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Abstract—
It is common practice for mobile devices to offload compu-

tationally heavy tasks off to a cloud, which has greater com-
putational resources. In this paper, we consider an environment
in which computational offloading is made among collaborative
mobile devices. We call such an environment a mobile device cloud
(MDC). We highlight the gain in computation time and energy
consumption that can be achieved by offloading tasks with given
characteristics to nearby devices inside a mobile device cloud. We
adopt an experimental approach to measure power consumption
in mobile to mobile opportunistic offloading using MDCs. Then,
we adopt a data driven approach to evaluate and assess various
offloading algorithms in MDCs. We believe that MDCs are
not replacing the Cloud, however they present an offloading
opportunity for a set of tasks with given characteristics or simply
a solution when the cloud is unacceptable or costly. The promise
of this approach shown by evaluating these algorithms using
real datasets that include contact traces and social information
of mobile devices in a conference setting.

I. INTRODUCTION

Mobile devices are increasingly being a mandatory gad-
get in our modern life. We rely on these tiny devices for
many services that go beyond simple communication. These
services require complex processing power and heavy energy
consumption such in pattern recognition, reality augmentation,
collaborative applications for planning and coordination. These
mobile services became an indispensable part of everyday life.

Mobile users tend to access theses services via distant
cloud, which has greater computational resources. However,
this type of task offloading is costly due to high energy
costs and high latency introduced by wireless intermittent
communication between mobile devices and distant clouds.
Smaller clouds, called ‘Cloudlets’ were proposed to make
mobile task offloading less expensive [1]. Cloudlets are placed
closer to users (e.g., users A-D are connected to the cloudlet in
Fig. 1). Bring computation resources closer to users motivates
the idea of offloading tasks to nearby devices Fig. 1 shows
a scenario where mobile devices, e.g., nodes E-G, may not
reach cloud and cloudlets resources. They are, however, able
to communicate/cooperate with each others to run tasks that
transcend an individual devices capabilities.

In this paper, we consider environments in which computa-
tional offloading is performed among a set of collaborative
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Fig. 1. Mobile-to-Mobile offloading: Motivational scenario

mobile devices that form what we call a Mobile Device
Cloud (MDC) [2]. In addition to the trends mentioned earlier,
MDCs are becoming a reality with the increase in average
mobile devices per user or household [3] [4]. We propose
leveraging these nearby computational resources, by offloading
appropriate tasks to MDCs, in order to save execution time
and consumed energy. Mobile applications consist of many
tasks with varying data and computational resources. We call
the task initiator an “offloader” and the task executor an
“offloadee”. We are interested in measuring time and energy
tradeoffs in task offloading decisions to different offloadees,
along with addressing specific MDC related challenges. Our
work is comprised of two main contributions. While we
believe that MDCs are not replacing the “Cloud”, they present
a “good” solution for mobile devices (i.e., offloader nodes) to
migrate a set of tasks with given characteristics. Demanding
tasks requiring high resources or centralized view/oracle can
not be offloaded using MDCs. In addition MDC can be
considered as a solution when the cloud is unacceptable or
costly.

Our first contribution is highlighting and quantifying the
benefits of collaborative mobile to mobile task offloading. We
adopt an experimental approach that performs time and power
measurements for MDC offloading. We also perform a data
driven experiment consisting of an MDC network formed with
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Fig. 2. Collaborative Mobile-to-Mobile opportunistic offloading architecture:
a per architecture implemented on the “offloder” and the “offlodee” devices

up to 70 offlodee nodes.
Our second contribution consists of leveraging social infor-

mation shared by devices’ owners to select most appropriate
offlodee nodes for a given task. We exploit friendship rela-
tionships and common interests as a mean to identify long and
stable connection between two devices. We evaluate our social
method using the Sigcomm09 dataset that contains real contact
mobility traces and social information for the conference
attendees. Our results exhibit the importance of choosing the
suitable subset of offloadee nodes and the potential promise
gained from leveraging social information.

II. MOBILE-TO-MOBILE OPPORTUNISTIC OFFLOADING
ARCHITECTURE

In this section, we propose a novel peer-to-peer architecture
for mobile data and computation offloading which we call a
Mobile Device Cloud (MDC). Our MDC architecture abstracts
all network entities into a single peer architecture as shown in
Fig. 2. This architecture provides mechanisms to answer two
main questions: given a task T , (i) when does it make sense
to offload?, and (ii) if offloading is required, who to offload
to?.

