
Location-based Timely Cooperation over Social
Private Network

Youna Jung, Renato Figueiredo, and José Fortes
Advanced Computing and Information Systems (ACIS) Laboratory

Department of Electrical and Computer Engineering, University of Florida
Gainesville, Florida, United States

{younajung, renato, fortes}@acis.ufl.edu

Abstract— The increasing use of online social networks (OSNs) in
emergency situations shows us a promising future of human
cooperation through OSNs. Despite this intense interest, a
number of fundamental limitations still exist, such as lack of
appropriate conceptual models and limitations on cooperation
methods and shareable resources. To address existing limitations,
we propose Whistle – a cooperation framework for OSN users
which can dynamically organize an emergency community with
nearby users and guarantee unrestricted cooperation and
resource sharing by leveraging the Jitsi communicator and the
SocialVPN. To test the feasibility and applicability of Whistle, we
present an implemented prototype and demonstrate its
applicability to an example use case.

Keywords- location-based cooperation; online social network;
cooperation framework; temporary virtual private network; provacy
protection

I. INTRODUCTION

When people face an emergency admitting no delay, such
as a child missing, a hit-and-run, or a medical emergency, help
from nearby people is important – but must be prompt and
organized to be effective. For example, in the case of fire or
natural disasters such as earthquake or flooding, it would be
required to quickly inform people in the disaster area about an
emergency situation and give them vital information such as
evacuation routes, place of life jackets or fire extinguishers. In
the case of a child missing or a hit-and-run, quick and wide
dissemination of information to nearby people about a lost
child or a car that left an accident scene would be helpful in
finding the child or car. In a medical emergency, immediate
help from nearby people and/or medical experts is key to save a
patient’s life. To address these issues, emergency response
systems need to satisfy three core requirements: 1) Real-time
location-based discovery of nearby helpers and persons in need
of help, 2) On-demand organization of an emergency
community with essential members, and 3) Efficient and secure
cooperation methods.

Emerging online social networks (OSNs) have great
potential to meet those requirements. First, they have a large
number of users geographically distributed. For example,
Facebook is the largest OSN and has 1.4 billion of users
worldwide, i.e. 11% of people on Earth [1]. This motivates our
focus on Facebook as a first step in this paper – Whistle is
generalizable to other social networks, and a Facebook-based
prototype implementation demonstrates the feasibility of the

approach for a large, representative OSN. Second, OSNs
provide access to user contexts, including location contexts.
OSN users spontaneously disclose and update their personal
information to establish and maintain social relationships. With
proper permission granted by users, an application can easily
obtain user contexts through the OSN’s APIs.

In past years, many real use cases have proven the potential
of OSNs as an infrastructure for human cooperation. OSNs
have played an important role in emergency situations, not only
as an alternative media that collects and spreads useful
information, but also as a basis for gathering people and
enabling cooperative communication amongst them. Through
Twitter, people have found their lost pets by broadcasting
information [2, 3] as well as coped with a medical emergency
by quickly contacting paramedics or medical doctors [4]. In the
case of a natural disaster, such as Hurricane Irene or the 2011
tsunami in Japan, people actively shared news about the
disaster and communicated with their family and friends
through OSNs, while much infrastructure was destroyed [5, 6].

However, cooperation using OSNs is still in its infancy due
to the lack of key mechanisms: searching eligible users among
very large numbers of users at request time, forming a well-
organized group, orchestrating cooperation between members,
supporting intuitive and rich cooperation methods, and
protecting user privacy. Such limitations lower efficiency,
reduce the scope of applicable domains, and cause people to
hesitate to ask and/or give help through OSNs [8]. To address
these issues, Jung et al. [9] proposed the role-based community
model, the situation-based cooperation model, and the
community-centric property based access control model
(CPBAC). However, some problems, such as lack of context
model to represent user contexts and limitation of sharable
resources and cooperation methods, still remain unsolved.

In this paper, we propose a cooperation framework called
Whistle that has its own location model and management
mechanism for location contexts, in addition to previously
proposed models in [9]. Furthermore, Whistle leverages Jitsi
[10] and SocialVPN [11] to guarantee unrestricted and
independent cooperation. In this framework, the cooperation
service consists of two phases: the bootstrapping phase and the
operation phase, as shown in Figure 1. In the first phase,
Facebook provides contexts of users who register with the
Whistle service – which is a service external to the OSN. This
step allows Whistle to build a user pool with contexts. When an

COLLABORATECOM 2014, October 22-25, Miami, United States
Copyright © 2014 ICST
DOI 10.4108/icst.collaboratecom.2014.257321

emergency arises, the operation phase commences; Whistle
dynamically organizes a community with eligible users nearby,
and enables users to cooperate with each other using diverse
cooperation methods of Jitsi atop of a virtual private network
that is dynamically established for the community.

