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Abstract—Distributed vertex-centric graph processing systems
have been recently proposed to perform different types of
analytics on large graphs. These systems utilize the parallelism of
shared nothing clusters. In this work we propose a novel model for
the performance cost of such clusters. We also define novel metrics
related to the workload balance and network communication cost
of clusters processing massive real graph datasets. We empirically
investigate the effects of different graph partitioning mechanisms
and their tradeoff for two different categories of graph processing
algorithms.
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I. INTRODUCTION

The importance of graph as fundamental structures for
representing, understanding, and analyzing relationships in
many diverse domains can hardly be overemphasized. This
is evidenced by the fact that graph storage, querying,
analytics and mining have continued to be highly active
areas of research over the past several decades. However,
the graphs in many emerging applications such as social
networks, WWW and bioinformatics are massive. Traditional
centralized graph computation algorithms cannot scale to
these sizes. Recently, research has focused on harnessing
the parallelism offered by shared nothing clusters for graph
analytics. Frameworks such as Pregel [1], Giraph [2],
GraphLab [3] and GPS [4] are notable efforts in this
direction. Most of these frameworks are based upon Bulk
Synchronous Parallel (BSP) [5] model for parallel comput-
ers. In the paradigm, the individual vertices of the graph
form the programming units. The computation logic is
expressed as a series of iterations, called supersteps. In a
given superstep, each vertex performs certain computations
which involves processing messages that it received from
the previous superstep, updating its own state and sending
messages to its neighboring vertices. The synchronization
occurs at the end of each superstep.

One of the factors that is critical to the performance of
vertex-centric BSP frameworks is the manner in which the
graph data is partitioned and placed on various machines of
the cluster. This is so because graph partitioning not only
affects the amount of communication that needs to happen at
the end of each superstep but also the computational loads

placed on the machines during the computation. However,
the interactions among various aspects of vertex-centric graph
processing paradigm such as loads on individual processors,
available network bandwidth and the nature of the graph pro-
cessing algorithms (in terms of their computation localization
properties), and their effects on the performance of various
graph partitioning strategies are not well understood.

The objective of this paper is to study the behaviors of
graph partitioning strategies on the performance and scalability
of vertex-centric graph processing clusters. Towards this end,
we first present a novel model to analyze the performance of
vertex-centric graph processing clusters. This model works at
the granularity of individual supersteps, and it incorporates im-
portant parameters such as computational loads on processors,
messaging loads between pairs of processors and available
computation and communication resources with in the cluster.
This model can be used to theoritcally compare different graph
partitioning strategies. Second, we present a novel categoriza-
tion of graph algorithms based on their message passing and
load distribution behaviors over the duration of the computa-
tion. Third, we provide a detailed experimental study involving
massive real world graphs (millions of vertices and edges) on
Amazon EC2 clusters with varying number of compute nodes.
We also introduce novel metrics to accurately measure the load
balancing and communication charachteristics of vertex-centric
graph computations.

The rest of the paper is as follows: In section 2 we describe
background and vertex-centric graph processing model of com-
putation. In section 3 we describe the performance cost of this
model and provide formal specifications. In the next section
we discuss the metrics used for measuring the performance in
our experiments. This sections also includes the experiments
setups and Results. In section 5 we discuss the related works.
The paper will conclude in section 6.

II. BACKGROUND AND MOTIVATION

Since the introduction of MapReduce [6], many systems
have used this model to process large graphs. In these systems,
graph algorithms can be modeled effectively as a sequence of
chained MapReduce jobs. However, this model is not appro-
priate for performing graph algorithms from the perspective of
both data and computation model [7], [8].
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Initially, the data need to be modeled as key-value pairs
in order for MapReduce jobs to proceed. However, modeling
graph algorithms as sequences of such functional programming
constructs that operate on key-value pairs are not necessarily
efficient or easy. Additionally, graph algorithms by nature
are iterative where computation includes several iterations of
similar operations that are performed on graph vertices. Using
MapReduce to model graph algorithms will yield iterative
disk intensive jobs in which the entire state of graph should
be transferred from one iteration to another in order for the
computation to proceed. During computation of the arbitrary
graph algorithm in a large scale environment, distribution over
many machines makes memory access time as well as I/O
overhead worse and consequently affects the performance of
the framework [1].

