
Establishing Global Policies over Decentralized
Online Social Networks

Zhe Wang, Naftaly H. Minsky
Department of Computer Science

Rutgers University
Email: {zhewang,minsky}@cs.rutgers.edu

Abstract—Conventional online social networks (OSNs) are
implemented in a centralized manner. Although centralization
is a convenient way for implementing OSNs, it has several well
known drawbacks. Chief among them are the risks they pose to
the security and privacy of the information maintained by the
OSN; and the loss of control over the information contributed
by individual members.

These concerns prompted several attempts to create decentral-
ized OSNs, or DOSNs. The basic idea underlying these attempts,
is that each member of a social network keeps its data under
its own control, instead of surrendering it to a central host;
providing access to it to other members of the OSN according
to its own access-control policy. Unfortunately all existing DOSN
projects have a very serious limitation. Namely, they are unable to
subject the membership of a DOSN, and the interaction between
its members, to any global policy.

We adopt the decentralization idea underlying DOSNs, com-
plementing it with a means for specifying and enforcing a wide
range of policies over the membership of a social community, and
over the interaction between its disparate distributed members.
And we do so in a scalable fashion.

I. INTRODUCTION

An online social network (OSN) can be defined broadly as
a community of people that interact with each other via some
electronic media, which generally operates subject to a policy
that may regulate the membership of the community, and the
manner in which its members interact with each other. The pol-
icy of a purely social community is often informal, imprecise,
implicit and only occasionally enforced. But such policy needs
to be tightened for an OSN, because its membership can be
larger than that of a purely social community, and its members
tend to be less familiar with each other. Therefore, the policy
of an OSN needs to be explicit and well defined, and it needs
to be more strictly enforced, largely via computational means,
so that it can establish desired regularities over the OSN.

Such policies are easily implementable via the conventional
types of OSNs—such as the currently popular Facebook,
Google+, and Twitter—because of their centralized architec-
ture. That is each such OSN employs a virtually central host—
which may be a centrally managed cluster of computers—
that mediates all interactions between its members, subject to
policies defined by the host. This central host also maintains
the information supplied by the members of the community.

Unfortunately although centralization is a very convenient
way for implementing OSNs, it has several well known draw-
backs, which include: (a) lack of scalability; (b) the existence

of a single point of failure; (c) the risks to the security
and privacy of information maintained by the central host;
and (d) the loss of control over the information contributed
by individual members. The first two of these drawbacks
can be mitigated via very large, complex, and expensive
infrastructures—like those used by Facebook and Twitter.

But the risk to security and privacy, and the loss of control
over private information are harder to mitigate, because they
are mostly the consequence of centralization itself. Indeed,
maintaining the state of the membership of an OSN, and
the history of interaction between members, under a single
administrative domain makes it vulnerable to various malicious
attacks. Such attacks can be mounted by insiders, say the
programmer that maintains the software of the OSN; and by
hackers from the outside, for whom the central repository of
information is likely to be very lucrative.

Security seems not to be of much concern to the hundreds
of millions of current users of Facebook, Twitter, and similar
OSNs. But they are, or should be, of serious concern to
other types of OSNs, whose members exchange more sensitive
information—such as private medical and financial informa-
tion; and information about the business of an enterprise,
exchanged between its employees. We will consider examples
of such OSNs in the following section.

Such concerns about centralized OSNs prompted several
attempts to create decentralized OSNs, or DOSNs; such as
LotusNet [1], Safebook [2], PeerSoN[3], and others. The basic
idea underlying all these attempts to the decentralization, is
that each member of the community in question should keep
its data under its own control, instead of surrendering it to a
central host, providing access to it to other members of the
DOSN according to its own access-control policy.

Unfortunately all existing DOSN projects have a very
serious limitation. Namely, they are unable to subject the
membership of a DOSN, and the interaction between its
members, to any global policy. This is a very serious limitation
of the DOSN architecture, because, as pointed out above, an
enforced global policy is generally essential for an OSNs, as
it helps make it into a social community.

The Contribution of this Paper: We will adopt in this
paper the decentralization idea underlying DOSNs, comple-
menting it with a means for specifying and enforcing a wide
range of policies over the membership of a social community,
and over the interaction between its disparate distributed

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257584

members. And we shall do so in a scalable manner.
The rest of this paper is organized as follows. Section II

introduces examples of OSNs for which security is critical,
and would thus benefit from decentralization. Section III
introduces examples of policies that are often essential for an
OSN—particularly for the types of OSNs for which security
tends to be critical—but which cannot be established under
DOSN. Section IV provides a very brief outline of the LGI
middleware, which serves as the basis for this work. Section V
introduces our model of decentralized OSN—we call it OSC,
for “online social community,” where the term “community” is
meant to suggest two things: first, a decentralized nature, like
that of purely social communities; and second, the existence of
a shared policy, which characterize most social communities,
and which under OSC is enforced. Section VI is an imple-
mented case study that demonstrates how this abstract model
can be used for a concrete application. The related works are
discussed in Section VII. And we conclude in Section VIII.

