
Hybrid Approach to Detect SQLi Attacks and
Evasion Techniques

Abdelhamid MAKIOU
Youcef BEGRICHE

Ahmed SERHROUCHNI

Telecom Paristech 48, Rue Barrault 75013 Paris France
E-mails: makiou@telecom-paristech.fr youcefbegriche@ieee.org ahmed@telecom-paristech.fr

Abstract—Injections flaws which include SQL injection are
the most prevalent security threats affecting Web applications[1].
To mitigate these attacks, Web Application Firewalls (WAFs)
apply security rules in order to both inspect HTTP data streams
and detect malicious HTTP transactions. Nevertheless, attackers
can bypass WAF’s rules by using sophisticated SQL injection
techniques. In this paper, we introduce a novel approach to dissect
the HTTP traffic and inspect complex SQL injection attacks. Our
model is a hybrid Injection Prevention System (HIPS) which
uses both a machine learning classifier and a pattern matching
inspection engine based on reduced sets of security rules.

Index Terms—SQL injection - Web Application Firewall -
HTTP dissection - machine learning - Security rules

I. INTRODUCTION

Structured Query Language (SQL) injection is one of the
most devastating vulnerabilities that impacts DataBase Man-
agement Systems (DBMS), as it can lead to the exposure of
all the sensitive information stored in an application’s database
[2]. In order to confront SQL injection attacks, various
methodologies and techniques have been used. On one hand,
Web application developers adopted safe coding and applied
input validation functions. They developed filters to protect the
application’s entries from SQL code injections. These filters
block inputs that contain SQL keywords or special characters
commonly used in malicious SQL code injection. On the other
hand, Web Application Firewalls protect application’s database
by inspecting HTTP traffic and applying a set of security rules.
The language used for expressing security rules can explicitly
describe a signature of an SQL injection attack, or implicitly
describe the way of detecting these attacks. It can also express
an anomaly score value which increases every time a malicious
pattern appears in an HTTP request. If the anomaly value
reaches a predefined threshold, the request will be rejected.
In spite of the robustness of the above methods, attackers can
bypass them by substituting malicious pattern characters or
varying its format. However, a basic solution is to write a
specific rule for each type of evasion technique, but it requires
a high mastery of both HTTP protocol and regular expressions
programming. Furthermore, pattern matching algorithms, used
by security rules in order to inspect complex patterns, decrease
the overall performances of the detection engine. Since pattern
matching algorithms require a lot of resources, some WAFs [7]

[9] are configured to only inspect POST request.
In this paper, we propose a hybrid approach to detect SQL
injection attacks and their evasion techniques. Our proposal
enhances both the inspection process of HTTP streams and
security rules management.

II. RELATED WORK

In [3][4], Kruegel and Vigna propose an anomaly-based in-
trusion detection system for web applications. It characterizes
HTTP requests using a number of statistical characteristics de-
rived from parameter’s length, character distribution, structure,
presence and order. This method focuses only on the incoming
query parameters whereas it ignores the corresponding HTTP
response. These results are either causing unnecessary false
positives or missing certain attacks. AMNESIA [5] is an SQL
injection detection and prevention system which combines
static analysis and run-time monitoring. It uses a model-based
approach to detect illegal queries. Nonetheless, it requires
web application’s source code reviewing. In SQLrand [3][6]
instead of normal SQL keywords developers create queries
using randomized instructions. In this approach a proxy filter
intercepts queries to the database and de-randomizes the
keywords. By using the randomized instruction set, attacker’s
injected code could not have been constructed. As it uses a
secret key to modify instructions, security of the approach is
dependent on attacker ability to seize the key. It requires the
integration of a proxy for the database in the system as the
same as developer training. ModSecurity WAF, proposed by
Ivan Ristic [7], is an open source solution based on signature
attack detection. ModSecurity is widely used and has medium
performances. Though, this system is strongly related to some
types of web servers and it only analyses POST queries in
order to avoid performance deterioration. In addition, the rules
formalism is very complex which requires a high expertise in
HTTP protocol and in regular expressions coding. IronBee
[8], a new project similar to ModSecurity, aims to improve
detection performance and facilitate the expression of security
rules by introducing the LUA scripting language. An other
recent open source project NAXSI [9] uses a heuristic ap-
proach for the detection of XSS and SQL injection attacks. Its
performances are acceptable but requires a learning process to

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257568



define white-lists. SQLi and XSS rules are static and use a
simple cumulative scoring system based on the appearance of
some special strings.

