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Abstract—Wireless sensor network-based technologies and ap-
plications have attracted a lot of attention in the past two decades
because of their huge potential to change people’s way of life.
These applications usually need close collaboration among mul-
tiple sensors, gateways, services and end users. When developing
these applications, system designers and practitioners usually
face several performance requirements such as the accuracy,
battery life and system reliability. Given the hard requirements in
system performance, how to choose an optimal combination from
various sensors, algorithms and collaborative systems to form
the application is the most important problem that practitioners
need to address. Ad hoc solutions were proposed in specific
applications in the past; however, a general methodology that can
be easily applied to future applications is lacking. In this paper,
we take the challenge and propose a general framework aiming
to address the component selection problem, illustrate how this
framework can be applied to real life applications through a
case study, and discuss challenging issues and two interesting
finds from our implementation.
Keywords : component selection, collaborative sensing

I. INTRODUCTION

The fast development and deployment of wireless commu-
nication technologies, and mobile devices, including sensors,
robots, smart phones and tablets, have significantly changed
the way we live [1], [2], [3], [4], [5], [6]. Wireless sensor
network-based technologies and applications have been widely
used in process management, health care monitoring, and
environmental sensing, and so on. Trans-disciplinary collab-
oration is very common in these applications. For example, a
wireless health application needs closely collaboration from
health and medical research groups, mechanical engineers,
computer scientists, doctors and nurses, and health insurance
companies. System design is one of the most important tasks
in the collaborative sensing application development. There
are several challenges that need to be addressed in the design
of collaborative sensing applications. One such challenge is
meeting the performance requirements from service providers
and end users. These requirements could cover quality of
information, battery life, hardware size and weight, and system
cost, and so on [7], [8], [9]. Moreover, in some applications,
the performance requirements could not be fixed, but are
adaptive. For example, a sensor could working in a high power
mode to achieve good performance when it is powered by a
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Fig. 1. System overview of a collaborative sensing application.

plug, and it could also turn to a worse performance to conserve
energy and extend battery life when powered by the battery.

In designing collaborative sensing applications, practitioners
normally face a great deal of choices in the components of the
applications. Figure 1 shows a conceptual view of a typical
collaborative monitoring application’s system structure. When
a target event happens, raw data is collected on the spot by
wireless sensors, and then sent to data aggregator through
wireless communication channels such as Wi-Fi, Zig-bee or
Blue-tooth. The raw data is then processed in the decision
maker, and then a decision is made based on the result of
the detection algorithm with processed data as input. In the
decision making process, the decision maker could also refer
to the data reported by the outside systems. For example, a
fire detection system makes decision mainly on the smoke
detection sensor, however, it could also use a real-time camera
to find the fire source and use this information in making the
decision.

Combination of system components such as sensors, data
transfer methods, detection algorithms and reference data
sources obviously have significant impact on system’s per-
formance. Moreover, the number of combinations could be
considerable large and practitioners could feels no place to
start when facing such a large dataset. In this way, how to
choose the appropriate combination of system components
that can meet the performance requirement with less cost is
the key issue in collaborative sensing application design. The
practitioners could test all of the component combinations
to find the best solution, if possible. However, it could be
a tediously long process to go through the whole dataset.
Best to the authors’ knowledge, a much more efficient method
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to optimize the component selection is still a missing part
in the collaborative sensing area. In this paper, we take the
challenge and propose a general framework aiming to address
the component selection problem.

The remainder of this paper is organized as follows. In
Section II, we survey the related research works in current
literature. In Section III we propose performance vector, which
is a metric can be used in evaluating the performance of
multiple component combinations for different requirements.
Section IV depicts a methodology for using performance
vector in optimizing component combination selection. A case
study using our methodology is introduced in Section V. We
further discuss two interesting findings we have observed in
the case study in Section VI. Finally, concluding remarks and
future work are presented in Section VII.