II. EXAMPLES OF OSNS, FOR WHICH SECURITY IS
IMPORTANT

We distinguish here between two types of OSNs: (1) au-
tonomous OSNs, which are not bound by any outside authority;
and (2) bound OSNs, which operate in the context of some
organization, which has jurisdiction over it. We focus in this
section on the security needs of these two types of OSNs, and
on the risks to security that centralization poses to them. We
will discuss both types of OSNs, but we will focus, here and
in the rest of the paper, on the latter one.

A. Autonomous OSNs

Consider a set of physicians who form an OSN that enables
them to consult with each other about various medical issues
they confront. This OSN is to admit only qualified Medical
Doctors as members, and may grow to be quite large if physi-
cians all over the world join it. The information exchanged
between members of such OSN is clearly very sensitive.

Having the consultation process mediated by a central host,
and having the information exchanged between the physicians
maintained centrally by this host can seriously compromise
the security of both the doctors and their patients. The risk
here is particularly serious because the host of such an OSN
is likely to become a target for attackers, since the information
maintained by it can be exploited for illicit financial gains.

There are many potential autonomous OSNs that exchange
similarly sensitive information; such as an OSN formed by a
certain type of workers for exchanging their views about their
employers; an OSN used by students to exchange information
about their teachers, and many others.

B. Bound OSNs

There is a growing realization[4] that OSNs that operate
within an organization—such as manufacturing, commercial
enterprises, medical centers, or even the military—can be
beneficial for it. This seems to be particularly the case for
OSNs that provide for micro-blogging, as is evident from the

recent purchase of the Yammer—a prominent micro-blogging
OSN operating within organizations—by Microsoft, for $1.2
Billion. We will have more to say about Yammer itself, but
first we outline some of functional features one can expect
from this kind of OSN.

Consider a large and geographically distributed enterprise
E that provides a centralized micro-blogging OSN for its
employees. Suppose that such an OSN, which we call BE ,
distinguishes between groups of employees, enabling the
members of each groups to communicate with each other. Such
groups may be the following: (a) all the employees of E; (b)
the non-managerial staff of E; (c) the managerial staff of E;
and (d) members of various task forces operating in E. Note
that these groups may overlap partially, as a single employee
may belong to several groups.

The Need for Security: We will distinguish here between
two types of needed security. First, the information exchanged
between the employees of enterprise E can carry sensitive
information about the business of this enterprise. It is therefore
important for this information not to be exposed to the outside,
at least not on a large scale.

Second, one may need to prevent information exchanged
between the members of a certain group of BE from being
accessible to anybody else, or to certain other groups. For
example, suppose that enterprise E has several task forces that
consult to other companies, some of which may compete with
each other. And suppose that the members of each such task
force form a group in BE . It is obviously paramount for these
subgroups not to have access to each other’s information.

The Risks to Security due to Centralization: There are
two types of centralization to be considered, which we call
strong and weak. Strong centralization is like the one practiced
by Yammer, the Microsoft OSN that we mentioned above.
Yammer provides services to a host of different enterprises—
they currently claim to serve about 200,000 of them. Yammer
supports policies that provide necessary separation between
the various enterprises it serves. But the information belonging
to all these enterprises is maintained centrally by the Yammer
system. Such centralization of commercial and industrial in-
formation of many companies, is likely to attract attacks from
the inside of Yammer, and from the outside.

A better approach would be to use an intramural Yammer-
like OSN. This, weaker form of centralization, would be
much safer than using Yammer. But if this system relies on a
centralized database, it would still be vulnerable to breaches
of security. Indeed, if all the information generated by the BE

is available to its software, then the rogue programmers of this
OSN will have a fairly free access to all of it, disregarding the
required boundaries between different groups.

III. A SAMPLE OF POLICIES THAT AN OSN MAY NEED TO
ENFORCE

We illustrate here the type of communal policies that an
OSN may need to establish. By “communal” we mean either
global policy that is to govern all members of an OSN, or
a policy that governs some subgroup of its members. All

the policies discussed here can be easily established by a
centralized OSN, but none of them can be established under
the DOSN architecture.

We distinguish here between three types of communal
policies, and motivate some of them in the context of the BE

OSN, introduced in previous section. We show in Section VI
how such policies can be realized in decentralized OSNs.

A. Membership Control

Control over membership is crucial to social communities,
whether it is autonomous or bound. Such control may have
several complementary aspects. We describe three of these.