III. SQLI ATTACKS AND EVASION TECHNIQUES

Halfond, Viegas, and Orso researches [5] proposed a tax-
onomy of SQL injection attacks. Depending on the goal,
attackers can append a syntactically correct SQL code to the
original query, or forge their own malicious SQL commands
and introduce them to the DBMS via a vulnerable web appli-
cation inputs. They will use one of these classes: Tautology,
Incorrect Queries, UNION Queries, Piggy-backed Queries,
Stored Procedure, Inference (Blind Injection, Timing At-
tacks) .
In the following, we will present two techniques attackers can
use in order to bypass the WAF rules.

IV. PROPOSED SOLUTION

A. HTTP Protocol Dissection

In most security solutions, traffic dissection process is the
first operation before applying any security control. In HAKA
project [10], HTTP stream is divided in two tables, HTTP-
request and HTTP-response, each table is associated with one
hook and each hook contains all security rules declared for
either requests or responses. In this section we introduce an
other manner to dissect HTTP streams.

a) Typical HTTP request: HTTP protocol is expressed
in a human-readable ASCII text. Headers use text to describe
a request from a client (browser) or a response from the
server. An HTTP request begins usually with a GET or POST
method, followed by the URL and the protocol version. The
following headers provide various information about the client,
connection, content, etc. These headers are separated by \r\n
to distinguish each header.

Fig. 1: Raw HTTP Request

b) HTTP Request Dissection: Our dissection module is
able to recognize request’s components (headers and the body)
which are separated by \r\n characters. However, before
making the dissection, it has to get information about security
rules. Indeed, users are obliged to declare security rules for
the body and for each header. With the knowledge of headers
involved in the inspection process, the dissector will only
extract and parse these headers.

V. THE HYBRID INJECTION PREVENTION SYSTEM (HIPS)

• 1 Request Dissector URL: The information that the URL
must be inspected is known by the dissector, since the user
has declared a security rule on the hook : HTTP URL. The
dissector extracts URL string and passes it to the classifier.

Fig. 2: Detection Engine Architecture

• 2 Is legitimate: The result of the classification is negative,
which means that the URL string does not include any
potential SQL injection code.
• 3 If SQLi: The classifier decides to forward the URL
string to the security rules detection engine, because the
URL contains probably an SQL injection code. In the result
section, we will show the minimum threshold for which a
legitimate content is considered suspicious.
• 4 If SQLi: The detection engine loads all the security rules
hooked to the HTTP URL hook
• 5 If matched: The detection engine uses a pattern matching
algorithm to inspect the URL content, if one security rule
matches with a specific pattern, the detection engine rejects
the HTTP request.
• 6 No Rule matched: After applying all security rules, no
rule matches with the analyzed content.
• 7 HTTP Next Dissector: The header analyzed above doesn’t
contain a malicious code, next headers will be analyzed in
the same way until the end of dissectors.

A. The Machine Learning Model

1) SQL injections data collection framework: Malicious
traffic is collected from an attack platform that includes:
- Specific SQLi attack tools using evasion techniques
- A Web server
- A vulnerable web application with known SQL injection
attacks.

B. features vector selection

Feature selection plays an important role in the identification
of the potential malicious data used to escape SQLi filters.