Figure 1. Two phases of a cooperation process using Whistle

The rest of the paper is organized as follows. In Section II,
we overview preliminary work and identify its limitations. In
Section III, we propose Whistle, a cooperation framework for
OSN users; in particular, we propose the ontology-based
location model of Whistle and user context management
scheme in details. In Section IV, we demonstrate a Facebook-
based prototype of Whistle with an example use case scenario
(finding a lost child). In Section V, we discuss related work.
We present conclusions and future work in Section VI.

II. PRELIMINARY WORK AND CONTRIBUTIONS OF THIS

PAPER

Before proceeding, we introduce our preliminary work, the
SeCON App. The SeCON App [9] is a Facebook application
that supports secure cooperation among Facebook users by
employing three conceptual models: the role-based community
model, the situation-based cooperation model, and the
community-centric property based access control (CPBAC)
model. When a request is received, it finds eligible users by
exactly matching user contexts with eligibility conditions
without context models, and then creates a community by
assigning users to a certain community role based on a
community model. Once a community is created, the App
creates a community page in Facebook and orchestrates
cooperation according to the situation-based cooperation
model. During cooperation, all information and resources must
be shared through Facebook. Thus, sharable resources need to
be uploaded to the community page and all communications
between members need to take place within the page. Although
the SeCON App has improved efficiency of human cooperation
through OSNs, some limiting issues still remain unsolved:

1) Lack of context model: The SeCON App stores user
contexts received from Facebook in flat tables without using
standard terms and structural relationships among context
values. Since Facebook does not define standard terms and
restricts formats and styles for users’ profile data, the SeCON
App may have many different context values having the same
meaning (e.g. ‘University of Florida’, ‘UF’, and ‘U. of
Florida’). In case of conducting exact matching, such naïve

context handling leads to incomplete search on user contexts.
Furthermore, absence of semantic correlation between context
values is another issue. Some contexts, such as addresses or
organizations, have their own structure. For example, there
exists an inclusion relationship between the ‘University of
Florida’ and ‘Gainesville’ because ‘University of Florida’ is
located in the ‘Gainesville’ city. It is hence difficult to expect
effective user search based on contexts without standard terms
and context models to represent semantics of contexts.
 Challenge: We need appropriate models to represent user
contexts and search users based on contexts efficiently.
 Contribution: To address the challenge of context modeling,
we first propose an ontology-based location model that uses
toponyms which have become ‘de facto’ standard in the
Internet (in particular, they are used by Google), and a
maintenance scheme to create and update location contexts
with reduced user intervention. For efficient user search based
on location contexts, we also propose a two-step user
searching algorithm.

2) Limitation of shareable resources: The SeCON App
enables members to temporarily share resources stored in
Facebook; however, no outside resources can be shared. This
limitation is a major weakness if an important resource is not
stored in Facebook at cooperation time. It limits its practical
use if it requires users to upload resources to Facebook in an
emergency. Furthermore, Facebook allows only limited file
types, such as image and video files, to be shared.
 Challenge: Users need to be able to share resources
regardless of resources types and locations.
 Contribution: We propose a way to directly access users’
external resources stored in personal devices (and cloud
resources) in a peer-to-peer fashion by dynamically
establishing a virtual private network that inter-connects
community members in real time.

3) OSN-dependent communication and resource sharing:
During cooperation, all communication and resource sharing
must take place through an OSN. Although there are many
other rich methods of user cooperation, such as file transfer,
remote file access, audio/video conferencing, and multimedia
streaming, there is no integrated way to use them through an
OSN. Furthermore, there is no way to cooperate with social
users logged in other OSNs.
 Challenge: We need a communication and sharing method
that is not restricted to a single OSN.
 Contribution: Whistle leverages Jitsi to allow users
distributed in different OSNs to communicate and share
resources in diverse and rich ways, in a peer-to-peer fashion,
independently of services provided by OSNs.

III. COOPERATION FRAMEWORK FOR FACEBOOK USERS

Whistle is a cooperation framework implemented by a
centralized trusted server, an OSN application, and clients at
user devices. For better understanding of Whistle, we describe
its functionalities, architecture, and cooperation flow in this
section.