II. RELATED WORK

Performance evaluation for collaborative sensing applica-
tions has been studied in extensive research work [10], [11],
[12], [13], [14], [15]. In [16], Zeigel et al. proposed the notion
of weighted diagnostic distortion (WDD), which is a novel
measure for data quality in a health care related application.
Based on this work, a general methodology for developing
quality of information for body sensor design was proposed
in [17]. In this work, the authors claim that the performance of
the application should be evaluated based on their capability
in finishing the desired job. However, the work above did
not give a general framework that can be used in evaluate
the performance of collaborative sensing applications from
different requirement aspects.

In wireless sensor network area, various sensor selection
schemes are developed to make trade off between power
conservation and quality of service [18], [19], [20]. More-
over, several work mentioned that component selection is a
important issue in system design [1], [2]. To the best of our
knowledge, a general framework for component selection has
not been proposed yet in the literature.

III. PERFORMANCE METRICS VECTOR

There are several performance requirements for a col-
laborative sensing application, including those from service
providers, end users, and/or hardware constrains. In designing
and developing collaborative sensing applications, practition-
ers need to understand the performance of the system very
well in order to satisfy the requirements. With multiple re-
quirements and a large number of component choices, it is
very difficulty for the practitioners to evaluate and compare
every choice. In this section, we propose performance vector,
which is a metric can be used in evaluating the performance
of different component combinations.

A. Performance requirements

Before designing the combination of components for an
application, it is extremely significant for the practitioners to
define the requirements of performance very clearly. Moreover,
it is also very important that the proper metrics to describe the

performance are selected. For instance, to demonstrate Quality
of Information (QoI) [15], [21], [22], practitioners can choose
root mean square error (RMSE), percentage RMS difference
(PRD), or signal to noise ratios (SNR), and so on. Moreover,
the requirements could cover various aspects such as accuracy,
battery life, sensor size and weight, and so on. In this paper, we
use Rx to indicate the performance requirements. For example,
RAccuracy = 90% means the application requires accuracy to
be at least 90%, and RBatteyLife = 24 hrs imply the system
should work longer than one day before battery runs out.

B. Performance score

To demonstrate the performance of a component combi-
nation i, we introduce Pi,x. For example, Pi,Accuracy= 90%
means the accuracy of component combination i is 90%. We
also come up with a performance score Si,x to denote the
relationship between the performance and requirement for a
component combination.

Si,x =


Pi,x if performance is better than

or equal to Rx,

Null if performance is worse than Rx.

(1)

From Equation 1 we can see that the performance score
Si,x is Null if the performance of component combination
i cannot satisfy the requirement Rx. We also set the value
of performance score to be Pi,x, so that the practitioners
can easily compare the performance of different component
combinations.

C. Performance vector

With performance score Si,x one can describe the com-
ponent combination’s performance for one requirement very
clearly. Nevertheless, there are normally multiple requirements
for a collaborative sensing application. In this case, practition-
ers need a metric to demonstrate a component combination’s
performance from several requirement aspects. To overall
evaluate the performance of a component combination, we
define performance vector V as follows:

Vi =< Si,1, Si,2, ..., Si,n > (2)

In this way, practitioners can easily eliminate the combinations
that do not meet all of the performance requirements if there
is Null in their performance vector. Moreover, they can also
compare the performance over multiple requirement aspects
between component combinations intuitively.

D. A toy example

In order to better demonstrate how the performance vector
can help practitioners in component combination selection,
we build a very simple toy example. In this toy example,
the target application has two requirements in performance,
RAccuracy and RBatteryLife. For the practitioners, there are
four available component combinations, denoted as CC1,
CC2, CC3, and CC4. After measurement and calculation,
we get the performance vectors of these four combinations
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as V1 =< 0.3, Null >, V2 =< 0.3, 3 >, V3 =< Null, 4 >,
and V4 =< 0.5, 5 >.