Fig. 3: Attack Traces Collection Framework

Based on our experience with SQL injections attacks and eva-
sion techniques, we identify a limited vector of features. There
are several motivating factors behind limiting the feature set of
both the SQL injection and evading strings for our classifier. A
smaller feature set may result in a significant decrease of both
learning and classification time. The following table shows the
result of our features vector selection.

Variables Tokens (key words)
x1 SELECT
x2 UNION
x3 UPDATE
.. Other SQL keywords
xn * (Asterisk)
.. Other Special Symbols
xm UNHEX
.. Other Evasion Keywords
x45 % (percent)

TABLE I: A simple table

C. Request representation

Each request’s header is characterized by a vector −→x defined
by −→x = (x1, . . . , xm) where x1, . . . , xm are the values
taken by the random variables X1, . . . , Xm that are assumed
conditionally independent relative to the category c (SQLi,
Legitimate). Each random variable gives an information about
a pattern type in a dissected header. In this model, all random
variables are binary: Xi = 1 if pattern of type i noted pai is
present, otherwise Xi = 0. Consequently, each random vari-
able Xi = 1 follows a Bernoulli distribution with parameter
pi = p(pai).

D. Classification: Naive Bayesian Classifier model

According to the Bayes theorem [11] and the total probabil-
ities theorem, for a vector −→x = (x1, . . . , xn), the probability
to belong to the class c is defined as follows:

p(C=c/
−→
X =−→x )=p(C=c)·p(−→X =−→x /C=c)

p(
−→
X =−→x )

(1)

Using the theorem of the total probabilities, we deduce:

p(C=c/
−→
X =−→x )= p(C=c)·p(−→X =−→x /C=c)∑

cε{SQLi,Leg}

p(C=c)·p(−→X =−→x /C=c)
(2)

E. Cost Evaluation

Works of [12] on cost-sensitive evaluation measures consist
of evaluating the false positives effect on the total cost, in
term of time wasting by users to delete spams. But in our
case, the cost is the impact of false negatives on the trust of
users granted to our classifier.

1) The False Negatives Effect: A false negative is mistak-
enly classifying an SQLi attack as a legitimate content, and a
false positive is a legitimate content mistakenly classified as
an SQLi attack. In our model, the cost of a false negative is
much higher than the cost of a false positive. Indeed, wasting
time in analyzing legitimate requests is more acceptable than
passing a malicious code to the Web application. The two error
types are defined as such follows:
• Classifying an SQLi attack as legitimate content:

(SQLi→ Leg)
• Classifying a legitimate content as an SQLi attacks:

(Leg → SQLi)
In our classifier model, the first error is more serious than

the second error. To illustrate this idea, we introduce the
parameter λ, as its objective is to give more importance to
the first error by assuming that Leg → SQLi is λ times more
costly than SQLi→ Leg.

2) Classification criteria: According to the above two
error types, the selection criteria is as follows:
The content of a header ~x is classified as legitimate if and
only if:

p(C = Leg/ ~X = ~x) > λ.p(C = SQLi/ ~X = ~x) (3)

given that p(C = Leg/ ~X = ~x) + p(C = SQLi/ ~X = ~x) =
1, the selection criteria becomes as follows:

p(C = Leg/ ~X = ~x) > α (4)

Where :

α =
λ

1 + λ
, λ =

α

1− α
(5)

3) Method and parameters evaluation: In this section, we
define the parameters that allow us to evaluate our filter. To
this end, two evaluation parameters are used: accuracy (Acc)
and error (Err = 1−Acc) [12]. They are defined as follows:

Acc =
nsqli→sqli + nleg→leg

Nsqli +Nleg
(6)

Err =
nsqli→leg + nsqli→sqli

Nsqli +Nleg



where:
• Nsqli = nsqli→leg + nsqli→sqli
• Nleg = nleg→leg + nleg→sqli
• ny→z denotes the number of patterns of class y that are

mistakenly classified in class z.
The parameters defined above do not take into consideration

the notion of weight for the two error types introduced in the
previous paragraph. This leads us to introduce the weighted
accuracy (Wacc) and weighted error (Werr = 1−Wacc). We
assumed that SQLi → Leg is λ times more devastating for
our system than Leg → SQLi. To make accuracy and error
rate sensitive to this cost, we should treat each SQL injection
as if it was λ inputs; when an SQL injection is misclassified,
this counts as λ errors; and when it is classified correctly, this
counts as λ successes

