the decrypted result set is the final result and the
proxy sends the final plaintext result back to the user.

3) Research Directions:While DBMask is an effective
initial solution and provides a good starting point towards
developing a comprehensive solution to PPDM, several re-
search challenges need to be addressed which we highlight
them below.

Support for Additional Relational Operations. In our
initial solution to DBMask (as discussed above), the cloud can
perform only comparison operations over encrypted data (both
numerical and textual data) and the rest of the SQL operations
are performed by the proxy. That is, the query execution is a
two-step approach in DBMask. The ideal scenario for DBMask
would be to execute all the SQL query operations by the cloud
itself. This is especially beneficial when the proxy do not have
enough resources. Also, if the total computations of a SQL
query are performed by the cloud (which is assumed to have
better resources than the proxy), then the query-response time
is expected to improve. However, achieving the ideal scenario
under DBMask is challenging. In our future work, we plan
to extend DBMask to support additional relational operations,
such as RANGE and JOIN queries, on the cloud side.

Efficient Basic Cryptographic Primitives for PPDM.
While the existing cryptographic primitives (e.g., PPNC and
PPKC) are useful for performing certain relational operations
over encrypted data, it is always desirable to develop more
efficient solutions for these operations in order to handle
big data. For this purpose, it is important to first identify
all the cryptographic primitives required for evaluating SQL
queries and then systematically investigate them to improve
their efficiency either through algorithmic optimizationsof the
existing solutions or by proposing new solutions for them.

Privacy Enhancements. Though the initial design of
DBMask is such that the contents of the database is hidden
from the cloud server by encryption, DBMask stores group
information in plaintext format and thus leaks data access
patterns [17], [35], [62], [63] to the cloud. Therefore, it is
critical to investigate techniques to hide such information and
incorporate such techniques into DBMask without affectingthe
other functions offered by DBMask. Also privacy issues related
to information leakage to the proxy must be investigated in
order to develop an enhanced privacy-aware DBMask system
that can protect the confidentiality of the outsourced database
and the user’s query from the proxy, the server and any other
adversary at all times.

Efficient and Scalable Solutions for PPDM.The specific
research issues can be better explained with the help of the
following example. Suppose the cloud server has to perform
comparison operation on 1 Million encrypted data records
(stored in the cloud) using an encrypted search input. In such
a case, we need to (i) develop an efficient secure comparison
protocol and (ii) devise an efficient plan to divide the 1 Million
secure comparison operations into independent sub-tasks and
run them in parallel (on multiple nodes) to obtain best perfor-
mance. Also, due to the distributed nature of data processing,



TABLE II: Encrypted Patients’ Medical Data Outsourced to the Cloud Server

ID-enc ID-com Age-enc Age-com Diag-enc Diag-com Groups

Ek1
(1) compn(1) Ek1

(35) compn(35) Ek1
(HIV) compk(HIV) G1

Ek12
(2) compn(2) Ek12

(30) compn(30) Ek12
(Cancer) compk(Cancer) G1, G2

Ek23
(3) compn(3) Ek23

(40) compn(40) Ek23
(Asthma) compk(Asthma) G2, G3

Ek1
(4) compn(4) Ek1

(38) compn(38) Ek1
(Gonorrhea) compk(Gonorrhea) G1

we need to minimize the underlying communication costs and
network delays. It is thus important to develop efficient solu-
tions to the basic cryptographic primitives (mentioned above)
and integrate them in the DBMask architecture. Specifically,
it is critical to focus on developing parallel algorithms for
each basic primitive that allows one to exploit thread-level
parallelism at each node and on how the cloud server can
efficiently decompose a given query into independent sub-
queries and run them on multiple nodes.

Support for other Database Functionalities.Apart from
the standard SELECT queries, a comprehensive DBMask so-
lution should also support other common functionalities (e.g.,
INSERT and UPDATE) of database management systems.
However, while incorporating such functionalities into DB-
Mask, we need to ensure that access patterns to data [35] are
protected properly. For example, if an authorized user wants
to update the contents of a particular data record stored in
the cloud, then both the contents of the data record and the
information related to which data record is being updated have
to be protected from the cloud.