A. Functionalities

1) Creation and maintenance of a user pool with
structured location contexts
 Whistle creates and maintains a user pool in which a user is
represented as a set of user contexts. We define context as
information that can be used to characterize the situation of a
user, such as gender context, age context, and current location
context. Among various user contexts, in this paper, Whistle
focuses on location contexts to provide location-based services.
A detailed explanation about how to obtain, represent, and
update location contexts follows:

a) Consent-based semi-automatic context acquisition:
Whistle obtains user contexts from two different sources:
OSNs and users. It can automatically fetch a user’s profile in
an OSN with user consent (OSN-provided context). By
invoking OSN’s API (e.g. Facebook’s Graph API [12])
through the HTTP GET method, Whistle gets a variety of user
contexts: name, age, bio, birthday, email, gender, languages,
relationship (marriage) status, current location, education,
work, and etc. When location contexts (such as current
location, work, and education) are null, Whistle asks a user to
directly enter location contexts in the registration stage with
the Whistle service (User-provided context).

Whistle adds a new user to its user pool, whenever a user
registers in Whistle. In the pool, each user is represented as a
set of contexts. Whistle uses an ontology-based location model
to represent and search location contexts. For the remaining
contexts, we use a key-value context model [13, 14] which
allows exact matching retrieval only and the context models for
other contexts are left for future work. The location contexts
obtained from the location model are stored in the Whistle
server.

To track changes in user contexts, Whistle itself has user
accounts on the OSN and becomes a friend of users so that it is
notified whenever users change their contexts in the OSN. In
the prototype of Whistle, we create an account in Facebook.
Note that currently Facebook allows a user to have a maximum
of 5000 friends. For scalability, Whistle thus should have
multiple accounts in Facebook (or negotiate with Facebook to
lift the 5000 friend limit). Alternatively, Whistle can
periodically fetch contexts of users and update contexts if
changed.

b) Whistle location ontology: For effective
representation and management of location contexts, we
propose an ontology-based location model. Although there are
many existing location models, as discussed in Section V, we
develop a new location model because most existing models
are too heavy for Whistle.

Among diverse context models, we choose an ontology-
based model due to its expression power and the powerful
techniques available for reasoning and validation [15]. The
Whistle location ontology defined in OWL 2 [16] represents a
location with three types of information: 1) Geometric
information, represented by the GPS Coordinates class, 2)
Appellation information, represented by the Appellation class,
and 3) Administrative information, represented by the Postal

Address class. The graphical representation of the Whistle
location ontology is shown in Figure 2.

Figure 2. The Whistle Location Ontology

 The GPS Coordinates class has two data properties:
longitude and latitude. The Appellation class has two data
properties: name and alias. The name data property represents
a standard toponym, while the alias data property represents
its alternative names. Whistle uses Google’s toponyms as a ‘de
facto’ standard. For example, Google uses ‘University of
Florida’ as the standard toponym of the University of Florida.
Accordingly, the ‘University of Florida’ is saved as the value
of a name property, and ‘UF’ and ‘U. of Florida’ are saved as
the value of an alias property in the Whistle location ontology.
The Postal Address class has five data properties: street, city,
state, county, and zip (note that the current prototype
implementation assumes only addresses in the United States).
An inclusion relationship between locations is expressed by
the hasA object property, an inverse property of the isPartOf
object property. The inclusion relationships are used to infer
GPS coordinates of locations that are too fragmented, or
unknown. For example, if Whistle does not know the precise
GPS coordinates of an office in a building, it can assign the
GPS coordinates of the building instead.

Figure 3. An example location for ToysRus in the Oaks Mall in Gainesvill,
Florida

As an example, we present a location representing the
ToysRus store in the Oaks Mall in Gainesville, Florida in
Figure 3. The ToysRus location is a part of the Oaks Mall
location and has three object properties represented as identifier:
‘_:a1’, ‘_:a2’, and ‘_:a3’. Its standard toponym captured by the
name property is ‘ToysRus’ and its GPS coordinate is
expressed by the longitude value ‘-82.4144’ and the latitude
value ‘29.6569’. Its administrative information is represented
by corresponding postal address with the street property ‘6711
W Newberry Rd’, the city property ‘Gainesville’, the state
property ‘Florida’, the county property ‘Alachua’, and the zip
property ‘32605’. The OWL 2 specification of the ToysRus
location is presented in TABLE 1.