Our system architecture, illustrated in Fig. 2, is designed to
accommodate data and computation offloading over network
connection disruption. Each mobile opportunistic peer consists
of a task manager, task offloader, task forwarder, a set of
workers, a privacy and security check and a set of databases.

The task manager is responsible of receiving jobs and
scheduling the tasks belonging to each job. It maintains the
status of each task and job and initiates requests to the
offloader to run a task or to the failure recovery engine to
re-assign a delayed task. Upon receiving a task job from the
application (i.e., step 0) or receiving an existing task from a
neighboring peer throughout the forwarding engine (i.e., step
5), the task manager initiates a task status locally. It therefore
assign a task id and stores its status and characteristics. Each
task can therefore be assigned to one of the existing local
worker (i.e., 6), or sent to a remote peer workers in the
network.

The offloader is key core of our collaborative Mobile-
to-Mobile opportunistic offloading architecture. It decides

whether and what computation to migrate. First it interacts
with the privacy and security engine in order to check if the
task T is eligible for offloading or not (i.e., step 2). It runs an
objective function that compares running the task T locally or
migrating it to k neighboring devices with minimum resource
capabilities

Rmin = {Emin, Cmin, Smin}

within δt, where Emin, Cmin, and Smin represent respectively
the minimum expected energy, computation and storage capa-
bilities on the neighboring opportunistic peer. If a neighboring
device u satisfies such requirement, it will then be considered
as a potential offloaded, otherwise it gets ignored. If the
requirements are satisfied, Rmin will therefore be sent to the
forwarder which will be checking if it can satisfy the requested
conditions within the δt deadline. Otherwise, the forwarder
will send back a summary of the number k′ of neighboring
devices and their capabilities. The offloader is then making
a final decision and sends back to the forwarder whether T
will be running on one of the local (i.e., step 6) or the distant
workers (i.e., the task is ready to migrate).

The forwarder is also responsible of updating the databases
with the available connections to the neighboring devices and
their capabilities. Upon receiving an order to migrate the task
to distant devices, the forwarder compares k and k′ and select
the most suitable devices to run the task T within the given
time and resource constraints. It uses stored information about
historical contacts summary and social information to infer the
expected connection and inter-connection duration between
neighboring devices. The forwarder is also receiving tasks
from a neighboring forwarder engine. In this case it forwards
the task to the manager and then to the workers and sends back
the results to the neighboring forwarder peer who initiates the
task.

In the rest of this paper, we will focus mainly on the task
offloader engine. We believe that offloading task to the most
appropriate devices helps reducing the total execution time as
well as the total energy consumption.

III. MOBILE OFFLOADING EVALUATION

We define mobile offloading as migrating data and/or
computation to a more suitable computation machine (peer).
It involves making a decision regarding whether and what
computation to migrate. Our goal is mainly to: (i) identify
and quantify the potential gain of migrating tasks to distant
collaborative mobile devices as opposed to run them locally
(i.e., at the initiator device), and (ii) identify under which
circumstances migrating is “advantageous”.

In our evaluation, we consider two main metrics that may
impact such decision (i) improving response time require-
ments, and (ii) saving energy. We have adopted two evaluation
approaches: experimental and data-driven approaches.

A. Experimental Approach

First we run a set of preliminary experiments to quantify
the time and energy required upon sending, receiving, and



(a) Mobile-to-Mobile offload-
ing android application [5]

(b) Energy measurement cir-
cuit

Fig. 3. Our experimental setup
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Fig. 4. Power measurement upon performing task offloading using a Samsung
Galaxy S2

running tasks on a distant collaborative mobile device. Our
experimental platform consists of two mobile devices run-
ning an android client application (Fig. 3(a)) and an energy
measurement circuit as shown in Fig. 3(b). Details on our
experimental platform can be found in [5].

Fig. 4 plots different energy measurements while per-
forming wireless transfers using Bluetooth (Bt) between two
Samsung SII devices. We measured different states of both
WiFi and Bluetooth interfaces. We also perform sending and
receiving messages of a fixed data using Bluetooth, we show
that sending data costs 10% to 25% more energy than receiving
data independently of the wireless communication used.