Another computation model that has been used recently
for parallel processing of large graphs is Valiant’s Bulk Syn-
chronous Parallel (BSP) [5] model. BSP (as mentioned in [5])
is a ”bridging model” for general purpose parallel computa-
tion, that is parallelism across a wide range of applications
and architectures. In BSP paradigm, computation consists of
a series of iterations named supersteps. Each superstep is
divided into three phases as follows:

• Computation, where each process using local data
stored in memory of its processor performs the com-
putation.

• Communication, where the processes send and receive
messages needed for the computation to proceed.

• Barrier Synchronization, where all the communica-
tions are complete and the data sent by processors
are available for the destination processors in the next
superstep.

Computation based on this parallel model will finally
be terminated once it goes through the desired number of
supersteps or a specific convergence criterion passes a certain
threshold.

Pregel [1] used the above computation model to process
large graphs by applying a vertex-centric approach to imple-
mentation of graph algorithms. In this approach, vertices of
the graphs are considered as the work units that are partitioned
among processor nodes of a cluster. At the beginning of each
superstep, in the computation phase the processor nodes of
the cluster receive messages from the previous superstep and
perform the user defined logic of computation in parallel on
each of the work units by running a compute method on each of
the vertices. Once a processor node finishes the processing of
its work units it begins the communication phase where it sends
messages to other vertices (possibly located at other processor
nodes) along graph edges. Finally, in the synchronization phase
the processor nodes will wait for the slowest processor to
finish processing and sending its messages and then they
become synchronized. This marks the end of one superstep
and afterwards all the processor nodes start the next superstep.

In order for the computation to terminate, graph vertices
need to inform each other whether they participate in the
computation. In other words, they need to be stateful. Pregel
considers two states for each graph vertex along with a
mechanism called voting to halt (that involves graph vertices

changing their states between the two states) to achieve state-
fulness of vertices and subsequently mark the end of com-
putation. Initially in the first superstep all the graph vertices
are in the active state. Active graph vertices participate in the
computation. After the computation on each active vertex is
completed, it changes its state to inactive in order to inform
other vertices that it has no further work to do. Inactive vertices
will not participate in the computation in the next superstep
unless they receive a message from other vertices at which
point they will change their state back to active and will
participate in the computation. The computation ends when
all the graph vertices are in the inactive state and there are no
messages left among vertices to process.

Vertex-centric processing of graphs with the use of BSP
computational model leads to interaction of several factors
that ultimately determines the performance of the underlying
cluster. In the next section, we identify these factors and
provide accurate and tractable model that describe the role
of each of these elements.

III. PERFORMANCE MODEL OF VERTEX-CENTRIC GRAPH
PROCESSING

Vertex-centric processing of graphs is of nature of parallel
computing. Similar to other parallel computations two major
factors that determine the performance of the computation are
the communication cost among the processor nodes of the
cluster and the computation cost of each of the processor nodes
of the cluster.

As mentioned in the previous section, in the vertex-centric
processing of a graph, an active vertex sends a message to
another vertex if there is an edge between them. Consequently,
the manner in which graph vertices are placed among processor
nodes affects the communication and computation of the clus-
ter and hence plays a key role in determining the performance
of the cluster. One approach to placement of graph vertices on
processor nodes can then be applying heuristics based graph
partitioning algorithms in order to compute the min-cuts of
the graphs with the goal of lowering the communication cost.
For instance, consider Fig.1 which illustrates the distribution
of a sample graph vertices on three processor nodes based
on the result of min-cut computation. As it is depicted, each
partition has same number of vertices. Moreover, each highly
connected partition of the graph is located on a processor node.
There are four intra-clusters edges (highlighted in bold) among
processor nodes. Such approach to placement of graph vertices
on processor nodes results in lower communication cost among
processor nodes. This is due to the fact that the majority
of the edges (which vertices will send messages along) are
accessible by each processor. Consequently, there will be fewer
messages that need to be sent among processor nodes in order
to access graph vertices. This approach, however, leads to load
imbalance among processor nodes as we will demonstrate later.