Wacc =
λnsqli→sqli + nleg→leg

λNsqli +Nleg
(7)

Werr =
λnsqli→leg + nleg→sqli

λNsqli +Nleg

To have a precise idea of the filter’s performance, we
compare it to a non-filtered system in which all requests are
considered as legitimate.
We introduce the definition of the base-line weighted error and
the base-line weighted accuracy (respectively noted Waccb

and Werrb) which are defined as follows:

Waccb =
λNleg

λNsqli +Nleg
(8)

Werrb =
Nsqli

λNsqli +Nleg

The TCR (Total Cost Ratio) value measures the performance
of a machine learning classifier to the same environment
without a classifier. In the case where the TCR value is
negligible, the best approach is to not use a classifier and
to send all requests to the rules based detection engine. An
effective filter which could be used in real environments should
have a TCR value higher than 1.

The TCR formula is defined as follows:

TCR =
Werrb

Werr
=

Nsqli
λnleg→sqli + nsqli→leg

(9)

VI. RESULTS EVALUATION

We have collected a training data set from the framework
previously presented in this paper. The training set is a mixture
of SQli attacks and legitimate requests shown in the below
table with different proportions (80-20)%,(75-25)%,(50-50)%,
then we varied, for each scenario, the λ parameter and finally
calculated values of Wacc, Waccb and TCR.

By increasing the α (threshold) value from 99% to 50%, we
have an increase in number of false positives, which means
that the rules engine will analyze legitimate requests, but at
the same time, the evaluation has shown an increase in TCR

Data (%) λ α False False TCR
SQLi-Leg Num (%) Pos.(%) Neg.(%) Value

80-20 1 50 4.6 0.6 15.38
66-34 1 50 2.0 0.3 28.57
50-50 1 50 3.0 0.5 14.29
80-20 2 66.67 6.0 0.5 8.16
66-34 2 66.67 2.0 0.3 15.38
50-50 2 66.67 3.0 0.5 7.69
80-20 5 83.33 5.6 0.4 3.39
66-34 5 83.33 2.9 0.3 6.45
50-50 5 83.33 4.0 0.6 3.23
80-20 9 90 5.8 0.6 1.90
66-34 9 90 4.0 0.3 3.54
50-50 9 90 5.0 0.5 1.82
80-20 99 99 6.6 0.4 0.18
66-34 99 99 4.0 0.3 0.34
50-50 99 99 5.0 0.4 0.17

TABLE II: Table 2

Fig. 4: Attack Traces Collection Framework

value. However, in practice, false positives (legitimate requests
classified as SQLi attacks) will be forwarded to the rules
engine that will apply all security rules. This will decrease
the overall performances of our system. To find a compromise
between lower number of false positives and false negatives,
the TCR values should be medium values. Acceptable values
of TCR are related to α threshold values higher than 50% and
lower than 90%.

VII. COMPARATIVE ANALYSIS

Security Rules based WAFs do not have a module that
predicts SQL injection attacks. In this case, our approach
will improve the inspection performance because the classifier
module will not forward legitimate traffic to the detection
engine. Only suspected requests are deeply inspected by apply-
ing pattern matching algorithms. In [13], Authors worked on
Classification of Malicious Web Code by Machine Learning.
They implemented and evaluated two classifiers both SQLIAs
and XSS which can use TF-IDF method for weight calculation,
and three machine learning approach among SVM, Naive-
Bayes, k-Nearest Neighbor Algorithm. They obtain good pre-
cision values for their classifier (99.16 %) by using SVM



with Gaussian Kernel. Our classifiers obtains 97.6% by using
Bayesian algorithm. However, they did not provide a solution
to handle false negatives and false positives. On the other
hand, the using of SVM algorithms with Gaussian Kernel may
require significant CPU resources and decreases the classifier
performances in multi-gigabits rates networks.