B. Data Driven Approach

We consider a collaborative mobile opportunistic networks
where nodes are intermittently connected via a new com-
munication environment characterized by a variety of new
challenges such as mobility, disconnections, and energy con-
straints. We perform simulation based on real mobility traces
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Fig. 5. Offloading tasks to other MDC devices without replication using the
Cambridge trace

and the power measurements shown in the previous section as
well in [6].

1) Dataset & Methodology: We perform a data driven sim-
ulation of an opportunistic network using the One simulator1.
Node mobility is guided by two experimental mobility traces
Cambridge and Sigcomm092. We translate the proximity based
traces into movement traces where each node gets x, y, z
coordinates at each time stamp. We fix the network area to
150m × 150m which represents approximatively the area of
the Cambridge lab.

We assume that an offloader device u initiates a task Tti for
offloading at every time ti = ti−1+500s. We assume that the
offloader device has successfully partitioned the computational
task into subtasks. Our offloading scheme works as follow:
Whenever a given node, u, comes in contact with another
MDC node v, it decides to offload a set of subtasks to v.
We consider a synthetic workload composed of a task taking
a certain amount of time to complete, TC . When the task is
divided into n subtask, each subtask takes TC/n to complete.
We assume that the task has a fixed data size of 1MB.
We consider 4 random offloader nodes and we repeat each
experiment 4 times. Our data results represent an average of
these set of runs.

The Cambridge and the sigcomm09 datasets consists respec-
tively of 62 and 76 nodes. Both datasets include Bluetouth
contact logs between participant nodes with a granularity
of 120s. The sigcomm09 contains also social relationships
between the participants including friendships and interests.
While the Cambridge trace uses iMotes carried by participants
to collect proximity data, sigcomm09 uses a MobiClique
application that logs proximity data as well as building and
maintaining a social graph connecting all participants. In our
experiment, we have processed the traces by removing the
period of inactivity which corresponds to nighttime (i.e., from
08:00 to 20:00).

We implement a greedy forwarding algorithm that consists

1netlab.tkk.fi/tutkimus/dtn/theone/
2crawdad.cs.dartmouth.edu
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Fig. 6. Impact of task replication on execution time using the Cambridge trace

of sending the first subtask to the first encountered offloadee
node, then the second subtask, and so on. Upon receiving a
result for a given subtask the offloader node will remove such
subtask from the pool.

2) Offloading Without Task Replication: In this section, we
consider mobile offloading of a given task without replications.
We therefore test the ability of an offloader node to migrate a
task and wait for the results from a single remote node (i.e.,
offloadee). Without replication, the connection between the
two nodes can potentially fail (e.g., , intermittent connectivity,
node failure, network failure). Failure cause a huge delay and
therefore considerable degradation in offloading performance.

Fig. 5 shows the total execution time in function of the
number of substasks of a given task T where TC = 50, 100.
We show that the delay increases with the number of subtasks
and then stabilizes for a number of subtask greater than 5.
Delay is mainly caused by opportunistic communication where
a given node waits to meet an offloadee and then waits again
to get the result from the selected offloadee. Migrating tasks
to other MDC devices improves the performance compared
to local execution. For example, for T C = 200 and number
of subtasks equal to 3 the execution time passes from 200s to
about 140s, with a reduction of 30% with a speed up of 1,4. In
addition, we show that when the task requires execution time
increases the probability to loose connectivity between the
two encountered nodes increases which introduces additional

waiting delay.
3) Impact Of Task Replication on Execution Time: We

implement a replication technique that consists of replicating
the subtasks that exist in the offloader’s pool. Once a sub-
task terminates, all replicas in the pool are removes. Fig. 6
shows the impact of the replication on the execution time
for TC = 50, 1000s. First we show that replication improves
performance considerably with up to 4× speedup. This means
that 2 replicas and number of 3 subtasks works at its best
and that increasing the number of subtasks or the replication
factor has no additional evident effect. The distribution of task
execution time in both scenarios shows that some task can take
very large delay which is mainly cause by wireless distribution
connection between the offloader and its offloadees. Execution
times range from 2000s to only 15s. However, we see that only
5% to 10% of tasks were executed in more that 100s.