C. Privacy-Preserving Data Analytics (PPDA)

In our knowledge-driven world, it is typical that organiza-
tions want to extract useful information by analyzing theirlarge
volumes of data. Also, collaborative data analytical models
need to be used when data comes from multiple parties.
Specifically, consider a group of organizations, each holding
a private dataset, who want to perform certain analytical task
on their combined data for mutual benefit or other purposes
(e.g., in public or government interest). E.g., in a collaborative
research effort, hospitals may want to know the age groups that
are highly prone for different diseases by applying classifica-
tion on their combined patients’ medical data. On one hand,
organizations may not have enough resources (e.g., technical
expertise, computational power and storage) to locally perform
data analytical tasks on big data. Also, in the case of collabo-
rative setting, since an organization’s data are its most valuable
asset and due to various privacy concerns, it may not be willing
to share its data with others. To overcome these issues, the
problem of privacy-preserving data analytics (PPDA) in the
cloud has gained significant attention in recent years, where
users can outsource their encrypted data to a cloud and the
cloud can perform the analytical task over encrypted data in
a privacy-preserving manner. Given the wide variety of data
analytical tasks, developing a comprehensive PPDA framework
that is effective, efficient, and scalable remains a topic ofgreat
interest for big data applications.

1) Related Work:There has been significant amount of
work on privacy-preserving data mining (e.g., [27], [64]–[70])

Fig. 4: The Proposed Collaborative PPDA Architecture

by which multiple parties can collaboratively compute a data
mining task without revealing one’s private data to others.
Unfortunately, there has been little work on privacy-preserving
data analytics in the cloud. More specifically, existing ap-
proaches along this direction are either greatly limited to
specific tasks, such ask nearest neighbors [31], [71], clustering
[72], [73], classification [32] and association rule mining[22],
[74]–[76], or mostly focused on analyzing the trade-offs among
different metrics (e.g., [77], [78]). To our knowledge, none of
the existing work address the PPDA problem effectively and
the associated scalability issues for big data applications.

2) Collaborative PPDA - An Initial Approach:We plan to
develop a comprehensive PPDA framework that can efficiently
solve any given data analytical task in a privacy-preserving
manner under the cloud environment. As noted in Section II,
we consider the PPDA problem under two different settings: (i)
single-user and (ii) multi-user. For succinctness, we consider
the single-user setting and describe our proposed framework
and initial solution approach for PPDA.

System Architecture. In our initial research, we consider
the data-analytics-as-a-service scenario in cloud computing
with n(≥ 3) multiple servers, as shown in Figure 4, where
there exist three types of participants, each playing a different
role, as follows: (i) a group of cloud data analytical servers
cooperating to provide privacy-preserving data-analytics-as-a-
service; (ii) a cloud database server keeping the user data in a
database and playing a role of the gateway between the user
and the cloud data analytical servers; and (iii) a cloud user
storing data in the cloud database server and outsourcing data
analytical task to the multiple cloud data analytical servers.

Technical Approach. We model the privacy-preserving
data analytical process in the above system setting into the



following three phases:
• Phase 1:The cloud userC transforms his original data

with a secret informationsk (known to the cloud user
only) and uploads the transformed data to the cloud
database server DB. With the secret informationsk,
the transformed data can be restored to the original
data. Without the secret information, it is hard to
decode the transformed data stored by the cloud user.

• Phase 2:To outsource an analytical task to the cloud,
the cloud userC divides his secret information inton
pieces and distributes them ton cloud data analytical
servers, respectively. As long as not all servers collude
to recover the transformed data, the user data remains
private. Anyt (denoting the threshold) out ofn servers
cooperate to mine the transformed data stored by the
user in the database server DB and output mined
patterns (which are still transformed) to the user.

• Phase 3: Finally, the cloud user C recovers the
returned patterns with his secret informationsk into
plain patterns in the end.