TABLE I. A FORMAL REPRESENTATION OF THE TOYSRUS LOCATION

USING OWL 2 FUNCTIONAL SYNTAX STYLE

Declaration(NamedIndividual (:OaksMall))
Declaration(NamedIndividual (:ToysRUs))
ClassAssertion(:Location :OaksMall)
ClassAssertion(:Location :ToysRUs)
ObjectPropertyAssertion(:isPartOf :ToysRUs :OaksMall)
ObjectPropertyAssertion(:hasPostalAddress :ToysRUs _:a1)
DataPropertyAssertion(:street _:a1"6711 W Newberry
 Road"^^xsd:string)
DataPropertyAssertion(:city _:a1 "Gainesville"^^xsd:string)
DataPropertyAssertion(:county _:a1 "Alachua"^^xsd:string)
DataPropertyAssertion(:state _:a1 "Florida"^^xsd:string)
DataPropertyAssertion(:zip _:a1 "32605"^^xsd:integer)
ObjectPropertyAssertion(:hasAppellation :ToysRUs _:a2)
DataPropertyAssertion(:name _:a2 "Toys R Us"^^xsd:string)
ObjectPropertyAssertion(:hasGPSCoordinates :ToysRUs _:a3)
DataPropertyAssertion(:latitude _:a3 "29.6569"^^xsd:float)
DataPropertyAssertion(:longitude _:a3 "-82.4144"^^xsd:float)

Since OSNs and users give only Appellation information,
Whistle needs to derive the corresponding Geometric and
Administrative information. This can be implemented by using
services such as the Google geocode API [17]. Whenever
receiving location contexts, Whistle retrieves the corresponding
address and GPS coordinate values of the location from the
service, and then stores a complete location context. Once
Whistle stores a user’s location contexts, it monitors changes in
user contexts and keeps the contexts up to date by establishing
friendships between Whistle and users. For example, Whistle is
able to gather updates on friends’ contexts without extra effort
by using Facebook’s Graph API [12]. More details of the
context update process are given in Section III.B.

2) On-demand secure cooperation among nearby users
Whistle dynamically creates a community for an emergency

with only eligible users nearby at request time, such that a user
in danger can receive help immediately. To do so, it performs
user search based on contexts, establishes a temporary virtual
private network between cooperators, and launches a Jitsi
communicator to enable them to cooperate with each other
securely.

a) Two-step location based user search : To find out the
nearest users, Whistle performs a two-step search on location
contexts, which includes the static location search step and the
dynamic location search step. The static location search step
is to find out potential candidates who are most likely to be
close to a target location based on stored location contexts. To

do this, Whistle first calculates the minimum number of
required members (memmin) by adding up roles’ minimum
cardinalities defined in corresponding community template
and sets a radius (r) of a search range. It then picks out
potential candidates who are associated with locations within
the range (static location search, steps 7 and 8 in TABLE II).
At this time, if the number of retrieved users is not enough,
Whistle expands the search range until it finds sufficient
candidates. Once it determines a set of potential candidates, it
performs dynamic location search (step 9 in TABLE II). The
goal of this step is to exclude unqualified candidates who are
not close to the target location at execution time by checking
their current location in real time. Whistle then finalizes a set
of nearby candidates. At this time, the distance between two
GPS points is calculated by Haversine Formular [18]. The
algorithm of location-based user search is specified in TABLE
II. By conducting the two-step user search, Whistle can
significantly reduce the number of users who need to be
checked for real-time locations (i.e. Whistle does not track
users’ locations). However, it cannot find nearby users whose
location contexts stored in Whistle are not associated with the
target location.

TABLE II. ALGORITHM FOR LOCATION-BASED USER SEARCH

1. �� = name of target location
2. ������ = minum number of required members
3. � = radius of search range
4. ��� = location database
5. ���� = profile database
6. ����� = minimum number of nearby location
7. ��� each user � in ����

a. if ∃ ���������� ≡ �� then ����� ← �
8. �ℎ��� ������ (�����) < ������

a. �� = ���_������_��������(�� , ��, �����)
 // This function returns nearby locations that
 that excluded in existing nl.

b. for each user (� ∄ �����)in ���� and
 for each location �� in ��

i. if ∃ ���������� ≡ �� then ����� ← �
ii. if ������ (�����) ≥ ������ then �����

c. increase �����
9. ��� each user � in �����

a. �gps = GPS coordinates of �,

�� gps = GPS coordinates of ��

b. � = distance(�� gps , ����)

// calculated by using the Haversine formula
c. if � ≤ � then ��������� ← �

10. return ���������

b) On-demand organization of emergency community:
To organize a well-structured community, Whistle employs
the role-based community model [9] in which a community is
formed with eligible users who take one or more roles. After
determining a set of candidates, Whistle sends an invitation to
each candidate via preferred contact method and assigns one
(or more) roles to available candidates who accept the
invitation. If the number of available candidates is less than

the required minimum members, then it conducts the two-step
location-based user search again with an expanded search
range to secure more candidates.