VIII. CONCLUSION

In this paper, we focused on the problem of detecting com-
plex SQL injections. We proposed a novel approach to dissect
HTTP requests in order to cover most evasion techniques and
improve security rules management process. We also provided
an Injection Prevention System architecture which includes a
machine learning classifier. Based on the TCR results, we have
shown the effectiveness of the classifier by tuning its values
in order to reduce false negatives. We were also able to show
that false positives didn’t impact the overall performances of
our system.
A key element of future work is to apply the same approach
in order to develop an anti XSS and SQL attacks solution.

REFERENCES

[1] The Open Web Application Security Project (OWASP) considers, in its
2013 top ten list.
https://www.owasp.org/index.php/Top 10 2013

[2] Sid Ansari et al. SQL Injection in Oracle: An exploration of vulnerabilities
International Journal on Computer Science and Engineering (IJCSE), pp.
522-531, April 2012

[3] A.Tajpour, M. Massrum and M.Z. Heydari, Comparison of SQL Injection
Detection and Prevention Techniques, 2nd International Conforence on
Education Technology and Computer (ICETC), 2010

[4] C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. 10th
ACM Conference on Computer and Communication Security (CCS 03),
pages 251261. ACM Press, October 2003

[5] W.G. Halfond and A. Orso, AMNESIA: Analysis and Monitoring for
NEutralizing SQL-Injection Attacks, Proc. 20th IEEE and ACM Intl Conf.
Automated Software Eng., pp. 174-183, Nov. 2005

[6] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL Injection
Attacks. In Proceedings of the 2nd Applied Cryptography and Network
Security (ACNS) Conference, pages 292-302. June 2004

[7] Ivan Ristic : ModSecurity Handbook: The Complete Guide to the Popular
Open Source Web Application Firewall, 2010 Feisty Duck Ltd Edition
ISBN: 1907117024

[8] The IronBee Project May 2014. http://www.ironbee.com
[9] Naxsi project (Nginx Anti Xss Sql Injection) May 2014

https://www.owasp.org/index.php/OWASP NAXSI Project
[10] Kevin Denis, Pierre Sylvain Desse et Mehdi Talbi (Arkoon Network

Security), un langage orient rseaux et scurit, Symposium sur la scurit des
technologies de l’information et des communications,Confrence franco-
phone sur le thme de la scurit de l’information, 2014.

[11] C.P.Robert,Le choix Baysien. Principes et pratiques, Ed. Springer,2006
[12] Androutsopoulos I., J. Koutsias, K.V. Chandrinos, G. Paliouras, and

C.D. Spyropoulos.2000a. An Evaluation of Naive Bayesian Anti-Spam
Filtering. Proceedings of the Workshop on Machine Learning in the
New Information Age, 11th European Conference on Machine Learning,
Barcelona, Spain, pages 917.

[13] Komiya, R. Incheon Paik Hisada, M.Classification of malicious
web code by machine learning.Awareness Science and Technology
(iCAST),011 3rd International Conference. Sept 2011.

https://www.owasp.org/index.php/Top_10_2013
http://www.ironbee.com
https://www.owasp.org/index.php/OWASP_NAXSI_Project

	Introduction
	Related Work
	SQLi attacks and evasion techniques
	Proposed Solution
	HTTP Protocol Dissection

	The Hybrid Injection Prevention System (HIPS)
	The Machine Learning Model
	SQL injections data collection framework

	features vector selection
	Request representation
	Classification: Naive Bayesian Classifier model
	Cost Evaluation
	The False Negatives Effect
	 Classification criteria
	Method and parameters evaluation


	RESULTS EVALUATION
	COMPARATIVE ANALYSIS
	Conclusion
	References