In this case, combination 1 can not be choose because
S1,BatteryLife = Null, which means the battery life of this
component combination can not satisfy the requirement. Simi-
larly, combination 3 should also be excluded since S3,Accuracy

is Null. Combination 4 is the optimal choice because both
S4,Accuracy and S4,BatteryLife are larger than that of combi-
nation 2, which means combination 4 has a better accuracy,
while the battery life is longer than combination 2.

IV. METHODOLOGY FOR USING PERFORMANCE VECTOR

As shown in the toy example in last section, with perfor-
mance vector, practitioners can make the optimal choice of
component combinations for an application. However, There
could be a large number of possible combinations in a complex
application, and only a small portion of them can meet
the requirements. In this paper, we name these component
combinations as ‘possible combinations’. In order to conserve
the workload and improve the efficient in system designing,
practitioners should calculate the performance vector only for
the possible combinations rather than the whole sets. In this
section, we propose a methodology that can be applied easily
to eliminate the impossible combinations and find the optimal
choice through calculating the performance vector of possible
combinations.

1) Define performance requirement: Based on the perfor-
mance requirements from service providers, end users, and/or
hardware consratins, and so on, the practitioners need to
define and quantize the requirements into a set of values
< R1, R2, R3, ..., Rn >.

2) List all the component combinations: In this step, the
practitioners need firstly define the components in the system
design, and then find all the available choices for each com-
ponent. With the number of components m, and ni for the
number of available choices in component i, we can have

Number of component combinations =
m∏
i=1

ni (3)

3) Sort the list for each requirement: For one component,
it is usually not difficult to order the available choices based
on the given requirement by using the empirical approach or
a simple experiment. In this step, practitioners should sort the
list in previous step for each component and each requirement
separately.

4) find and test the best combination for each requirement:
When the practitioners have the sorted list of component com-
binations for each requirement, it is very simple to find the best
performance combination for each requirement. Practitioners
should then test the best combinations to see if they can
meet the requirements. If any of the performance vectors has
Null inside, which means for some requirement, even the best
combination can not satisfy it. In this case, practitioners should
either consider lowering the requirement, or trying to change
the system design. For example, leverage other technologies
to make new components.

5) Exclude impossible component combinations: To find
the impossible component, practitioners can start with the best
combinations in Step 4. By replacing only one component
choice in the best combinations, practitioners can easily test if
the replacement is possible or not for the application. For this
test, practitioner should always start with the ‘worst’ choice in
the sorted list in Step 3. This step has significant influence in
reducing the workload for component combination selection.
For example, in a dataset of 100 component combinations,
if we can reduce the possible choices in one component
from 5 to 4, which means we exclude only one choice for
this component, the total dataset size will be reduced to
100×4÷5 = 80. In other word, we reduce 20 % of the dataset
size by only eliminate one choice from one component.

6) Calculate performance vector for all the possible com-
binations: After exclude the impossible combinations, practi-
tioners can calculate the performance vector for the remaining
part. If any of the Si,x is Null, this combination i should
be eliminated from the possible combinations, and there is no
need to calculate other Si,x in Vi.

7) Find the optimal combination: Now practitioners should
have a table of the performance vectors for all the possible
combinations, and they can choose the optimal combination
based on the highest score in the table. In some applications,
there is no component combination that achieves best perfor-
mance score for all the requirement. In this circumstance, the
practitioners need to make a choice depend on the focus or
key requirement.

V. APPLYING PERFORMANCE VECTOR IN A REAL
APPLICATION: WALKING POSITION DETECTION

In this section, we declare how to use our methodology
in a real collaborative sensing application. A wireless low-
power fall detection application called Asgard [23] was used
in this case study. An Asgard wireless sensor contains an
accelerometer collecting acceleration, a flash memory that can
store the data, and a CPU to process the data. Asgard sensor
was fixed on the left ankle of each user, and each user was
asked to walk 100 steps on flat ground and take stairs for
another 100 steps. Practitioners wanted to identify the walking
segment that is shown in the left part of Figure 2 and the stair
segment that is depicted in the right part. In addition, they
also wanted to count exactly how many steps were performed
on flat ground and on stairs. The acceleration in the detection
of gravity (Ag) was calculated by applying the Pythagorean
Theorem.

