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Abstract -Wireless sensor networ ks possess significant limitations
in storage, bandwidth, and power. This has led to the
development of several compression algorithms designed for
sensor networks. Many of these methods exploit the correlation
often present between the data on different sensor nodes in the
network; however, correlation can also exist between different
sensing modules on the same sensor node. Exploiting this
correlation can improve compression ratios and reduce energy
consumption without the cost of increased traffic in the network.
We investigate and analyze approaches for compression utilizing
collaboration between separate sensing modules on the same
sensor node. The compression can be lossess or lossy with a
parameter for maximum tolerable error. Performance
evaluations over real world sensor data show increased energy
efficiency and bandwidth utilization with a decrease in latency
compared to some recent approaches for both lossless and loss
tolerant compression.

Keywords - wireless sensor network; real-time; collaborative;
compression;

. INTRODUCTION

Wireless sensors are used to collect and transatét id a
wide variety of applications. Many such applicafioutilize
sensor nodes that collect several different streafrgata on
different sensing modules on the same sensor nbde.
example, sensor nodes in the Great Duck Islanegir§]] and
an Intel Berkeley Labs experiment [2] were usedcatect
temperature, humidity, light intensity, and morevek
applications that primary just sense one thing rofsend
multiple streams of data from the same sensor.eikample,
ZebraNet [3] tracked locations of zebras sending siveams
of data for the GPS readings (easting and northamgl) some
metadata such as voltage and count of satelliteznige of the
GPS sensor.

It is well known that wireless sensor networks psss
significant limitations in processing, storage, daidth, and
power. This has, naturally, led to the developmantmany
compression algorithms specific to sensor netwokksny of
these algorithms rely on the data readings fronmgles sensor
being correlated to previous readings on that saewsor
(temporal locality) [4][5][6]. Others rely on cota¢ions
between similar data streams on other sensor n(sedial
locality) [7][8][9][10]. Correlation can also exisbetween
different streams of data collected on the samaaenode;
however, very little work has yet been done whigpleits this
correlation.
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Figure 1 Multistream sensor readings
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Figure 2 Scaled multistream sensor readings

To illustrate this correlation, Figure 1 shows \eurom
12,000 readings of temperature, humidity, and ligit¢nsity
sensors on a single sensing node taken from the Latb
dataset. Figure 2 shows those same values scatédthd
simple linear transformations shown in Equationteseh, is
the nth humidity reading an, is the scaled value. Similarly,
t, andl,, are for the temperature and light intensity, retpely
along with their scaled notation. Clearly some fiemeould be
gained by leveraging the correlation between tffferéint data
streams.
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In this paper, we present
(TinyPack-C), a lightweight compression algorithendraging
the temporal correlation within each stream andctiveelation
between multiple streams of data on an individuaisig
node. TinyPack-C is based on the initial code sesgnted in
[6] and extended to include collaboration betwedenrultiple
streams from the various sensors on the same gensite.
Collaboration is computed based on a rolling linegression
scheme requiring constant time memory use and psow for
each correlated pair of sensed values.

If some loss is tolerable in the data, compress®n
enhanced by first performing a modified versiornhaf jumping
baseline transformation introduced in [11] whichneerts the
stream into a step function. The rolling linearresgion is then
applied to the flattened streams. The maximum abler error
can be configured low for simply removing noisenfirthe data
or high if the application is not concerned witlvlgariation in
the data.

We present and analyze compression schemes for both

lossless compression and loss tolerant compressitn a
configurable maximum error. We compare both vateti
against state of the art compression methods. Hetossless
case, we compare against the original TinyPack ridigo,
LEC [5] and S-LEC[12]. We compare our lossy compoes
with LTC [13] and the single sensor jumping baseipproach
[11]. Simulations using TOSSIM [18] were done ogewreral
real life datasets covering a wide variety of seagplications.

In summary, this paper makes the following contidns:

Novel algorithms for lossless compression levemgin
collaboration across multiple streams on a singlessr
node

Additional algorithms for lossy compression with a
configurable upper bound for error

Lightweight mechanisms
between signals

for computing correlation

Detailed analysis over several real world datasets

TinyPack-Collaborativeprevious delta value. This enables reducing the sifz the

prefix come and improves the compression ratio wiiata is
changing in a consistent fashion.

B. TinyPack

Another lossless method is presented in [6], TimkPa
initially uses a similar set of static codes far @ompression,
but the codes were optimized for wireless senstar idatead of
JPEGs. Those codes are then dynamically modifigebreby
counting the frequency of each value or by appraxing
those frequencies using a rolling average and atdnd
deviation. The initial set of codes used in TinyRAtt is
shown in Table | and forms the basis on which thapression
in this work is built.

Table | StATIC CODES
prefix suffix range values
1 n/a 0
01 0.1 -1.1
001 00...11 -3,-2,2,3
0001 000...111 -7y4,4,..7
00001 0000...1111 -15,...,-8,8,...,15
000001 00000...11111 -31,...,-16,16,...,31
0000001 000000...111111 -62,...,-32,32,...,63
00000001 | 0000000...1111111 -127,...,-64,64,...,127

Except in the case of 0, the last bit of the suffixhe sign
bit. For example, if the current reading was 3 bigthan the
previous reading, a delta value of +3 would besmagitted as
00110. A delta value of -4 would be encoded as 0001Note
that in [6] the sign bit was at the beginning of threfix, but
computing mathematical operations on the compreda&al is
easier if the sign bit is moved to the end.