The other approach for placement of graph vertices on
processor nodes can be random partitioning of the graph
vertices. Fig. 2 represents the random partitioning of the same
exemplary graph of Fig. 1. As can be seen, in this approach
the communication among processor nodes is higher as there
are more intra-cluster edges. In this manner, processor nodes
need to constantly send messages among each other for the



computation to proceed. Despite resulting in higher communi-
cation cost, we will see that the advantage of such partitioning
is in achieving a better load balance among processor nodes
in case of some graph algorithms.

As it is exemplified in both figures 1 and 2, there exist
a trade off among computation and communication costs of
the cluster depending on how the graph vertices are assigned
to processor nodes. Next, we propose a formal performance
cost model for vertex-centric processing of graphs on a cluster
which reflects these trade offs and enables analyzing the
efficiency of vertex-centric graph processing algorithms.

A. Performance Cost Model

As described in section two, a superstep is divided into
three phases. Hence, the cost of a superstep relies on the cost
of each of its three phases: the (maximum) cost of the local
computation on each processor, the (maximum) cost of the
communication among processors and the cost of the barrier
synchronization at the end of the superstep. Thus the cost of
a superstep can be formulated as:

Cost of a Superstep = max
1≤i≤n

(Comp CostPi
)+

max
1≤i≤n

(Comm CostPi) + l
(1)

where Comp CostPi
and Comm CostPi are computation cost

and communication cost of the processor node i respectively
and n is the number of processor nodes. In the following
sections we provide formal descriptions for the cost of each
of the three phases and explain the factors that affect each
of them. In this paper we use the terms ”cost” and ”time”
interchangeably.

1) Computation: The cost of computation is related to the
amount of the load on the processors. In order to model the
cost of the computation phase of a single superstep, the first
criterion might be measuring the number of vertices that each
processor has to process during that superstep.

However, this approach is naive. The reason is due to the
fact that during each superstep not all vertices of a processor
node are active and only the vertices that are in the active state
will participate in the computation and constitute the load on a
processor node. For instance, all of the processor nodes in both
figures 1 and 2 have the same number of vertices but it does not
mean that they have the same amount of load. This is because
not all of the vertices might be active during a superstep. This
factor depends on the behavior of the graph algorithm in terms
of message passing as we will see in the next section. Thus,
in order to measure the load of a processor node, Number of
Active Vertices (NAV) reflects the right metric.

However, the mere measurement of the number of active
vertices is not sufficient to model the load of a processor
node. Another factor in determining the load is the Number
of Messages that a processor needs to process at the beginning
of each superstep. There can be circumstances where two
processor nodes have the same number of active vertices in
a superstep but one might have to process more messages
to determine the final number of active vertices that will
participate in the computation. This factor depends on the
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Fig. 1: Min-cut partitioning of a sample graph G(24,36)
among three processors; each processor node has 8 vertices;
4 intra-cluster edges (highlighted in bold) and 32 inter-cluster

edges

underlying graph structures and the distribution of degree of
the vertices. For instance as can be seen in both figures 1
and 2, vertices 1, 14, 20, 22 and 24 have degree of one and
hence have to process one message during a superstep whereas
vertices 5, 6, 13, 18 and 21 have higher degree and have to
process more messages.

Considering the above two factors, the detailed cost of the
computation phase of a single superstep can be formulated as:

Comp Cost(SSk) = max
1≤i≤n

(AV)× α+ max
1≤i≤n

(di × γ)× β (2)

where the first factor is the maximum number of Active
Vertices (AV) over n processor nodes multiplied by cost of main
operation α of computation (e.g. addition of multiplication)
and the second factor is the maximum number of messages
that a graph vertex with input degree d might receive with
probability γ times β, the cost of processing a message by
processor. It should be noticed that in the first superstep
the second factor would be zero because there would be no
messages to receive and process from the previous superstep.