Ag =
√
x2 + y2 + z2 (4)

In this case study, the decision-making algorithm put a thresh-
old on Ag and used it to identify the walking segment and the
stair segment.

A. Define performance requirement

In this application, there are three performance requirements
that need to be satisfied:
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Fig. 2. The walking segment and the stair segment.

1) Accuracy: There is no doubt that the quality of data is
the most notable feature in collaborative sensing applications.
No matter if we consider service providers or receivers, the
fidelity of the application is always the highest priority issue to
be taken care of [24], [17]. In order to measure the accuracy of
the detection, we introduce three measures in statistics, which
are precision, recall and Fscore. In this application, there are
two events, walking on flat ground and taking stairs, so the
algorithm will have the following four outputs.

True positive (TP): stair step correctly identified as stair
step.

False positive (FP): flat ground step incorrectly identified as
stair step.

True negative (TN): flat ground step correctly identified as
flat ground step.

False negative (FN): stair step incorrectly identified as flat
ground step.

Then we also list the definitions of precision and recall here.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

From the above equations we can deduce that both precision
and recall scales are from 0 to 1, and in the ideal case,
both precision and recall are equal to 1. In addition, we can
understand that the larger precision and recall indicated the
better performance our algorithm gives. In order to measure
the accuracy of the system with precision and recall, we
introduced Fscore, which is the harmonic mean of precision
and recall:

Fscore = 2× Precision×Recall

Precision+Recall
(7)

We can also deduce that Fscore scales from 0 to 1, and in
the ideal case, Fscore = 1. Similar to precision and recall,
a larger Fscore means our detection is more accurate. In this
application, service providers came up with the requirement
of Fscore to be 0.9 for the fidelity of the data, so we set
RAccuracy = 0.9.

2) Battery Life: Because Asgard is powered by a battery,
battery life is another key requirement to evaluate its per-
formance [25], [26]. In this application, end user want that
the Asgard sensor can work for more than one week without
recharge the battery for convenience [27], which means the
battery life should be longer than 24 × 7 = 168 hrs. In our
expression, RBatteryLife = 168.

3) Data quantity: The storage size of Asgard sensor is
512 MB, subjected to this hardware constrain, there should
be a requirement in data quantity. In this case study, we set
RDataQuantity = 512 to restrict the amount of data collected
by Asgard sensor.

As a conclusion, there are three performance requirements
for this application, RAccuracy = 0.9, RBatteryLife = 168,
and RDataQuantity = 512.

B. Component combination analysis

1) Component with multiple choices: In this application,
we found that there are three components that have multiple
choices.

First is the number of axes of accelerometer we use in the
application. Asgard sensor uses a 3-axes accelerometer, which
means we can get the data from x, y, and z axes. In this
case study, we have the following seven choices in axes: xyz,
xy, xz, yz, x, y, and z. Using different number of axes does
not affect battery life significantly since all the three axes are
collecting data and we cannot shut down any axe while the
sensor is working. However, it could affect the accuracy and
data quantity a lot.

The second component that we can leverage is the sampling
rate of the accelerometer. Asgard sensor allows us to configure
the sampling rate to four distinctive values: 6 Hz, 15 Hz, 50
Hz, and 200 Hz. Using different sampling rate has influence
on accuracy, battery life and data quantity.

The last component is decimal digits. In Asgard sensor, we
can flexibly compress the data size to different decimal digits
or even round it to integer. In this application, we tried four
different decimal digits, which are a.bcd, a.bc, a.b, and integer
part a only. Similar to the choice of axes, different decimal
digits has influence on accuracy and data quantity, but can
barely affect battery life because decimal digits is fixed to be
a.bcd in raw data collection.

By applying equation 3, The total number of component
combinations is 7× 4× 4 = 112.