First, one may require that to be a member of a given
OSN one needs to authenticate itself via a specified kind of
certificate. One may think that this policy can be established
under the DOSN architecture by having every member of
the DOSN in question require every interlocutor of his to
authenticate itself in a specified manner. But DOSN has no
way for ensuring that all its members behave in this way.
(The inability of DOSN to enforce communal policies is even
more obvious in the rest of our examples below.)

Second, one may require that to be a member of an OSN
one needs to garner the approval of several current members.

Third, it is often important to establish some procedure for
removing members from a given OSN. This can be done in
many ways. For example, consider an OSN that has a member
that plays the role of a manager. Now, let the manager be given
the power to remove any current member x of the OSN, simply
by sending it a message remove. Then x should lose its ability
to interact with other members of the OSN.

B. Constraints on the Behavior of Members of an OSN

Sometimes one needs to impose constraints on what mem-
bers can do. Such constraints may depend on the profile of
individual members, and on the history of their interaction
with others. We have just seen an example of such constraints:
only a member that plays the role of manager can send the
remove message to others. And any member that gets such a
message must cease all communication with others.

More generally—but stated in the context of the BE OSN—
the type of messages that members are allowed to send, or the
type of posts that they are allowed to issue, may depend on
their roles in this OSN, which may be represented by their
profiles. As another example, a member should be able to
force an interlocutor to reduce the frequency of messages it is
sending to it, or to cease sending messages to it altogether.

C. Global Access Control (AC) Policies

One of the intended consequences of decentralization under
DOSN is that it enables each member to apply its own AC
policy to its own data—e.g., to the set of posts it produced,
which are maintained in its own database. The problem with
this aspect of DOSN is that, unlike the case of Facebook or
Twitter, a member of an OSN may not have the complete
authority over the data it maintains. A case in point is a bound
OSN, such as the BE OSN introduced in Section II-B. The

posts being produced by the various members of this OSN
really belong to the enterprise E, which thus has the ultimate
authority about how they should be distributed. The enterprise
may relegate to individual members the right to apply their
own AC policies, provided that these policies conform to the
global policy of an enterprise. For example, the global policy
of the BE may be that a group of members assigned to deal
with the business of a given client-company can communicate
only with each other, as long as they operate as members of
that group—recall that under BE , a single person may belong
to several groups.

IV. THE LAW-GOVERNED INTERACTION (LGI)
MIDDLEWARE—AN OVERVIEW

LGI is a middleware that can govern the interaction (via
message exchange) between distributed actors, by enforcing
an explicitly specified law about such interaction. We provide
here a brief, and rather abstract, overview of LGI; focusing
on what is the most relevant to this paper. A more detailed
presentation of LGI, and a tutorial of it, can be found in its
manual [5]—which describes the release of an experimental
implementation of the main parts of LGI.

A. The Local Nature of Interaction Laws

Although the purpose of interaction laws is to govern the
exchange of messages between different distributed actors,
they do not do so directly under LGI. Rather, an LGI law
L governs the interaction of any actor operating under it,
essentially by controlling its ability to send messages to others,
and to receive messages from them. A law L is local to each
actor x operating under it, in that its rulings are based solely on
the local state of x and on the event that occurs at it, and are
completely independent of the coincidental state and events
occurring anywhere else in the system. Such a law can be
enforced locally, and thus very scalably, in a manner described
in Section IV-B. Moreover, the locality of LGI laws has several
other beneficial consequences, some of which will be pointed
out in due course.

It should also be pointed out that although locality con-
stitutes a strict constraint on the structure of laws, it does
not reduce their expressive power. In particular, despite its
structural locality, an LGI law can have global effect over
what is called an L-community, defined as the set of actors
operating under a common law L.

B. The Decentralized Law Enforcement Mechanism

Consider an actor x that chooses to operate under a law L.
It can do so by adopting a generic controller as its mediator,
loading law L into it. Once thus adopted, this controller is
denoted by TL

x —meaning that it operates under law L, serving
actor x—and the pair 〈x, TL

x 〉, is called agent x and is referred
to as an L-agent—and sometimes simply an “agent”. This
adoption, which signifies the birth of agent x, is one of the
interactive events of LGI, so that the law in question has the
possibility of refusing to be adopted by this actor, and can
mandate some initialization for it, if it does not refuse.

II

CSx CSx’ Ax’Ax

L L’

Tx
L

age
nt x

agent x’

Tx’
L’

Fig. 1. Interaction between a pair of agents, mediated by a pair of controllers
under possibly different laws.

Note the fundamental difference between a bare actor
and its agent: while the interactive behavior of an actor
is unpredictable—unless its code is known—the interactive
behavior of an L-agent is known to conform to law L.