2) Communication: The second factor that determines the
time of a single superstep is the length of the communication
phase. Since the processors in the cluster communicate in par-
allel, this time is the maximum time it takes the communication
network to deliver messages among processors. This cost is
related to maximum number of bytes that has to be sent or
received during a superstep and also is dependent on available
network bandwidth. We model this cost formally as:

Comm Cost(SSk) = max
1≤i≤n

(SentBytesPi
),ReceivedBytesPi

)/g

(3)
where the nominator of the fraction is the maximum number of
bytes to be sent or received by processor i among n processors
and g is network bandwidth.
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Fig. 2: Random partitioning of a sample graph G(24,36)
among three processors; each processor node has 8 vertices;

24 intra-cluster edges (highlighted in bold) and 12
inter-cluster edges

3) Synchronization: The final determining factor of time
of a superstep is the time it takes for all processor nodes
to become synchronized and ready for the execution of the
subsequent superstep. This would be a constant cost and is
dependent on the cost of sending a single message across the
diameter of the network among processor nodes in order to
synchronize themselves. We will not measure this cost in our
experiments and consider it as a constant cost l.

Considering the above equations we measure the time of
a single superstep when processing a vertex-centric graph
computation as follows:

Cost of a Superstep = max
1≤i≤n

(AV)× α+ max
1≤i≤n

(di × γ)× β+

max
1≤i≤n

(SentBytesi,ReceivedBytesi)/g + l

(4)
We begin our discussion by providing the pseudo codes

for two graph algorithms, namely PageRank [9] and Dijkstra’s
algorithm to Single Source Shortest Path problem [10] (SSSP,
here after) in Alg. 1 and 2, respectively. We have chosen
these two graph algorithms because of their differences in their
message passing behavior. In vertex-centric parallel processing
of a graph, a vertex changes its state to active upon receiving
a message from the previous superstep. Thus the manner in
which a graph vertex sends messages to other vertices can
be different for different graph algorithms. We provide the
following categories for graph algorithms.

B. Categorization of Graph Algorithms

We begin our discussion by providing the pseudo codes
for two graph algorithms, namely PageRank [9] and Dijkstra’s
algorithm to Single Source Shortest Path problem [10] (SSSP,
here after) in Alg. 1 and 2, respectively. We have chosen

these two graph algorithms because of their differences in their
message passing behavior. In vertex-centric parallel processing
of a graph, a vertex changes its state to active upon receiving
a message from the previous superstep. Thus the manner in
which a graph vertex sends messages to other vertices can
be different for different graph algorithms. We provide the
following categories for graph algorithms.

Assuming that a BSP based graph algorithm computation
is defined to be executed for n supersteps it can be categorized
as either:

• Globally Active Algorithms: if vertex i sends a
message to vertex j at superstep k, it will send
a message to vertex j in superstep k+1. The computa-
tion of these algorithms will terminate when exactly n
number of supersteps has been executed and finished.
PageRank algorithm is an example of this category.

• Locally Active Algorithms: if vertex i sends a message
to vertex j at superstep k, it might not necessarily
send a message to vertex j in superstep k + 1. The
computation of these algorithms might not necessar-
ily terminate when exactly n predefined number of
supersteps is reached. SSSP is representative of this
category.

As seen in Alg. 1 (line 13) during computation of PageRank a
vertex changes its state to inactive when the maximum number
of supersteps is reached. Otherwise it will continue to update
its value and participate in computation. On the other hand, as
shown in Alg. 2 an SSSP vertex will vote to halt whenever its
value does not update to a newer one (line 10). Otherwise it
will update its value with the new shortest distance from the
source vertex.