In our model, we assume that some analytical servers in the
cloud are trusted not to collude with other servers to recover
the transformed data. This assumption is reasonable and has
been commonly used in electronic election protocols, such
as [79], [80], which even requires higher user privacy. Based
on the above model, we have achieved some initial research
outcomes. One of the initial outcomes is privacy-preserving
association rule mining in cloud computing (wheret = n)
[81], which can be briefly described as follows:

• Initialization. The cloud userC generates his pub-
lic/private key pair(pk, sk) at first. Next, he splits the
private keysk into n sub-keyssk1, . . . , skn such that
sk = sk1 + · · · + skn and distributessk1, . . . , skn
to n cloud servers, respectively, through the secure
channels. We assume that at least one out of then
servers is trusted not to collude with other servers.
Then he encrypts his data with the ElGamal encryption
scheme [82] and the public keypk and uploads the
encrypted data to the cloud database server. After that,
he encrypts the minimum supports and broadcasts it
to n cloud servers.

• Frequent Itemset Mining. On the basis of then sub-
keys, then cloud data mining servers cooperate to
anonymize the encrypted data of the user (stored in
the database server) by adding encryption of fake data
and then find out the frequent encrypted itemsets with
the Aprori algorithm [83] on the basis of the encrypted
minimum supports. The encrypted frequent itemsets
are then returned to the user.

• Frequent Itemset Retrieval. Finally, the user de-
crypts the encrypted frequent itemsets with the private
key sk.

Besides the Aprori algorithm, our frequent itemset mining
is built on two privacy-preserving techniques - the Plaintext
Equality Test (PET) [84] and the Conditional Gate (CG) [85]–
[87]. With the PET, then analytical servers can cooperate to
determine whether two ciphertexts are the encryption of the
same item without having to decrypt the two ciphertexts. By
the CG, then analytical servers can cooperate to effectively

and efficiently compare two numbers given their encryptions
without need for decryption.

Unlike the existing solutions [22], [74]–[76], the fake data
in our solution is added and removed by then servers instead
than by the user. The main advantage of our solution is
removing the requirement for the cloud user to store data and
add fake data locally. What the cloud user is required to do
is encrypting its data before uploading it to the cloud and
decrypting the mined association rules received from the cloud.
The user may upload his data to the cloud in a real time way
in the case that the user does not have local data storage.

On the basis of the existing data analytical algorithms,
our initial approach makes use of the several cryptographic
primitives, apart from the privacy-preserving techniquesPET
and CG, to protect the confidentiality of the cloud user’s data
when multiple data analytical servers cooperate to mine the
data of the cloud user. The above ideas can be further extended
to other PPDA tasks, such as clustering and classification, and
can also be enhanced to design a PPDA framework for the
multi-user setting.

3) Research Directions:In what follows, we will point out
several research challenges associated with PPDA by taking
our initial approach for privacy-preserving association rule
mining as a baseline. In order to develop a comprehensive
PPDA framework for big data applications, we need to address
the following research challenges.

Efficient Basic Cryptographic Primitives for PPDA. It is
critical to investigate the set of basic cryptographic primitives
(e.g., PET, CG and secure division) needed for the PPDA
framework and propose efficient solutions to each one of them.
Here one can utilize the ideas mentioned in Section III-A3.

Develop a Suite of PPDA Protocols.We emphasize that
it is critical to construct a suite of privacy-preserving data
analytical algorithms over encrypted data in the cloud. In our
initial research [81], we have successfully constructed three
solutions for privacy-preserving association rule miningfor
cloud data. However, different data analytical tasks will re-
quire different privacy-preserving solutions. Nonetheless, most
of these tasks share some common cryptographic primitives
which have to be identified first and then efficient solutions
need to be designed for each one of them. One can utilize
the primitives as well as strategies from our initial solution to
solve other privacy-preserving data analytical problems.Very
recently, we have proposed an alternative approach to solvethe
k-nearest neighbor classification problem over encrypted data
under the single-user setting [32]. While our solutions [32],
[81] act as a good starting point, we believe that more research
need to be done to develop new privacy-preserving algorithms
for clustering, classification, association rule learning, anomaly
detection, regression, summarization, future learning and graph
analysis problems, under both the single-user and multi-user
settings in the cloud environment.

Implementation and Performance Evaluation. To evalu-
ate the efficiency and scalability of PPDA solutions, one hasto
develop prototype implementations of privacy-preservingdata-
analytics-as-a-service as a platform, composed of three types of
software - the user software, the database server software and
the data analytics server software. In particular to the database
and data analytics servers software, one has to implement



the underlying parallel computations using multi-threading
(for parallel computations on a server) and MapReduce (for
parallel computations on multiple servers) techniques. Besides
performing theoretic computation and communication analysis,
one has to execute the prototypes on real big datasets [88] to
see the actual running time.