3) Setting up temporary SocialVPN connecting members
Although the SeCON App enables users to receive

community services from most suitable users regardless of
previously established friendships, its cooperation method is
totally dependent on an OSN, Facebook. The App does not
allow cooperating with users in other OSNs. External resources
that are not uploaded on Facebook and external services (e.g.
camera streaming) cannot be used during cooperation, no
matter how important they are. Even though a conversation or
resource is private, there is no simple way to eliminate
interference of OSNs in the middle. Furthermore, most OSNs
limit sharable resources to only a few types (e.g. profile data,
short messages, and photo/video files) and do not allow sharing
of other types of resources such as word or pdf files.

To overcome this limitation, Whistle enables cooperating
members to communicate with each other directly in a peer-to-
peer fashion, and share external resources that are stored in
their personal devices or cloud, regardless of resource types
and OSNs that members use. Towards this, Whistle leverages
the social virtual private network (SocialVPN) [11], a
networking approach that aims at bridging the gap between
social networking and overlay networking. It is able to
automatically establish direct peer-to-peer Layer 3 network
links between social friends, and then allows secure
communication between them using PKI-based encryption.
SocialVPN allows users to utilize TCP/IP legacy software (for
example, Jitsi Communicator, SSH, VNC, and RDP for remote
access, VLC and iTunes for media streaming, and NFS and
SAMBA for remote file access). By establishing SocialVPN
connections, members can be directly and securely connected,
while using diverse existing software. Whistle establishes
SocialVPN connections as soon as a community is created, and
then removes them when the community is dissolved. Thus, the
connectivity is ephemeral; the SocialVPN temporarily exists
only during cooperation.

4) Rich communication and resource sharing through Jitsi
Whistle allows members to use more diverse and rich

services for communication and resource sharing (not limited
to OSN-provided services) by leveraging Jitsi Communicator,
formerly known as ‘SIP Communicator’. Jitsi [10] is an open
source multimedia communicator that enables users to
communicate with remote social friends via various methods
such as text messaging, audio/video conferencing, file transfer
and desktop streaming. It works on most major operating
systems such as Windows, Mac OS, Linux, and other Unix-like
systems; it recently started to support Android so that mobile
users can also use Jitsi. By utilizing Jitsi atop SocialVPN,
Whistle supports direct device-to-device communication and
guarantees more effective and unconstrained cooperation
compared to cooperation through an OSN.

B. Architecture

Whistle consists of a centralized server, an OSN App, and a
number of clients that are connected through the Internet. The
Whistle server and the Whistle App are always connected and
interact with each other. Whistle clients are dynamically

connected and disconnected through SocialVPN. The
architecture of Whistle is illustrated in Figure 4.

1) Whistle Server
The Whistle server is a trusted party that complies with

laws and regulations relevant to privacy protection and consists
of four major components: the User Manager, the Context
Manager, the Community Manager, and the SocialVPN
Manager.

· User Manager with XMPP server – The main task of
this component is to handle user registration and
maintain user accounts by interacting with the Whistle
XMPP server. The eXtensible Messaging and Presence
Protocol (XMPP) is an XML-based open source instant
messaging protocol, and an XMPP server provides
basic messaging, presence, and XML routing features.
Whistle has its own XMPP server to establish and
manage the (temporary) community membership
information needed to bootstrap SocialVPN
connections. The User Manager creates an XMPP
account using a user’s OSN account when the user
registers and then shares the XMPP account with the
Community Manager and the Context Manager.

· Context Manager – This component obtains and
manages user contexts and, if requested, searches
eligible users whose contexts satisfy eligibility
conditions. With a user’s OSN account information
received from the User Manager, the Context Manager
fetches various user contexts from an OSN. For
location contexts, it invokes the Google geocode API
with the place names retrieved from the OSN to get
necessary information, generates complete locations
according to the Whistle location ontology model, and
stores them in the Location Database. The Context
Manager periodically receives updated user contexts
from the Whistle App and updates user contexts in the
Context Repository. To find eligible users, it sends
information about target location to the Location
Engine so that the engine conducts the two-step search
on location contexts. Subsequently, it receives
necessary information about a target location and a
community template from the Community Manager.

· Community Manager with Template Repository – This
component aims to organize a community with most
suitable users. When receiving a request through the
user interface, it delivers required information
specified in a corresponding template to the Context
Manager. A community template includes information
about necessary roles and user-role assignment rules
specifying eligibility rules and cardinalities [9]. If the
Context Manager returns a set of candidates, it checks
availabilities of candidates and creates a member list
with only available users.

· SocialVPN Manager – The goal of this component is to
dynamically create SocialVPN configuration files for
members so that member clients can automatically
establish SocialVPN connections among them. To do
so, it gets members’ XMPP accounts from the
Community Manager, generates virtual IP addresses
for members, and then distributes the generated
configurations to member clients.