2) Sort the combinations: Common knowledge tells us that
for the choice of axes, more axes could lead to a better
accuracy, however, it could also use more space to store
the data; and a higher sampling rate usually means a better
accuracy, a larger data quantity and a shorter battery life,
considering it could consume more power for data collection;
similarly, more decimal digits stands for a better accuracy, but
a larger data quantity.

Based on the above analysis, we sort all the component
combinations for each of the requirements, as shown in the
following table.

As we can see from this table, using more axes, more
decimal digit, and higher sampling rate will take more space
to store data and consumes more energy, however, accuracy
could also be increased as a benefit.

3) The best combination: According to the above table, for
accuracy, the best component combination is xyz + a.bcd +
200 Hz. We tested this combination and find out the accuracy
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Axes Decimal digit Sampling Rate

xyz a.bcd 200 Hz

xy/xz/yz a.bc 50 Hz

x/y/z a.b 15 Hz
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PAccuracy is 1.0. Since PAccuracy > RAccuracy , it passes the
test.

For battery life, the best combination is x + a + 6 Hz. The
battery life is calculated by the following equation.

battery life =
battery capacity

power dispassion
working voltage

(8)

Asgard sensor has the battery capacity of 2100 mAh with
working voltage at 4V , and we measured the power consump-
tion for 6 Hz sampling rate is 29 mW. By applying Equation 8,
we have PBatteryLife = 290, which has a better performance
than RBatteryLife = 168.

For data quantity, combination x + a + 6 Hz is still the
best combination. For each data entry, we need to have at
least two Bytes to store it, one is sign bit and another is the
number. Each second, this combination will generate 6× 2 =
12 B data, and since RBatteryLife = 168, the total data size
PDataQuantity is 168 × 3600 × 12 = 7.2576 MB, which is
smaller than RDataQuantity = 512.

4) Exclude impossible component combinations: In this
case study, we first tested 200 Hz sampling rate. For 200 Hz
sampling rate, the longest battery life it could achieve is using
combination: x/y/z + 200 Hz + a. The PBatteryLife we got
for this combination is 88, which is less than RBatteryLife

= 168. So in this test, we exclude 200 Hz from the possible
choice.

We then replace the number of axes in the best combi-
nations. We tried to use only two axes, which gives us the
combinations xy/xz/yz + 50 Hz + a.bcd for the best accuracy.
The test result is show in Figure 3.
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Fig. 3. Accuracy of different axes combination.

From Figure 3 we can see, only using all of the three axes
can provide PAccuracy = 0.9 = RAccuracy , so in this test,
we eliminate all the axes choices but xyz, since it is the only
possible component choice.

We also tested 6 Hz sampling rate for the best accuracy
requirement it can achieve. By testing combination xyz + 6
Hz + a.bcd, we got PAccuracy = 0.87, which is smaller than
RAccuracy . So we exclude 6 Hz sampling rate from possible
component choice list.

For decimal digits, we tested choice integer a. The best
accuracy it can get is through combination xyz + 50 Hz +
a, and the test result shows PAccuracy = 0.87. This means
only save the integer data is not accurate enough for this
application.

5) Performance vector for all the possible combinations:
After the above elimination, there are only 6 possible
combinations left, we name them CC1 to CC6 and list all of
them in the following table.

Name Component combination
CC1 xyz + 15 Hz +a.b
CC2 xyz + 15 Hz +a.bc
CC3 xyz + 15 Hz +a.bcd
CC4 xyz + 50 Hz +a.b
CC5 xyz + 50 Hz +a.bc
CC6 xyz + 50 Hz +a.bcd

We then measure the performance of these 6 component
combinations from accuracy, battery life and data quantity.

Accuracy:
In this case study, we calculate the Fscore and show the

result in Figure 4.
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Fig. 4. Fscore of component combinations.