IV. CONCLUSIONS ANDFUTURE WORK

Big data deals with data collection from multiple sources,
probably containing sensitive or personally identifiable infor-
mation (PII). Cloud computing is naturally the first choice
to store and analyze big data. However, for various privacy
reasons, users typically encrypt their data before storingit on
the cloud. This raises an important question: “how can the
cloud manage big data in an effective and efficient manner?”
The development of privacy-preserving techniques, tools,and
systems over encrypted data in cloud has gained tremendous
interest in recent years.

In this paper, we surveyed our approaches towards ad-
dressing two specific problems: (i) privacy-preserving data
management (PPDM) and (ii) privacy-preserving data analytics
(PPDA). Also, we pointed out various open issues that still
need to be addressed to develop comprehensive solutions to
PPDM and PPDA. Addressing these issues will be the primary
focus of our future work. Though in this paper we focus on
encrypted data, other data transformation techniques suchas
anonymization can also be considered. We will investigate such
alternative techniques and analyze their applicability toPPDM
and PPDA.

ACKNOWLEDGMENTS

The work reported in this paper has been partially sup-
ported by the Purdue Cyber Center and by the National Science
Foundation under grants CNS-1111512 and CNS-1016722.

REFERENCES

[1] IBM, “Big data at the speed of business,” http://www-01.ibm.com/
software/data/bigdata/what-is-big-data.html.

[2] J. F. Gantz and D. Reinsel, “The Digital Universe in 2020:big
data, bigger digital shadows, and biggest growth in the far east,”
IDC, December 2012, http://www.emc.com/collateral/analyst-reports/
idc-the-digital-universe-in-2020.pdf.

[3] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”
IEEE TKDE, vol. 26, no. 1, pp. 97–107, Jan 2014.

[4] W. Tan, M. Blake, I. Saleh, and S. Dustdar, “Social-network-sourced
big data analytics,”IEEE Internet Computing, vol. 17, no. 5, pp. 62–69,
Sept 2013.

[5] J. Sun and C. K. Reddy, “Big data analytics for healthcare,” in ACM
SIGKDD, 2013, pp. 1525–1525.

[6] B. Warner, “‘Big Data’ researchers turn to google
to beat the markets,” Bloomberg Businessweek, April,
2013, http://www.businessweek.com/articles/2013-04-25/
big-data-researchers-turn-to-google-to-beat-the-markets.

[7] H. Khatri, “Trends in manufacturing operations: Leveraging big data
across the value chain,” Oracle, January, 2013, http://www.oracle.com/
us/corporate/profit/archives/opinion/011813-hkhatri-1899121.html.

[8] Y. Lee and Y. Lee, “Toward scalable internet traffic measurement and
analysis with hadoop,”SIGCOMM Computer Communication Review,
vol. 43, no. 1, pp. 5–13, Jan. 2013.

[9] IBM, “Security intelligence with big data,” http://www-03.ibm.com/
security/solution/intelligence-big-data/.

[10] Brown University, “Bigdata: analytical approaches tomassive data com-
putation with applications to genomics,” http://bigdata.cs.brown.edu/.

[11] Lawrence Berkeley National Laboratory, “Big data hitsbeamline,” http:
//crd.lbl.gov/news-and-publications/news/2013/big-data-hits-beamline/.

[12] T. Kalil, “Big data is a big deal,” White House, 2012, http://www.
whitehouse.gov/blog/2012/03/29/big-data-big-deal.

[13] E. Bertino, “Security with privacy - opportunities andchallenges,” Panel
Position Paper, Proceedings of COMPSAC, 2014.

[14] E. Bertino, “Data protection from insider threats,” Synthesis Lectures
on Data Management, Morgan & Claypool Publishers, 2012.

[15] Executive Office of the President, “BIG DATA: SEIZING OPPOR-
TUNITIES, PRESERVING VALUES,” US White House, Washington,
May 2014, http://www.whitehouse.gov/sites/default/files/docs/bigdata
privacy report may 1 2014.pdf.