Figure 4. Overall Architecture of Whistle

2) Whistle App
The Whistle App acts like a bridge between the Whistle

server and an OSN. It receives requests from the server and
returns user contexts.

· Collector – This component fetches user contexts from
an OSN by calling the OSN’s API through HTTP GET
requests. To get recent updates, the Whistle App needs
to examine all user contexts periodically. To do so, it
first brings update times of users. If an update is
recently made, (i.e. made after last examination time),
the Collector fetches full contexts of the user. The
Collector then delivers a JSON object received from an
OSN to the Whistle server.

3) Whistle Client
A Whistle client is composed of two components: the

SocialVPN Controller, and the Jitsi Communicator. An
example diagram of cooperating clients is shown in Figure 5.

Figure 5. Whistle Clients connected by SocialVPN

· SocialVPN Controller – This controller takes
responsibility of creating, maintaining, and removing
SocialVPN links. According to a configuration file that
the SocialVPN Manager sent, it establishes SocialVPN
connections between members, maintains network

condition, and removes connections when cooperation
is terminated.

· Jitsi Communicator – Jitsi displays members and
enables them to cooperate with each other through a
rich set of Jitsi communication and sharing methods,
such as text messaging, text/audio/video conferencing,
and file transfer.

C. Cooperation Flow

In this section, we describe the cooperation process from
user registration to community dissolution from the perspective
of a requestor who wants to receive a community service from
Whistle.

1) User registration – A user registers in the Whistle
server before taking or giving cooperative help through
Whistle. A user can sign up with his/her OSN account and, if
necessary, enter additional user contexts in the registration
step. With user contexts, the User Manager creates the user’s
XMPP account and the Context Manager saves the contexts in
the Context Repository. To complete a registration, the user
must install a Whistle client software in his/her device(s).

2) Request for a emergency community – To ask for help,
a user sends a request to the Whistle with required information,
such as a selected community template, a target location, and
optional user-defined eligibility rules and preferences on
helpers.

3) On-demand creation of an emergency community with
eligible nearby members – When receiving a request, the
Community Manager retrieves a community template selected
by the requestor from the Template Repository and asks the
Context Manager to find out candidates who meet eligibility
conditions. In candidate search, the primary criterion is users’
locations. The Context Manager first performs the two-step
location-based search as described in Section III and then, if
required, filters out less-preferable candidates based on user-
defined preference conditions. In turn, the Community
Manager sends an invitation to each candidate with

information about an emergency community, and then
finalizes a list of members, while the SocialVPN Manager
creates configuration files for members.

4) Secure and unrestricted cooperation among members –
As soon as a member client receives a configuration file and a
member list, it establishes VPN connections and runs Jitsi. All
conversations and resource sharing through Jitsi securely take
place within the SocialVPN.

5) Community dissolution – When a community’s goal is
achieved, a leader of a community notifies members of the end
of cooperation, and in turn each client removes all SocialVPN
connections.

IV. IMPLEMENTATION

We implemented a Facebook-based prototype of Whistle to
verify its feasibility and applicability. A prototype server is
developed on Ubuntu version 12.0.4 and has an Apache web
server version 2.2.22 and an Ejabberd XMPP server version
2.1.10. Its web interfaces and components are implemented in
PHP, AJAX, and Java script. A prototype client is implemented
as a software package including the Jitsi software version 2.4
and the SocialVPN software version 14.01.1.

To demonstrate the prototype, we reuse the example
scenario of ‘Finding a lost child’ in [9]. Let’s assume Alice, a
Whistle user, lost her daughter at a toy store in a shopping
center. To ask for immediate help from nearby people, she
accesses to the Whistle server, selects the ‘Child Missing’
template, enters a target location as ‘toys R us’ using Google
map, and adds a preference of female helpers as shown in
Figure 6.

Figure 6. A community request made by Alice to find a missing daughter lost
in the ‘Toys R Us’ store.

With information provided by Alice, Whistle creates an
emergency community with nearby eligible users and then
members start cooperation through Jitsi atop of their
community SocialVPN. Alice sends to community members
the lost girl’s identification and photos that are stored in her
smart phone. If a member, e.g. an anonymous member with an
alias ‘Helper5’, finds a girl who looks like the lost girl, he can
make a video conference with Alice to make sure that the girl
he found is the lost girl. Alice’s Jitsi interface having a video
conference with four members is shown in Figure 7. If the lost
girl is found, a policeman, a leader of the community,
announces the achievement to the Whistle server and members,
and then the community is terminated. Compared to an
approach that only relies on Facebook-exposed cooperation
mechanisms, the Whistle approach enables richer and isolated
interactions (from anyone outside the community). To
accomplish the same task through Facebook, members would
need to exchange their accounts of video conferencing software
(such as Skype) and someone should initiate a conference call.
A member who does not have an account for the software
should create one for this cooperation. This process not only
delays goal attainment, but also exposes members’ accounts.