In other words, during the execution of a globally active
graph algorithm all the graph vertices are active and will
send and receive messages during each superstep. Thus, the
range of active vertices is global with respect to graph struc-
ture. Whereas, during the execution of locally active graph
algorithms, only local regions of graph vertices are in active
state and participate in the computation. In these algorithms,

Algorithm 1 Vertex-Centric Implementation of PageRank

1: function COMPUTEPR(msgs,superstep)
2: if vrtx has no ngbr then
3: V ote to Halt
4: end if
5: if superstep ≥ 1 then
6: sum← 0
7: for msg in msgs do
8: sum← sum+msg.val
9: end for

10: numV rts = len(ngbrs)
11: prV al← PR(sum, nmV rts)
12: sendMsg(ngbrs, numV rts)
13: if superstep = maxSuperStep then
14: V ote to Halt
15: end if
16: end if
17: end function



Algorithm 2 Vertex-Centric Implementation of SSSP

1: function COMPUTESSSP(msgs,superstep)
2: if IsSource(vID) then
3: minDis← 0
4: else
5: minDis←∞
6: end if
7: for msg in msgs do
8: mindDis = min(mindDis , msg.val)
9: end for

10: if minDis ≤ vrtxV al then
11: vrtxV al← minDis
12: sendMsg(ngbrs, vrtxV al)
13: else
14: V ote to Halt
15: end if
16: end function

TABLE I: Categorization of Graph Algorithms

Globally Active Locally Active
PageRank SSSP

HITS Minimal Spanning Tree
Bipartite Matching Graph Isomorphism

computation progress throughout different local parts of graph
structure as the computation proceeds.

Table I shows the categorization of some other graph
algorithms based on the above localization properties (globally
active vs locally active) of the graph algorithms. In next
section, we have chosen PageRank and SSSP as representatives
of each group and perform these computations in vertex-centric
paradigm on different real graph datasets with two different
graph partitioning strategies.

IV. EXPERIMENT AND EVALUATION

A. Performance Metrics

The existence of the cost model that is both tractable
and accurate makes it possible to analyze efficiency of graph
algorithms when the vertex-centric programming model is
utilized. As shown in eq. 4, the following strategies should be
considered in order to achieve high efficiency for a superstep
time:

• balance the computation in each superstep among pro-
cessors because of two reasons. First, the maximum
number of active vertices and number of messages
to process is considered among processors. Second,
in the barrier synchronization phase, processors must
wait for the slowest processor to complete its compu-
tation.

• balance the communication among processor nodes
since the maximum of received bytes and sent bytes
of data is taken among processor nodes.

In order to measure the load balance of a superstep in
terms of both of the factors (number of active vertices and
number of messages to receive) that affect the computation
phase of a superstep, we define the following metrics. For the

first factor we define the average of standard deviations of
number of active vertices over all supersteps to be the first
metric to measure the performance of load balance as follows:

Load Balanceav(N,K,A) =

K∑
k=1

(

√
N∑

i=1
(AV (Pik)−µ)2

N )

K
(5)

where Load Balanceav(N,K,A) is the load balance of N proces-
sor nodes during K supersteps when running graph algorithm
A (in terms of number of active vertices), AV(Pik) is the number
of active vertices for processor i at superstep k and µ is
the average number of active vertices on processor nodes in
superstep k. Similarly for the second factor of load balance
we define the following metric:

Load Balancerm(N,K,A) =

K∑
k=1

(

√
N∑

i=1
(RM(Pik)−µ)2

N )

K
(6)

where Load Balancerm(N,K,A) is the load balance of N proces-
sor nodes during K supersteps when running graph algorithm
A (in terms of number of received messages), rm(Pik) is the
number of received messages for processor i at superstep k
and µ is the average number of received messages by all
processor nodes in superstep k. In order to measure the cost
of the communication phase among N processor nodes during
K supersteps when running graph algorithm A, we define the
following metric which is the sum of the averages of sent and
received bytes.