Figure 1 depicts the manner in which a pair of agents,
operating under possibly different laws, exchange a message.
(An agent is depicted here by a dashed oval that includes
an actor and its controller.) Note the dual nature of control
exhibited here: the transfer of a message is first mediated
by the sender’s controller, subject to the sender’s law, and
then by the controller of the receiver, subject to its law.
This dual control, which is a direct consequence of the local
nature of LGI laws, has some important consequences. In
particular, it facilitates flexible interoperation and it enables
more sophisticated control than possible under many AC
mechanisms that provide control only on the receiver side.

The overhead incurred by this kind of control turns out to
be relatively small. In circa 2000 it was measured to be around
50 microseconds for fairly common laws, which is negligible
for communication over WAN. This is one of the results of a
comprehensive study of this overhead in [6].

Finally, we note that we replace the central host (of a social
network) with a group of generic controllers, which are much
simpler and designed not to keep any information they pass
trough. A generic controller needs to be trusted to enforce
correctly any law it is adopted with. There are several ways
for providing such trusted controllers as the TCB (Trusted
Computing Base) of the system in question. In the case of a
bound OSN, like our BE example, we expect this to be done
by the enterprise E, in the context of which BE operates. This
company could construct what is called a controller service
(CoS) that maintains a set of well tested controller pools, each
of which can host a number—it is usually in the hundreds—
of individual controllers that can be used by arbitrary actors,
upon request. For other types of OSNs one expects the CoS
to be maintained by some commercial company that provides
its services for a fee.

Note, therefore, that a controller TL
x and the actor x that

adopted it would run on different hosts. This would help
prevent x corrupting its own controller.

V. A MODEL OF DECENTRALIZED OSN

We introduce here a model of decentralized OSNs that
differs from the current approach to the decentralization em-
ployed under the current DOSN architecture, in that it enables
the enforcement of communal policies over it. We call a
specific OSN under this model an online social community

L

S

L

S

L

S

L

S

L

S

L

S

L

S

DB DB

DB

DB

DB DB

DB

ActorActor

ControllerController

Directory

CA

L

S

Legend

Member

Support component

Controller with law L and state S

Message between members

Message between member and support

Message between parts of a member

Fig. 2. The Anatomy of an OSC Community

or an OSC (or sometime simply a community), and we refer
to this model itself as the OSC-model.

Now, a community C under the OSC model is broadly
defined as a 4-tuple 〈M, L, T, S〉, where M is the set of
members of C; L is the policy that governs this community,
which we call a law (an LGI-law, to be exact); T is a set
of generic LGI controllers that serve as the middleware that
enforces law L; and S is a set of components that support the
operations of C, and is specific to it—this set is called the
support of C, and it may be empty.

We now elaborate on this schematic definition of the OSC
model by discussing the following aspects: (1) the anatomy
of a community under OSC; (2) the launching of an OSC-
community; and (3) the operations of a community. Note that
an example of an OSC-community is described in Section VI.

A. The Anatomy of a Community Under OSC

We describe here the anatomy of a community C under
this model by elaborating on its various components, and
on the relations between them. This anatomy is depicted
schematically in Figure 2.

The Set M of Members: An individual member m of a
community C is a triple 〈user,mediator, database〉, where
user is usually a human, operating via some kind of com-
putational platform, like a smart phone; mediator is an LGI-
controller that mediates all interactions between this member
and the rest of the community—as well as between the other
two components of the member in question—subject to law
LC ; and database, which is an optional part of the member, is
the private database of m that maintains information associated
with this member, such as the set of Twitter-like micro-blog
posted by m, or its Facebook-like page.

The Law LC of community C: The law endows an OSC-
community with its overall structure and behavior. And the fact
that the law can, in principle, be any well formed LGI law

(cf. Section IV) endows this model with great deal generality
regarding the policy that can be enforced over a community.

The set T of LGI Controllers: Every user can create its
own controller, using the software provided by the released
LGI middleware. But if malicious corruption of controllers by
their users is of concern, then it is better for the members of
a community to adopt controllers created and maintained by a
trusted controller service (CoS), so that they can authenticate
each other as bona fide LGI controllers. For such a CoS to
be trusted to provide genuine controllers, this service needs
to be managed by a trusted organization. In particular, the
CoS may be managed by the organization in the context of
which the community is to operate—as in the case discussed
in Section VI. For more about the security and trustworthiness
of controllers see Section IV and [5].

The Support S: An OSC-community may require ser-
vices of various components that are not themselves mem-
bers of this community. Here are some examples of such
components: (a) a certification authority (CA) used for the
authentication the various members of the community; (b)
a naming service that provides unique names of community
members; (c) an index service for searching; and (d) a net-
working service for maintaining various networking structures
of the community—more about which in Section V-D. It is
worth pointing out that this set of support components may
be empty for some communities.