Figure 7. Whistle Clients connected by SocialVPN

V. RELATED WORK

Most existing location models were developed to offer
location-aware services whose ranges vary from a small-size
specific space (such as a room) to city/country-size spaces.
Regardless of scales, they all aim to model diverse types of
objects and their spatial relationships in very fine-grained level.

In the NeXus platform [19], the Augmented World Model
(AWM) [20] is used to describe location contexts of three types
of objects: 1) static objects such as houses, streets, and offices,
2) mobile objects such as users, cars, and trains, and 3) virtual
objects with which the real world is augmented. Each object is
represented by not only geometry information specified in the
Geographic Markup Language (GML) [21] but also symbolic
information like room number and detailed relationship
information such as inside, overlaps, includes, excludes and
closest. The AWM is specified using own modeling language,
the Augmented World Modeling Language (AWML) [22], and
queried using the Augmented World Querying Language
(AWQL). As stated in the term of ‘World Model’, this model

aims to model everything in detail while Whistle requires only
specific types of location information.

In the Location Representation Model of RAUM (RAUM-
LRM) [23], a location tree describes location information of
associated objects. In a tree, symbolic information and
inclusion relationships between objects are represented in
intermediate levels, and geometric positions stated in three-
dimensional Cartesian coordinates are represented at the leaf
nodes. The RAUM system does not handle complicated
relationships except inclusion because it only needs to know
distances between objects to determine available objects within
a specific spatial area. Similar to the RAUM-LRM, M-Spaces
[22] also uses a tree-based location model, but supports
distributed model management - while the AWM and the
RAUM-LRM assume a centralized special data management.
These location tree based models mostly focus on small-sized
spaces and calculate three-dimensional distances, while
Whistle deals with two-dimensional distance. In addition, the
tree-based models are relatively less extensible compare to an
ontology-based model.

Besides the application-specific models mentioned above,
general-purpose location ontologies have been proposed. The
Open Geospatial Consortium (OGC) has proposed the
Geography Markup Language (GML) [21] as an XML
grammar to describe geographical features of any kinds of
objects including physical objects, users, and services. GML
serves as not only a modeling language, but also as an open
interchange format for geographic transactions on the Internet.
To do so, it is capable of representing and integrating almost all
forms of geographic information produced by different types of
location sensors and devices. This ability is key to wide
acceptability of GML, but, on the other hand, incurs a heavy
overhead for location systems dealing with few types of
location information like Whistle.

Inspired by GML, W3C proposed the Geospatial
Ontologies [25] to provide a simple baseline of geospatial
resource description for the web. Towards this, it updated the
W3C GEO vocabulary and defines useful extensions and
additions. The GeoNames Ontology [26] is a world-wide
location model and a database containing over 10,000,000
geographical names. It includes location-related information
such as latitude, longitude, elevation, population,
administrative subdivision and postal codes, as well as
coordinates information.

The above existing models aim at providing comprehensive
location information in very detailed level to satisfy a variety of
requirements of location-aware applications. Towards this, they
deal with diverse objects ranging in size from buildings to
small appliances and in type from physical objects to virtual
services. To serve users more personalized and adaptive
location-aware services, some models even include information
about user preferences and services’ characteristics while
Whistle just focus on physical objects and consumes two-
dimensional location data. Therefore, adoption of existing
models may significantly increase the complexity and run-time
overhead of Whistle without delivering tangible functional
benefits.

VI. CONCLUSIONS

Although many researchers pointed out great potential of
using OSNs to enhance human cooperation – and many actual
cases have proven the claim – existing OSN-mediated
cooperation is still in an experimental stage because of lack of
suitable models and restricted cooperation mechanisms. To
address these issues, in this paper, we propose a cooperation
framework allowing for more effective cooperation. The major
contributions are as follows.

· We proposed a cooperation framework for social users,
called Whistle, which organizes a location-based
emergency community and supports secure and
unrestricted cooperation among users.

· We proposed the Whistle location ontology that
represents location contexts with standard toponym
and structured relationships. For practical use, we also
propose maintenance mechanisms for location contexts
including creation and update.

· We proposed the two-step location-based user search
algorithm to find out the nearest users.

· We proposed a secure and rich method for human
cooperation by leverages Jitsi communicator and
SocialVPN.

To provide complete community services through Whistle,
the following work should be conducted in the future.

· Development of context models for different types of
contexts such as affiliation or skill.

· Consideration of advanced cooperation model and
access control model during cooperation in Whistle.