4) Impact Of Task Replication On Energy Consumption:
We measure the energy consumed at the offloader node which
consists mainly of data transmission, local task execution and
Bluetooth scanning power consumption. Fig. 7 shows the
energy consumption for the case of TC = 50s. We show that
offloading helps reducing the energy consumption by up to
50% compared to local execution. Note that we consider only
the offloader energy consumption as we want to migrate tasks
in order to save energy and increase a lifetime of a particular
node. Overall energy consumption measured for both offloader



and offloadees is higher that local execution.
5) Leveraging Social Information In Opportunistic For-

warding: So far, we have been offloading task using a greedy
technique based on a first come first served approach. Next, we
perform an approach to the use of social interaction as a means
to guide computational offloading in an opportunistic network.
It has been shown that that social interaction information
can be used to enable and enhance node cooperation is
fundamental for the message delivery process[7], [8], [9].
We investigate identifying stable and durable connections to
other devices based on social information. We do not consider,
however, device capabilities and device remaining energies in
our selection process. This will be considered in future work.

We propose a simple social based offloading algorithms that
leverage social information such as friendship and common
interests in order to identify and therefore select the most
suitable neighboring offloadee nodes. Our algorithm performs
as follow: whenever the offloader node u encounters another
node v it decides to offload a given subtask if and only if: (i)
v is a friend of u, or (ii) k friend nodes already received
subtasks, where k > 0. Our algorithm prioritizes offlodee
friends because they tend to stay closer to the offloader which
may reduce connection lost.

We plot, in Fig. 8, the execution time of tasks with com-
plexity TC = 100, and 200 while replication factor is fixed
to 4 replicas per task. We compare our social technique to
the greedy algorithm presented earlier. We show that social
tends to improve slightly the performance and reduces delay
by up to 10s. While this improvement is not significant but we
believe that it is promising. Investigating more social futility
function may provide even better performance by making the
execution time distribution curves, shown if Fig. 6, more flat.
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IV. RELATED WORK

Leveraging mobile networking and cloud computing at-
tracts many researchers nowadays [10]. Recently, CloneCloud
presents a solution which decides whether to execute a task
on a remote cloud service versus executing it locally based
on static analysis and dynamic profiling information of a
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task [11]. Similarly, MAUI investigates the energy consump-
tion challenge when offloading computationally heavy tasks
to a cloud rather than executing locally [12]. MAUI relies on
developer effort to convert mobile applications to support such
decision making, and secondly, it only considers the possibility
of offloading to different types of infrastructures.

These techniques provide task offloading mechanisms to
a distant or nearby could, and does not investigate task
offloading using other wireless infrastructures. Cirrus [13]
proposes a first step towards defining all possible task of-
floading opportunities by proposing three different scenarios.
These scenarios include offloading to (1) a cloud, (2) a nearby
cloudlet [1] and (3) another mobile device. Serendipity focuses
on the third previously described scenario [14]. It addresses
the challenges of mobile to mobile task offloading when the
network is intermittently connected. It presents a model for
framing computational tasks, and using this model it presents
algorithms that can be used to disseminate tasks to other
mobile devices. However, Serendipity does not tackle the
energy consumption challenges in theses networks. We believe
that even though time can be saved by offloading computation,
a lot of energy is wasted in offloading a task, and then
waiting until the output is received. It is therefore important
to consider the two metrics time and energy jointly for mobile
task offloading.

Utilizing mobile devices to support computation originating
from other mobile devices is a solution directly relevant
to our work [5], [15]. This is made possible because of
the availability of improved connectivity options for mobile
devices to make use of remote processing and storage. Our
work adopts an experimental approach towards testing mobile
to mobile offloading in a presence of wireless intermittent
connectivity. Such opportunistic communication brings a set
of challenges to mobile-to-mobile offloading paradigm.

V. CONCLUSION AND FUTURE WORK

This paper aims to motivate the use of mobile devices in
creating mobile device clouds that can be used to save time



and energy when it comes to executing computationally heavy
tasks. We have shown up to 4 times savings in time or energy
as opposed running locally. We have shown that replication is
mandatory to overcome connection lost and failure. However,
we have shown also that 2 replicas can be enough to improve
the performance significantly.

Finally, we have also addressed the challenge of offload-
ing tasks to appropriate nodes. We have proposed a social-
based algorithm that aim at identifying stable connections
between a given offloader and its offloadees. These algorithms
exploit friendship relationships or common interests between
device owners or users. We have adopted a real trace based
experiment to highlight the importance of choosing suitable
offloadee subsets and the potential promise gained from lever-
aging social information.

In future work, we will investigate more social utility
function to improve the selection of the offloadees. We will
combine both friendship and interests and tune dynamically
the offloading percentage with the connectivity strength.
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