Comm Cost(N,K,A) =
K∑
k=1

(

N∑
i=1

(SentBytes(Pik)

N
)+

K∑
k=1

(

N∑
i=1

(ReceivedBytes(Pik)

N
)

(7)

B. Experiments Setup

In order to measure the performance of vertex-centric graph
algorithms in terms of the above metrics, we have performed
extensive experiments on different data sets. The graph data
set information are shown at table II and are obtained by using
Webgraph software [11].

We have used Amazon EC2 instances in order to set up our
clusters with different sizes. We performed our experiments
on clusters with 2, 4 and 8 nodes in order to investigate the
effects of load balancing and communication cost on clusters
with different sizes. Each node in our cluster is an Amazon’s
”m3.medium” instance type with single core high frequency
Intel Xeon E5-2670 v2 cpu, 3.75 GB of memory running
Ubuntu Server 14.04. The performance of our communication
network among processor nodes is set at the moderate level.
We also have used GPS to implement vertex-centric implemen-
tation of PageRank and SSSP graph algorithms as provided in
Algorithms 1 and 2.

As the baseline for our experiments, first we examine the
random partitioning of graph vertices on processor nodes. In



TABLE II: Graph Information

Name of Graph Vertices Edges Description

in-2004 1,382,908 16,917,053 the .in domain of
WWW graph

itwiki-2013 1,016,867 25,619,926
the italian part of
Wikipedia as late as
Feb 2013

ljournal-2008 5,363,260 79,023,142
LiveJournal virtual
community social site

this scenario, the graph vertices are randomly placed on the
processor nodes of clusters and no structural properties of the
graph are examined for the placement of the graph vertices
on cluster nodes. In our experiments we refer to this approach
as RND. We also used Metis [12] graph partitioning software
to partition the graphs and then distribute the graph vertices
among processor nodes based on the results of Metis graph
partitoning software. Metis uses multilevel k-way partitioning
algorithms to compute the min-cut of a graph. Metis’ heuristics
based algorithms try to find the best partitions where the
number of inter partitions (cuts) are minimum while each
partition holds the same number of vertices. The idea here
is that by performing min-cut the communication cost of the
cluster will be lowered. We partitioned the graph so that each
partition has the same number of vertices while the number
of cross cluster edges are minimum. Then we assigned each
graph partition to a processor node. As we will see in section
5, however, lowering communication cost using Metis will
result in lower load balance for locally active graph algorithms.
We referred to this graph partitioning scheme as MTS in our
experiments.

C. Results

1) Load Balancing: In terms of the first performance
metric for load balancing (Load Balanceav) as shown in Fig. 3,
when the graphs are partitioned randomly the load is evenly
distributed among processor nodes. However, when the graph
vertices are distributed among processors based on graph
partitioning scheme (Metis) the load of processors is very
unbalanced as it is shown with high values for average of
standard deviation for active vertices (see Eq. 5 for definition
of this metric). Fig. 3 depicts the results for this metric for both
PageRank and SSSP algorithms. As shown in this figure, the
load is evenly distributed if the graph vertices are randomly
distributed among processor nodes compared to the case when
vertices are assigned to processors based on the results of
Metis. It is also noticeable that as the number of processor
nodes in the cluster increases from 2 to 8 the load imbalance
decreases to almost half (for instance from 7349 to 4653 in
the case of in-2004 data set and from 254433 to 12834 in
the case of itwiki-2013 data set) when PageRank algorithm
is computed. Consequently, a possible solution for having a
more balanced load among processor nodes when running a
globally active graph algorithm such as PageRank is to add
more nodes to the cluster.

In the case of the SSSP algorithm the load balance worsens
as the number of processor nodes increase from 2 to 8 (for in-
2004 and itwiki-2013 datas ets). This is because the SSSP

algorithm is a locally active graph algorithm where compu-
tation starts at some region of the graph and it propagates
to other regions of the graph until it terminates. Hence, the
load balancing of this graph algorithm in terms of active
vertices is sensitive to the starting vertex (source vertex) of
the computation. For ljournal-2008, however, this is not true
since the starting vertex for this graph is in a very dense part of
graph where by adding more nodes to the cluster the load on
processor nodes becomes more balanced and hence the average
of standard deviation across supersteps gets lower. Similarly
to circumstances for PageRank, random partitioning always
outperforms the assignment of graph vertices to processor
nodes based on Metis in terms of average standard deviation
of active vertices across supersteps.