B. The Launching of an OSC-Community

A specific OSC-community, C is launched by constructing
its foundation and then having individual members join it. The
construction of the foundation of a community C consists
of the following steps: (a) defining law LC under which
this community is to operate; (b) implementing the required
support components; and (c) selecting, or constructing, a
controller-service (CoS) for the use of this community.

Once the foundation of C is constructed, anybody can
attempt to join it as a member, via the following three steps:
(a) deploying its private database—if one is required by law
LC—with an API required by this law; (b) adopting an LGI-
controller, and loading law LC into it; and (c) providing this
controller with a pointer to its database, if any. It should be
pointed out that such an attempt to join a given community
C may fail, if the conditions for joining imposed by law LC

are not satisfied.

C. The Operation of a Community

Consider a member x of a community C sending a message
m to another member y. The message first arrives at the
controller of x, that operates under law LC . These controllers
would then carry out the ruling of law LC , which can mandate
the execution of any number of the following kind of actions:
(a) change its own state in some way; (b) communicate with
the database of x; (c) send the message m, or some other
message, to the controller of the original target of x; and
(d) send some other messages to the controllers of some
other members, or to some of the support components of the

community. Among other things, this means that members of
a community interact with each other via their controllers, and
the controllers communicate with each other.

It is worth pointing out here that LGI provides an important
trust modality which is critical to this model. This trust
modality is called law-based trust, or simply L-trust, and can
be introduced, broadly, as follows: any pair of interacting
LGI-controllers can identify, cryptographically, each other as
genuine controllers, and can identify the law, under which their
interlocutors operates. One consequence of this is that the law
LC of the given community C can be written so that members
of C can interact only with other members of C. Now, L-
trust can be defined as follows: members of a community C
can trust each other’s interactive behavior to comply with
their common law LC . Another important observation about
the behavior of a community under this model needs to be
made: the ruling of a law for a given event that occurs at a
controller depends on the state of this controller, which may
be different for different members. This difference can come
from some certificates submitted by the user to its controller,
which may authenticate the role of the user in the organization
in question. And the state may change dynamically in response
to some interactive activity of the community. For example, the
manager of the community under our BE community, may be
allowed by the law of BE community to transfer its managerial
baton to some other member, which would then be able to send
revoke messages. In other words, the members of a community
C may not be equal under its law LC .

D. Crowdsensing

We have already pointed out that some capabilities are easier
to be provided via centralized OSN than via decentralized one.
We have focused on the imposition of communal policies over
an OSC in this paper. Another capability that is problem-
atic under decentralized OSNs is the ability to analyze the
networking relationship implicit in the community. Consider
for example the friend relationship of Facebook, and let us
examine its realization in an OSC.

It is easy to have each member of an OSC list his friends—
we have done with a similar relation in Section VI—but it is
very hard and expensive to analyze the entire friendship-graph,
when this relation is recorded in such a distributed manner. Of
course, such global analysis, which is central to Facebook, is
not required for all kinds of OSN. But it is often required, and
must be provided for.

A reasonable way for enabling global analysis of a network
implicit in an OSC, is to maintain it explicitly in a central
manner. That is, we maintain the friendship relation (or any
other kind of relation between members) in a central place, as
part of what we have called the support of an OSC, and then
provide these components with various analysis tools. This is
a reasonable solution under two conditions: (a) the relation in
question is not, itself, highly sensitive from the privacy and
security viewpoint; and (b) the central network component is
not used too frequently, so it would not reduce substantially
the scalability of the OSC in question.

More generally, an OSC may have several centralized
support components, such as indices of various kinds. If
these components are not used very frequently, they would
not seriously undermine the scalability of it, due to the
decentralization of its data and policy enforcement mechanism.

VI. A CASE STUDY

In this section, we describe the implementation of the BE

community, introduced in Section II. It has been implemented
in the scale of more than two hundred users as a proof
of concept. This community operates in the context of a
large and geographically distributed enterprise E, providing
a micro-blogging OSN for its employees, as a complement
to its existing office systems. BE enables the members of
various groups of employees to communicate with each other.
The groups could partially overlap, in the sense that a single
employee may belong to several groups.

As described in Section II, there are two modes of com-
munication in this community: publish/subscribe and direct
message. And each post or message contains two parts: type
and body. For both modes, there are certain global policies can
be imposed to the community to control members’ behaviors.
We will discuss them in the following section.