By applying Equation 1, we get the Si,Accuracy for all the
six component combinations and list them in the following
table.
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S1,Accuracy 0.9
S2,Accuracy 0.9
S3,Accuracy 0.91
S4,Accuracy Null
S5,Accuracy Null
S6,Accuracy 0.9

From the table above we can see that both S4,Accuracy and
S5,Accuracy are Null, which means component combinations
CC4 and CC5 cannot be used in the application, so in the
following measurement, we only consider component combi-
nations CC1, CC2, CC3, and CC6.

Data quantity:
In this case study, for each data entry, we need to have

one Byte to store sign bit and one more for each number.
In the table below we list the format of one data entry for
component combinations CC1, CC2, CC3, and CC6.

CCi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 ± x bx ± y by ± z bz
2 ± x bx cx ± y by cy ± z bz cz
3 ± x bx cx dx ± y by cy dy ± z bz cz dz
6 ± x bx cx dx ± y by cy dy ± z bz cz dz

As we can see from the table, the length of one data entry
for component combinations CC1, CC2, CC3, and CC6

respectively are 9 B, 12 B, 15 B, and 15 B. By applying
the following equation:

PDataquantity = Sampling rate× Battery life
×Length of one data entry

(9)

We can have the SDataquantity for each component
combination, as listed in this table:

S1,DataQuantity 81.684
S2,DataQuantity 108.864
S3,DataQuantityy 136.08
S6,DataQuantity 453.6

All of these four component combinations meets the require-
ment for data quantity, which is RDataQuantity = 512.

Battery Life:
As we have discussed before, only sampling rate has influ-

ence on battery life, and since we have collected PBatteryLife

for 6 Hz and 200 Hz in the previous tests, here we present all
of the results in one figure. Firstly, we measured the power
dissipation for all of the four sampling rates, as shown in
Figure 5.

By applying Equation 8 to the data in Figure 5, we get
the PBatteryLife for all the four sampling rates, and the
result is demonstrated in Figure 6. We continue calculating the
SBatteryLife for all the four component combinations, and list
the result in the table below.
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Fig. 5. Effect of sampling rate on power dissipation.
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Fig. 6. Effect of sampling rate on PBatteryLife.

S1,BatteryLife 210
S2,BatteryLife 210
S3,BatteryLife 210
S6,BatteryLife Null

Since S6,BatteryLife = Null, we need to exclude CC6 from
the possible combinations.

Now we have three component combinations left, and all
of them meet the requirements from accuracy, battery life and
data quantity. We summarize their performance and get their
performance vector in this table:

Combination Si,Accuracy Si,BatteryLife Si,DataQuantity

CC1 0.9 210 81.684
CC2 0.9 210 108.864
CC3 0.91 210 136.08

C. Find the optimal combination

From the table above we can see that all of the component
combinations have the same performance in battery life, and
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preform very similarly in accuracy. However, since CC1 uses
much less storage space compared with CC2 and CC3, in this
application, we select CC1 as the best combination and use it
in the real application developent.

VI. TWO INTERESTING FINDINGS IN THE CASE STUDY

When we are testing our methodology for using perfor-
mance vector in our case study, we fully studied the relation-
ship between data quality, battery life and data quantity for the
application. We observed two interesting phenomenons during
in case study. The first one is the effect of decision making
algorithm on data quality, and the second one is different
operation periods for battery.

A. Effect of decision making algorithm on data quality

In our case study, we first collected data using these four
sampling rates and ran the classification algorithm on them,
respectively. The threshold used in the algorithm was firstly
set to 4.8 empirically, and the Fscore was then calculated and
shown in Figure 7. As expected, the Fscore of the datasets has
a positive correlation with the sampling rate, which suggests
that with a larger quantity of data as input, decision makers
can more easily make the correct diagnosis.
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Fig. 7. Effect of sampling rate on Fscore.

By analyzing the raw data collected at different sampling
rates, we found that the information that is useful in diagnosis
is presented in a more detailed fashion with a larger sampling
rate. However, a problem was also introduced when increasing
the sampling rate. The difference between the walking segment
and the stair segment was reduced since both of them contain
more details at a larger sampling rate, which could lead to a
worse performance of classification even if the sampling rate
is enlarged. Based on this observation, we applied a series of
thresholds from 4.6 to 6.2 on the four datasets and tested their
accuracy separately. Figure 8 and Figure 9 show the recall and
precision, and the Fscore is presented in Figure 10.