The results for the second performance metric of the load
balance (Load Balancerm) is depicted in Fig. 4. Similar to the
first metric for the load balance, randomly assigning graph
vertices to the processor nodes leads to a lower average of
standard deviations across supersteps for number of received
messages by processors compared to when a graph partitioning
scheme such as Metis is used. This is because of the correlation
between the number of active vertices and received messages
and the fact that the graph vertex changes its state from inactive
to active upon receiving messages. This also testifies again that
when graph partitioning mechanisms such as Metis are used
the load among processors is distributed unevenly in terms of
the active vertices that processors have to handle in order to
perform the computation.

In conclusion, as it is shown both in Fig. 3 and Fig. 4 the
random assignment of graph vertices to processor of clusters
leads to better load distribution among processor nodes of a
cluster compared to when a graph partitioning scheme such
as Metis is used. However, as we will see in the next section,
using Metis has advantages in terms of communication cost
of the cluster when the nature of the graph algorithm requires
high communication among processors. We also notice that
one way to have better load balancing in a cluster is to add
more nodes to the cluster.

2) Communication: For the performance metric related to
the communication cost, Comm Cost (see Eq. 7), utilizing
graph partitioning solutions such as Metis can be beneficial
as illustrated in Fig. 5. The communication cost is in MB(s)
and as is shown when the number of nodes in the cluster
increases, the communication cost increases too. This situation
is worse for a graph algorithm such as PageRank which is
communication intensive. However, when Metis is used this
cost drops down significantly. This is due to the fact that by
using graph partitioning the vertices that are highly connected
and formed into dense clusters are grouped together and
assigned to the same processor node. Hence, the processor
node does not need to send a message across the cluster to
another node as it holds the neighboring vertices.

In the case of the SSSP algorithm the benefits of us-
ing graph partitioning solutions such as Metis is not very
significant since the graph algorithm is not very intensive
in terms of communication volume. As mentioned before,
the computation of SSSP algorithm starts at a source vertex
and the communication among graph vertices initiates at a
local region of the graph that contains the source vertex. The
communication among vertices then propagates throughout
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Fig. 3: Load Balanceav performance metric for in-2004, itwiki-2013 and ljournal-2008 data sets

0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

PageRank SSSP

L
o

a
d

 B
a
la

n
c
e

rm

in-2004

RND-2Nodes

249
1

MTS-2Nodes

7655

31

RND-4Nodes

216
1

MTS-4Nodes

7287

44

RND-8Nodes

179
1

MTS-8Nodes

6060

48
0

 10000

 20000

 30000

 40000

 50000

PageRank SSSP

L
o

a
d

 B
a
la

n
c
e

rm

itwiki-2013

RND-2Nodes

641 3

MTS-2Nodes

47841

50

RND-4Nodes

528 3

MTS-4Nodes
41423

192

RND-8Nodes

337 2

MTS-8Nodes

2381
165

0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

PageRank SSSP

L
o

a
d

 B
a
la

n
c
e

rm

ljournal-2008

RND-2Nodes

404 1

MTS-2Nodes

84480

265

RND-4Nodes

250 1

MTS-4Nodes

46018

200

RND-8Nodes

157 1

MTS-8Nodes

28214

119
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the graph structure until all the graph vertices update their
value (shortest distance from source). This marks the end
of SSSP computation. Compared to the PageRank algorithm
(which is globally active), SSSP computation involves less
communication.