Each member of the community holds a profile in its
controller, as well as several internal states. A profile is a
group of attributes of the user. There are mainly two types of
attributes in profile. One type is the relatively stable attributes,
like real name, position, etc. These items usually require users
to provide certificates in order to get them in the profile by
the rule of authentication. Since these attributes are stable, an
index for searching is able to be built on them. Another type
of attributes is the dynamic ones, such as interest, skill set, last
ten posts, etc. Although these items don’t require certificate,
not all of them can be changed by the member arbitrarily.
For example, subscriber list is handled by the subscription
mechanism, reputation is maintained by controller according
to the rates gotten from other members and an attendance
attribute could be decided by the sign-in/sign-out time. We
call these user-unchangeable dynamic attributes and the
certified attributes together as controlled attributes, and the
rest attributes as discretion attributes. The internal states are
the states maintained by the controller for certain functions of
the community. For instance, the frequency of publishing is
used for preventing a member overwhelming the community
by violently publishing posts.

The Law of the BE Community:

The law B of the BE Community is used for regulating ev-
ery aspects of the operations and behaviors of the community.
We split it into several parts according to their functionalities.
Due to lack of space, we only discuss the law of some func-
tionalities of the communities. In Section VI-A, we discuss
how a user becomes a member of the BE community and its
groups, how it configures its profile, and how a member is
removed. Section VI-B shows the communication mechanism

and the imposition over it. We discuss other functionalities
which are needed to be a complete OSN in Section VI-C.

A. Member Profile and Membership Control

To join the community, a member needs to adopt a controller
under law B. Rule R1 allows a user to join the community
by presenting a certificate from a CA run by the enterprise
in question to prove that it is an employee. Once certificate
is verified by the controller, the set of attributes in its profile
will be inserted into the user’s control state. An example of an
attribute is role(manager). There are two types of attributes in
the profile: certified and uncertified. The certified attributes are
the relatively stable ones, like real name, login ID, position,
age, etc. These items can also be obtained by providing
certificates after the adoption. Rule R2 allows the user to join
the group ti by providing a group certificate. It will add an
attribute ti to its profile, as well as an access control filter
which we will discuss in the next section.

R1)
UPON adopted(X,cert(issuer(ca),subj(X),attr(A))) :-

do(+A).
R2)
UPON certified(X,cert(issuer(ca),subj(X),

attr(ti))) :-
do(+ti);
do(+filter(group(ti))).

R3)
UPON sent(X,addProfile(Attribute(Value)),X) :-

if (¬ (Attribute in controlledAttributes))
then do(+Attribute(Value)).

R4)
UPON sent(X,updateProfile(Attribute(Value)),X) :-

if (¬ (Attribute in controlledAttributes))
then do(-Attribute); do(+Attribute(Value)).

R5)
UPON sent(X,addFilter(Attribute(Value)),X) :-

do(+filter(Attribute(value))).
R6)
UPON sent(X,#revoke#,Y) :-

if(role(manager)@CS) then do(Forward);
else do(Deliver(X,notAllow,X)).

R7)
UPON arrived(X,#revoke#,Y) :-

update(certificateBlacklist);
inform(certificateBlacklist);
do(Quit).

Fig. 3. Law B: Member’s Profile and Membership Control

Another type of attributes is the dynamic ones. Although
these items don’t require certificate, not all of them can
be changed by the member arbitrarily. For the discretion
attributes, user can directly add some of them into its profile
via Rule R3 and update them via Rule R4. Rule R5 shows
how a user sets up its subscription filter. Sometimes the user
may not want to be subscribed by everyone. The existing way
to do that in other social networks is to put the subscriber
into blacklist, or we say to block specific user. This can only
happen after somebody initiated or requested the subscription
and needs to be done manually. However, our mechanism can
prevent subscription by specifying a certain kind of attributes.
User can use Rule R5 to add the filter content into control
state. Its controller will only allow the members who have the
required attributes to subscribe to it. The following operations
will be described in Section VI-B.

Finally, rules R6 and R7 regulate the removal of members
from the community. Rule R6 shows that only the man-
ager role can remove a member from the community. Non-
managers are not allowed to use the type revoke when sending
messages. When the revoke message arrives at the member’s
controller, according to Rule R7, the controller will directly
terminate the connection to the actor and then put its certificate
to the blacklist and broadcast to all controllers. Next time when
another actor tries to use this certificate to adopt a controller,
the controller will not verify it. The member has no way to
avoid that. This rule guarantees that its participation in this
community is seized immediately after the manager removed
it and cannot get back again using the same certificate. This
is just an example of how to handle the membership removal.
Other methods, such as suspension, can also be supported.

B. Communication

For a member to subscribe to the posts from another
member, the subscriber s sends a subscription request to the
publisher p. When p receives the request, it will add s to its
subscriber list unless such subscription is prohibited by the
law, or if p itself blocks the subscription. When a post is
published by a member, it will be automatically pushed to
all its subscribers. Moreover, members can also send direct
messages to each other, which can also be controlled.