We can see from Figure 8 that no matter which threshold
is used, the recall will not decrease when enlarging the
sampling rate, or in other words, it is easier to identify the
step movements from the non-step ones such as standing still.
Nevertheless, Figure 9 tells us that in most cases, the precision
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Fig. 8. Effect of threshold on Recall.
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decreases while the sampling rate increases from 6 Hz to 200
Hz, which verifies our deduction that it is more difficult to
identify the stair segments from the walking segments when
the data is collected at a larger sampling rate. Then we took
these two factors into consideration and got Figure 10, from
which we can see that when the threshold is below 5, the
performance increases with the sampling rate; however, if we
take a look at the overall figure, the Fscore of each sampling
rate varies. For 50 Hz and 200 Hz, the accuracy of the
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algorithm decreases when enlarging the threshold, and for 15
Hz the Fscore does not vibrate too much; however, for 6 Hz
the performance becomes better if we use a larger threshold.
This means each sampling rate reaches its highest Fscore at
different thresholds and the algorithm should be adapted when
the sampling rate is changed to get the best accuracy.
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Fig. 11. Highest Fscore each sampling rate can get.

Based on the above observation, we extracted the best
performance that each sampling rate can get from adaptive
thresholds and showed the results in Figure 11. Comparing it
with Figure 7 we can make the following two conclusions.
First is that enlarging the data quantity in this case study will
not increase the data quality too much. As shown in Figure
11, both 6 Hz and 15 Hz can get the Fscore around 0.9,
which is the highest Fscore that 50 Hz can get. Second, if
the practitioners have to exchange some data quantity for a
longer battery life, they can modify the algorithm to shrink
the gap of data quality introduced by this trade off. In some
cases, the practitioners can attempted to use a cheaper or more
energy saving sensor but still achieve a good performance
if the corresponding decision making algorithm is properly
modified [28], [29], [30]. We believe the second finding here
can be applied to other wireless health applications and benefit
their practitioners in similar situations [31].

B. Three operation period for battery

In the case study, we have observed that when the battery
is about to running out, Asgard sensor works abnormally by
logging incorrect data. To better understand the reason of
this abnormality, the operating characteristic of batteries was
analyzed first to give us a better understanding of a battery’s
discharge process [32]. We first fully charged the battery of
Asgard sensor, then configured the sensor to continually log
acceleration data at 200 Hz sampling rate until the battery runs
out. Considering 88 hours of battery life is too long for us to
monitor, we changed to a 400 mAh battery. During the whole
process we kept measuring the working voltage of the sensor
to get the discharge curve of the battery, as shown in Figure
12.

Figure 12 shows that the Asgard sensor can continually
work for 17 hours for one charge, and the working voltage
of the sensor drops from 4.1V to 2.5V until the battery runs
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Fig. 12. Discharge curve of Asgard sensor battery.

out. Also, we can see from Figure 12 that during the first 16
hours of 17 hours working time, the working voltage is only
changed subtly from 4.1V to 3.7V . In the last hour, however,
the working voltage decreases significantly until the sensor
shuts down.