[16] R. Sion, “Towards secure data outsourcing,”Handbook of Database
Security, pp. 137–161, 2008.

[17] P. Williams, R. Sion, and B. Carbunar, “Building castlesout of mud:
practical access pattern privacy and correctness on untrusted storage,”
in CCS. ACM, 2008, pp. 139–148.

[18] H. Hu, J. Xu, C. Ren, and B. Choi, “Processing private queries over
untrusted data cloud through privacy homomorphism,” inIEEE ICDE,
2011, pp. 601–612.

[19] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: protecting confidentiality with encrypted queryprocessing,”
in ACM SOSP, 2011, pp. 85–100.

[20] A. Sahai, “Computing on encrypted data,”Information Systems Security,
pp. 148–153, 2008.

[21] M. Kuzu, M. S. Islam, and M. Kantarcioglu, “Efficient similarity search
over encrypted data,” inIEEE ICDE, 2012, pp. 1156–1167.

[22] F. Giannotti, L. Lakshmanan, A. Monreale, D. Pedreschi,and H. Wang,
“Privacy-preserving mining of association rules from outsourced trans-
action databases,”IEEE Systems Journal, vol. 7, no. 3, pp. 385–395,
Sept 2013.

[23] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,”Communications of the ACM, vol. 51, no. 1, pp. 107–
113, Jan. 2008.

[24] C. Gentry, “Fully homomorphic encryption using ideal lattices,” inACM
STOC, 2009, pp. 169–178.

[25] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” inEUROCRYPT. Springer, 2011, pp. 129–148.

[26] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” inACM SIGMOD, 2004, pp. 563–574.

[27] P. Bunn and R. Ostrovsky, “Secure two-party k-means clustering,” in
ACM CCS, 2007, pp. 486–497.

[28] I. F. Blake and V. Kolesnikov, “One-round secure comparison of
integers,”Journal Mathematical Cryptology, vol. 3, no. 1, pp. 37–68,
2009.

[29] P. Paillier, “Public key cryptosystems based on composite degree
residuosity classes,” inEurocrypt. Springer, 1999, pp. 223–238.

[30] B. K. Samanthula and W. Jiang, “An efficient and probabilistic secure
bit-decomposition,” inACM ASIACCS, 2013, pp. 541–546.

[31] Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest
neighbor query over encrypted data in outsourced environments,” in
IEEE ICDE, 2014, pp. 664–675.

[32] B. K. Samanthula, Y. Elmehdwi, and W. Jiang, “k-nearest neighbor
classification over semantically secure encrypted relational data,” IEEE
Transactions on Knowledge and Data Engineering (TKDE), To appear,
http://arxiv.org/abs/1403.5001.

[33] M. R. Clarkson, S. Chong, and A. Myers, “Civitas: Towarda secure
voting system,” inIEEE Security and Privacy, may 2008, pp. 354 –368.

[34] C. Cachin, “Efficient private bidding and auctions withan oblivious
third party,” in ACM CCS. ACM Press, 1999, pp. 120–127.

[35] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in
NDSS, 2012.

[36] O. Goldreich,The Foundations of Cryptography. Cambridge University
Press, 2004, vol. 2, ch. General Cryptographic Protocols, pp. 599–746.



[37] S. Coull, M. Green, and S. Hohenberger, “Controlling access to an
oblivious database using stateful anonymous credentials,”in PKC.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 501–520.

[38] J. Camenisch, M. Dubovitskaya, and G. Neven, “Oblivioustransfer with
access control,” inCCS. ACM, 2009, pp. 131–140.

[39] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” inIEEE Security and Privacy, 2007, pp. 321–334.

[40] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing
with attribute revocation,” inASIACCS. ACM, 2010, pp. 261–270.

[41] B. K. Samanthula, Y. Elmehdwi, G. Howser, and S. Madria, “Asecure
data sharing and query processing framework via federation of cloud
computing,” Information Systems, Elsevier, 2013.

[42] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” inIEEE Security and Privacy, 2000, pp. 44–55.

[43] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano, “Public-key
encryption with keyword search,” inEUROCRYPT, 2004.
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