We will show later in this section, how the communication
is enabled and controlled. The control over communication has
two complementary parts: global control and local control. The
global control is imposed on every member of the community,
but can be sensitive to the state of members, while the local
control is discretionary to each member. We discuss both of
controls below, and the according law later.

Global Control: The global control over P/S is imposed
on both publishing and subscription. The control over pub-
lishing is on what types of posts members can publish. For
example, only managerial staff can publish posts with type
management. Upon publishing, a management post is allowed
to be published only when the member has the attribute
role(managerial) in profile.

The control on the subscription regulates who can subscribe
to whom, and to which types of posts. Essentially, it is
defined by a condition C on the profiles of the publisher and
subscriber. An example of such global policies is that only
the members from a same group can talk to each other. The
problem is that there is no single place where these profiles
can be evaluated because of the decentralization. To solve this
problem, our law forces every subscription request to include
the profile of the subscriber. And then it has the condition
C to be evaluated and acted upon at the publisher side. This
can be achieved by checking the profiles of the publisher and
subscriber and rejecting the subscription request if the two
members are from different groups.

The control over sending direct message is similar to the one
over publishing. Certain types of direct messages are allowed
to be sent only when the members have the required attributes

in their profiles. For instance, only the manager role can send
the revoke message.

The control on receiving the direct messaging is different
from the one on subscription. Whenever a member sends a
direct message, its controller will append its profile to the
message. Upon the arrival of the message at the receiver side,
the controller of the receiver will not deliver the message if
its profile does not satisfy the condition of receiving it.

Local Control: Sometimes, a member does not want
to be subscribed by certain members, it can block the sub-
scription requests from them. To achieve this, we introduce a
profile attribute called filter. If a member adds a filter filter(X)
in its profile, its cannot be subscribed by the member who
has attribute X in profile. As described above, whenever a
subscriber s sends the subscription request to a publisher p,
it will be forced to attach its profile along with it. When the
request arrives at the publisher’s controller, s will not be added
to p’s subscriber list if its profile has the banned attributes in
filter. This rule of filter is just an example. More complex uses
of the filter, such as OR or XOR, could also be achieved.

The Law: The rules of law B that implements these
provisions are defined in Figure 4 and described below.

R8)
UPON sent(X,publish(P),X) :- group(ti)@CS

if (typeof(P) == #management# and ¬
role(manager)@CS)
then return;
updateProfile(lastTenPosts(P));
updateDB(P);
if(subList[group(ti)] = []) then return;
else forEach(subscriber in subList[group(ti)])
do(Forward(X,P,subscriber)).

R9)
UPON arrived(X,P,Y) :-

do(Deliver);
do(inform(X,P,Y)).

R10)
UPON sent(X,requestSubscribe(profile),Y) :-

do(Forward).
R11)
UPON arrived(X,requestSubscribe(profile),Y)

:- group(ti)@CS
if(filter(Attribute(Value))@CS and
Attribute(Value)@profile)
then do(Forward(Y,subscribeNotAllowed,X));
else do(updateSublist[group(ti)]);
do(Forward(Y,subscribeAllowed,X)).

R12)
UPON sent(X,M,Y) :-

do(Forward(X,M(profile),Y)).
R13)
UPON arrived(X,M(profile),Y) :-

if(group@CS == group@profile)
then do(Deliver(X,M,Y)).

Fig. 4. Law B: Communication

In Rule R8, when the user wants to publish a post to
its subscribers, the controller will read local subscriber list
and push the post to each of them. It will also update its
attribute lastTenPosts of its profile in its control state. When
the subscriber receives the post or message, according to the
Rule R9, controller will show the post to the user. In the
meantime, to handle the situation that the user is not online,
the controller can store the post or message into local file
system, or use other ways to inform users, for example by

sending as email. Also, the controller can save the last several
posts for the search functions. Note that if the post is of the
type of management, only the managerial staff can publish it.

According to Rule R10, any user can send a subscription
request to any user. The controller attaches its profile to the
request. In Rule R11, when the request arrives at the user, the
controller will check whether there is an access control filter
in its control state. If there is not, it adds the request user to
the subscriber list. If there are filters, it will examine whether
this user satisfies by checking the required attributes of the
profile. If the requester satisfies, the controller will add it to
the subscriber list and send back the result to the request user.

If a member wants to send a direct message to a specific
member, its controller will append its profile to the message, as
shown in Rule R12. When the message arrives at the controller
of the destination member, it will check the group id in control
state to see whether it matches the group id of the sender. If
it does, the member is allowed to read the message. If the
member belongs to a different group from the sender, the
controller will discard the message, according to Rule R13.