· Development of a trust model to evaluate users’
reputation.

· Development of resiliency policies for Whistle.
· Development of diverse use cases.
· Comprehensive evaluation of implementation of

Whistle.

ACKNOWLEDGEMENT

This material is based upon work supported in part by the
National Science Foundation under Grants No. 1339737,
1265341, and 1234983. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] Statistic Brain, “Social networking statistics,” January 2014.
http://www.statisticbrain.com/social-networking-statistics/

[2] Twitter. Lost dog found. https://twitter.com/TheLDFBand

[3] Twitter. Fidofinder, https://twitter.com/fidofinder

[4] Emory Healthcare. Can Twitter Help Save Lives? June 2011.
http://www.emory.edu/EMORY_REPORT/stories/2011/06/campus_can
twitter help_ save_lives.html

[5] Fox News. People React to Irene on Facebook and Twitter, August 2011.
http://www.myfoxtampabay.com/story/18031344/people-react-to-irene-
on-facebook-and-twitter

[6] ABC News. Japan Earthquake and Tsunami: Social Media Spreads
News, Raises Relief Funds, March 2011.

http://abcnews.go.com/Technology/japan-earthquake-tsunami-drive-
social-media-dialogue/story?id=13117677

[7] Twitter. Volunteer on Twitter to Help with Hurricane Irene and Other
Disasters, Aug 2011. http://hope140.org/blog/?p=209

[8] Y. Jung, M. Kim, J. BD Joshi, "Towards secure cooperation in online
social networks," The 8th International Conference on Collaborative
Computing: Networking, Applications and Worksharing
(CollaborateCom), pp.80-88, Oct. 2012

[9] Y. Jung and J. BD Joshi, "CPBAC: Property-based access control model
for secure cooperation in online social networks," Computers & Security
2013.

[10] Jitsi Communicator, https://jitsi.org/

[11] P. St Juste, D. Wolinsky, P. Oscar Boykin, M. Covington, and R. J.
Figueiredo, "SocialVPN: Enabling wide-area collaboration with
integrated social and overlay networks," Computer Networks, vol. 54, no.
12, pp. 1926-1938, 2012

[12] Facebook Graph API, https://developers.facebook.com/docs/graph-
api/using-graph-api/v2.0

[13] T. Strang and C. Linnhoff-Popien, “A Context Modeling Survey”,
International Workshop on Advanced Context Modelling, Reasoning
And Management at UbiComp, England UK, September 2004.

[14] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg , “A survey
on context-aware systems”, International Journal of Ad Hoc and
Ubiquitous Computing, vol. 2 Issue. 4, pp. 263-277, January 2007.

[15] C. Bettini, B. Oliver, H. Karen, I. Jadwiga, N. Daniela, R. Anand, and R.
Daniele, "A survey of context modelling and reasoning techniques,"
Pervasive and Mobile Computing vol. 6, no. 2, pp. 161-180, 2010

[16] W3C, “OWL 2 Web Ontology Language, ” December 2012,
http://www.w3.org/TR/owl2-overview/

[17] Google Geocode API, https://developers.google.com/maps/documenta
tion/geocoding/

[18] R. W. Sinnott, "Virtues of the Haversine," Sky and Telescope, vol. 68
issue. 2, pp. 158, 1984

[19] F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and M. Schwehm,
“Next century challenges: Nexus—an open global infrastructure for
spatial-aware applications,” The 5th annual ACM/IEEE international
conference on Mobile computing and networking, ACM, pp. 249-255,
August 1999.

[20] D. Nicklas and M. Bernhard, "The nexus augmented world model: An
extensible approach for mobile, spatially-aware applications," The 7th
International Conference on Object-Oriented Information Systems, pp.
392-401, 2001.

[21] Geography Markup Language (GML), http://www.opengeospatial.org/
standards/gml

[22] D. Nicklas and M. Bernhard, "On building location aware applications
using an open platform based on the NEXUS Augmented World
Model," Software and Systems Modeling vol. 3, no. 4, pp. 303-313,
2004.

[23] M. Beigl, T. Zimmer, and C. Decker, "A location model for
communicating and processing of context," Personal and Ubiquitous
Computing, vol. 6 no. 5-6, pp. 341-357, 2002.

[24] I. Satoh, "A location model for pervasive computing environments,"
Third IEEE International Conference on Pervasive Computing and
Communications (PerCom’05), pp. 215-224, 2005.

[25] W3C Geospatial Ontologies, http://www.w3.org/2005/Incubator/geo/
XGR-geo-ont/, October 2007.

[26] GeoNames Ontology, http://www.geonames.org/ontology/ontology_
v3.1.rdf