In conclusion, as it is shown in Fig. 5, when the commu-
nication volume of the graph algorithm in terms of bytes the
network has to deliver to processor nodes is very high, the
application of the graph partitioning solution is beneficial to
the communication cost of the network. However, this solution
leads to load imbalance as we saw previously in Fig. 3 and
Fig. 4.

3) Time: Fig. 6 shows the total time of completion for
two graph algorithms for clusters with different sizes when
random partitioning and Metis based partitioning is used. The
charts in this figure reveal several findings as we describe
below. First, for PageRank computation of all data sets, as
the number of nodes in the cluster increases total time of
completion decreases and execution completes faster. This is
because of better load balancing both in terms of number of
active vertices and received messages (as have been shown
previously in Fig. 3 and Fig. 4).

Second, when the graph algorithm has a high volume
of communication (e.g. PageRank) using Metis in order to
decrease the communication cost leads to significant benefit

and faster execution time. This reveals the fact that in the
case of the PageRank computation for these three data sets
communication among processor nodes is the dominant factor
in determining the ultimate cost of execution.

Third, for the computation of the SSSP algorithm as shown
in the right parts of the charts, it is evident that when Metis
based partitioning of graph vertices to the processor nodes
is applied the total time of completion is longer compared
to random partitioning. In fact, utilizing graph partitioning
has a negative effect on the performance of the system. The
explanation for this phenomenon is depicted in the results of
load balancing as well as communication cost for this graph
partitioning scenario. As shown in Fig. 5, the achieved benefit
in terms of lowering the communication volume is insignificant
when Metis is used for the SSSP graph algorithm. On the other
hand, the load imbalance in terms of both number of active
vertices and received messages is high for SSSP when Metis
is used (Fig. 3 and Fig. 4). These two factors (low benefit of
graph partitioning and high load imbalance) leads to higher
completion time for all data sets.

Finally, it is noticeable in Fig. 6 that the time of completion
for the SSSP also decreases as more nodes are added to the
cluster. This reemphasizes that the number of active vertices
and received messages by the processors (load) is the dominant
factor in determining the total run time of the SSSP.
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V. RELATED WORK

Bulk Synchronous Parallelism (BSP) was first introduced at
[5] as a computational model for general purpose parallelism.
Its fundamental properties are being able to write simple par-
allel programs that are independent of target architecture and
also having predictable performance on a given architecture.
Pregel [1] was the first system to extend this computational
model to graph processing and is a proprietary product of
Google. In this system, efficient, scalable and fault-tolerant
implementation of the BSP model are utilized on clusters of
thousands of nodes. They have introduced a simple API that
facilitates writing vertex-centric graph algorithms that can be
used on their cluster.

Apache Giraph [2] is an open source counter part of the
Pregel that is in use at Facebook to analyze their social graph
data formed by its users and their interactions. Compared to
basic Pregel, Giraph has several additional features such as
master computation and out of core computation.

GraphLab [3] is another parallel computation abstraction
that is developed by Carnegie Mellon University and is tailored
for machine learning tasks. Their computational model is
different than BSP as they use asynchronous message passing
based graph parallel computational model in order to achieve a
high degree of parallel performance in their machine learning
tasks.

To the best of our knowledge, our work is the first to
provide mathematical and formal specification of the cost of
a superstep in terms of the basic graph structures, as well
as to provide definitions of metrics for measuring different
aspects of performance on several large data sets. Moreover,
we have used two graph partitioning mechanisms to show the
effects and interactions among the factors that affect the costs
of vertex-centric implementation of graph algorithms.

VI. CONCLUSION

In recent years, vertex-centric parallel graph processing
frameworks such as Pregel [1], Giraph [2] and GPS [4] have
acquired significant popularity. However, there is a lack of
analytical models to study the performance of these frame-
works. In this paper, we have identified the factors that affect
the performance of distributed vertex-centric graph processing
clusters. We have also presented a formal model to analyze the
performance of various graph partitioning strategies. We also
provided a categorization of graph algorithms based on their
load distribution and communication behaviors. With extensive
experiments on massive real world graph data sets we have
validated our performance model.
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