C. Other Implemented Functionalities

Due to lack of space, we do not cover all parts of the law for
this community. However, following functionalities are very
useful and important in forming a complete OSN. We discuss
the general idea of them.

Naming and Addressing: When an agent joins a commu-
nity, it must have a way of naming and locating other members
of the community. After all, one joins a community only if one
wishes to interact with some members. We employ a server,
called secretary, that simply acts as a naming and locating
service, negotiating with agents wishing to join the group in
order for each agent to have a unique name within that group.
More details about this mechanism are provided by [7].

Search: Search capability is also necessary for an OSN.
It’s relatively straightforward in the centralization, comparing
to be achieved in a decentralized manner. The Distributed Hash
Table, which is used by most of DOSN approaches, cannot
do content search. The content search can be achieved via a
gossip style search protocol—the search query initiator sends
the query to its neighbors and then the neighbors forward the
query to their neighbors. Both types of search, especially the
DHT, are not secure and easy to be undermined[8], because
they need the untrusted members substantially to carry out the
search correctly. It’s very vulnerable if there is no regulation
imposed on each participant. We can make DHT secure by
implementing it by law with similar technology discussed
before, but this is beyond the scope of this paper.

VII. RELATED WORK

The concern about the security issues of centralized OSNs
motivated several attempts to decentralize OSNs, creating
several versions of what is called DOSNs. PeerSoN[3],
Safebook[2], and LotusNet [1] are the main attempts among
others. The basic idea underlying all these projects is that each
member of the social networks keeps the data under its own

control, instead of surrendering it to a central host. This is a
necessary measure of decentralization, but it is not sufficient.
Because, as we explain in Section III, social network requires
some global, or communal, policy to operate under. But none
of the attempts known to us at the implementation of DOSNs
provides any means for establishing such policies.

Moreover, all these attempts adopt the substrate of DHT to
implement the p2p design. As we discussed in Section VI-C,
DHT itself is not secure under the context of heterogeneous
and distributed network and easy to be compromised. It’s
not able to defend some attacks if it cannot establish certain
global policy to protect it. Furthermore, DHT is incapable
of performing content search. Though some improvements or
work-arounds are employed to provide limited content search,
these are way off the basic requirement of an OSN.

VIII. CONCLUSION

This paper addresses the risks to privacy and security posed
by conventional centralized OSNs. These risks, which are the
consequence of centralization, seem not to be of concerns to
most of the clients of OSNs such as Facebook and Twitter.
But they are, or should be, of serious concerns to many other
current and potential applications of OSNs.

Several recent attempts have been made to decentralize
OSNs, by letting each member of such a network keep
maintaining its own data. But this DOSN approach to decen-
tralization is not able to establish any kind of regularity over
the social network, which is necessary for both real life social
community, as well as for OSNs.

We have introduced a decentralized architecture of OSNs,
called OSC, for online social community, which is able to
establish regularities concerning both the membership of OSC
and the manner in which its members interact. The preliminary
testing and experiments of our implementation show that our
method is feasible and promising.

REFERENCES

[1] L. M. Aiello and G. Ruffo, “LotusNet: Tunable privacy for distributed
online social network services,” Computer Communications, Dec. 2010.

[2] L. A. Cutillo, R. Molva, and T. Strufe, “Safebook: Feasibility of transitive
cooperation for privacy on a decentralized social network.” in WOWMOM.
IEEE, 2009, pp. 1–6.

[3] O. Bodriagov and S. Buchegger, “P2p social networks with broadcast
encryption protected privacy,” 2011, qC 20120126.

[4] D. Zhao and M. B. Rosson, “How and why people twitter: the role that
micro-blogging plays in informal communication at work,” in Proceed-
ings of the ACM 2009 international conference on Supporting group work,
ser. GROUP ’09. New York, NY, USA: ACM, 2009, pp. 243–252.

[5] N. H. Minsky, Law Governed Interaction (LGI): A Distributed Coordina-
tion and Control Mechanism (An Introduction, and a Reference Manual),
February 2006, (available at http://www.moses.rutgers.edu/).

[6] N. H. Minsky and V. Ungureanu, “Law-governed interaction: a coordi-
nation and control mechanism for heterogeneous distributed systems,”
TOSEM, ACM Transactions on Software Engineering and Methodology,
vol. 9, no. 3, pp. 273–305, July 2000.

[7] W. Zhang, C. Serban, and N. H. Minsky, “Establishing global properties
of multi-agent systems via local laws,” in Environments for Multiagent
Systems III, LNAI 4389, D. Weyns, Ed. Springer-Verlag, 2007.

[8] G. Urdaneta, G. Pierre, and M. V. Steen, “A survey of dht security
techniques,” ACM Comput. Surv., vol. 43, no. 2, pp. 8:1–8:49, Feb. 2011.