Working voltage has a significant impact on the performance
stability of electronic devices. While the battery is running out,
there is usually a certain stage in which the device can still
be powered by the battery, yet the performance is not stable
due to the low working voltage level. This phenomenon is
more likely observed on a low-power device. For example, a
flashlight could be dim or work intermittently when the battery
runs out. Since wireless health applications generally use low-
power sensors to guarantee a long battery life, such as in this
case study the power dispassion of the Asgard sensor is lower
than 100mW , we suspect that this phenomenon could also
appear in wireless health applications that involve low-power
sensors. To verify this hypothesis, we performed an off-body
analysis on an Asgard sensor. In the off-body analysis, one
Asgard sensor powered by a battery was placed on a flat table
as the treatment group, and we also set another Asgard sensor
powered by a wire on the same table as the control group.
We kept recording the acceleration reported by both sensors
until the battery of the first sensor ran out. The results show
that the wire powered sensor reports 9.8m/s2 throughout the
process, and the data reported by the battery powered sensor
is shown in Figure 13.
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Fig. 13. Effect of working voltage on Asgard sensor.
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Figure 13 shows that when the working voltage drops
from 4.1V to 3.4V , the sensor works normally and reports
the correct acceleration. However, when the working voltage
is below 3.4V , the data reported by the sensor drops with
the working voltage. Finally, when the working voltage is
lower than 2.7V , the sensor does not work. Based on this
observation, we define the following three sensor operation
periods:

Working Period (WP): when the battery capacity is suffi-
cient so that the sensor can work normally.

Transfer Period (TP): when the working voltage is low and
the sensor’s performance is affected.

Non Working Period (NWP): when the working voltage is
too low to support the sensor.

In this case study, the sensor first worked in the working
period, which means the stage when the working voltage is
between 4.1V and 3.4V . Then the working voltage dropped
from 3.4V to 2.7V , which means the sensor worked in the
transfer period. Last, the sensor went to the non working
period when the working voltage was below 2.7V . Obviously,
The deviation between the values reported by these two
sensors powered by the wire and battery affected the accuracy
of the fall detection algorithm in the Asgard system. However,
it is usually an arduous task to catch the transfer period during
real usage of the sensor. In this case study, in order to evaluate
the influence of the error introduced by the low working
voltage on data quality, we used the normalized root-mean-
square deviation (NRMSD) to show the difference between
the values reported by the wire powered Asgard sensor and
the values reported by the battery powered one, where lower
values indicate less residual variance.

RMSD =

√∑n
i=1(xb,i − xw,i)2

n
(10)

NRMSD =
RMSD

xmax − xmin
(11)

In Equation 10, xb denotes the values collected by the
battery powered sensor, and xw denotes the data from wire
powered sensor. Variable n was set to 1000, which means for
every 0.1V from 2.7V to 3.4V . We collected 1000 samples
and used them to calculate the result. NRMSD of these two
datasets is shown in Figure 14.

Figure 14 shows that data quality in the transfer period is not
as good as when battery capacity is sufficient, and it becomes
worse when working voltage keeps decreasing. In order to
identify how long the transfer period lasts, we zoomed in on
Figure 12 and located the points corresponding to 3.4V and
2.7V . The result is presented in Figure 15. From Figure 15 we
can see that the transfer period took about 15 minutes in the
17-hour working period. This may not be a large number, but if
we extend the battery life to days or even months, the transfer
period could also be prolonged to hours or days. Since the data
collected in this stage is highly unreliable, the practitioners
must be aware of this stage and take appropriate measures to
avoid making incorrect decisions from it.
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Fig. 14. Data quality recession in the transfer period.
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Fig. 15. Three operation periods of battery.

VII. CONCLUSIONS AND FUTURE WORK

In the design and development of collaborative sensing
applications, practitioners usually face several performance
requirements from service providers, end users, and/or hard-
ware constrains. Moreover, there could be a large number of
available choices for different components in the application.
To help the practitioners to select the optimal component
combinations that can meet the performance requirements and
reduce cost as much as possible at the same time, we proposed
performance evaluation metrics and a methodology for using
performance vector. We tested our methodology through a case
study, and the result showed that our methodology is very ef-
ficient in finding the optimal component combination. Finally,
we discussed two interesting findings we have observed in the
case study, one is the effect of decision making algorithm on
data quality, and the other is different operation periods for
battery.

The case study used in this paper is rather simple, and the
requirements are not difficult to measure and quantize. Find-
ing an efficient way to deal with multiple multidimensional
parameters is still a challenge. In the future, we will apply our
methodology to more complicated applications with reference
data from outside systems.
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