C. LTC

In [13] a lossy compression scheme is introduceat th
approximates the data stream by a sequence of Beganents.
As the data is collected by the sensor, the algoriits a line
to the data as long as the line can be defined thatmo point
in the transformed data exceeds a maximum errancdd/hen
a data point is sensed that cannot be fit to the Without

Methods for performing mathematical operations andexceeding the allowed error, that line is transeditand a new

aggregation on the compressed data without firsline starts. The algorithm is effective but doedrdduce

decompressing the data

Analysis of effects of a simple signal reconstrcti
method on measured error

Il. RELATED WORK

A. SLEC

S-LEC, a lossless data compression scheme, is ggdpo
[12]. S-LEC begins with the static set of codesdusel EC [5]
to represent delta values in a data stream. In lea€h reading,
the previous value is subtracted from the currefites and the
resulting delta value is coded based on a statie taf codes
derived from those used in JPEG compression. Smddiita
values have shorter codes. For S-LEC, codes thaharsame
length are said to be in the same group and twe &ié
prepended to each value noting whether the cudeltd value
is in the same, one higher, one lower, or any ojheup as the

additional latency since the data is not transuhiti@til the
sensed reading that necessitates a new line.

D. Jumping Baselines

The jumping baseline approach in [11] approximates
data stream as a discrete step function which can b
reconstructed to a linear function similar to thre @enerated
by LTC at the sink. Any time a sensed value is idetshe
maximum tolerable error away from the current limeeh new
baseline is selected. The possible candidate baselare
selected from multiples of the maximum error suleht tthe
new value can be expressed as the number of bagatitps
above or below the previous baseline. The new in&si also
selected as far in the direction the data has Ieswling as
possible without violating the maximum tolerableoer This
process is described in more detail in sectiond farms the
basis on which our lossy compression is built.



A. Temporal locality

Data from wireless sensor networks generally esdibi
temporal locality (data values from the same stream
correlated to values that are close together ip)tiiny type of
data stream which changes in a continuous fashiinbe/
temporally located such as humidity, position, fightensity,
water level, etc. In fact, it can be demonstrated &ny sensor
stream sampled at non-random intervals will eithenerate
temporally located data or random noise.

BACKGROUND

Consider an arbitrary sensor sensing a streamloésdyv,,
Vo, ..., o} Sensed at timest{ t,, ..., toy} where N is an
integer. Assume that the values are not correlafgten
sampling at i, t3, ..., thna} and {t,, ts, ..., t;} would yield
completely different values. Thus, offsetting tlaenple period
would generate entirely different data. Therefapplication
with time-based sampling which did not exhibit temg
locality must be sampling random noise. Excludingchs
applications we can assume that successive readingach
sensor will be correlated. Delta compression (stpthe data
as the change in value from the previous readirg)ldvthen
increase the frequency of certain values thus &sing the
compressibility of the data.

Naturally this does not apply to event driven sangpl
(where time between samples is random) such assmisthat
measures the speed once for each passing automobése
applications do not necessarily exhibit temporaality and
were not included in this study.

The previously sensed value in each sensed straarthen
be used as a baseline for compressing the valubeohext
sample in the stream. For lossless compressiorvahe can
be transmitted as the difference between the dulsensed
value and the previous value (tbaseline value). For lossy
compression, the data can be approximated usingabeline
value until the current value differs from the Hamevalue by
more than the upper limit for tolerated error.

B. Collaborative compression

In the case of collaborative compression, one sksiseam
serves as the baseline for one or more of the athased
streams on the same sensor. The data fronbadbétine stream
is compressed leveraging temporal locality as dised in the
previous section and the data from the correlatashisis are
encoded based on the difference from some lingattifin of
the baseline stream referred to ashiwsline function. As with
the single stream compression of the baseline mairahe
lossless case would require that a delta valuebeevery time
the sensor samples data while the lossy case canthes

baseline function as the approximated values foe th

compressed stream until the value is above or beloav
baseline function by more than the maximum toleradtor.
The algorithm is shown in more detail section 0.

C. Measuring error

For the lossy compression, we consider a parameteri
maximum tolerable error percentafg.,. Instead of reporting
every value exactly as sensed, if a value devifitas its

baseline less thaf,.,, the baseline value can be used instead.

This allows for much greater compression while kegphe
error bound by the tunable maximum. This parameser be
adjusted based on the application need, i.e., dhtie, but
can tolerate some error (lossy), or non-lossy, daut tolerate
some latency.

A common method of measuring errdg, between a
reported valueVr, and the actual valu®&,, is shown in

Equation 2.
E= [VA _VR|

A

Unfortunately, that measure does not work well faany
kinds of sensor data when introducing error becdlisezrror
varies wildly when working with values near zero.

2

Consider a sensor which reported relative humidity
readings with a maximum error of +/- 1. Table lbgls several
possible actual readings and their approximatedgegalvithin 1
of the actual value. Also shown is the calculatedrausing the
formula shown in Equation 2.

Table Il INCONSISTENT ERROR MEASURE
actual approximated | calculated
value value error
48 49 2.08%
14 15 7.14%
2 3 50%
0 1 undefined

In practice, the best way to set an upper boundefoor
would be to explicitly set the bounds in termstod scale. For
example, when set by the end user, the tolerabte éor a
temperature reading could be +/- 1°C. For analymwever, it
is useful to have a method of normalizing the enmra
percentage. Another common method of measuring &
divide the difference by the maximum range. Themida
could use the maximum range of the sensor; howesiece
this range can be very large compared to the acelsed
range, the error percentages would be artificily. For our
analysis we use the maximum range of actual sevededs as
the denominator for the error normalization (seadfign 3).

-V,
E =—|VA i 3)
Vuax =V
Table Il shows the calculated error for the sadaa
assuming the humidity measurements ranged from @9to
This is a much better error measure for the wods@nted in
this paper.

Table Il CONSISTENT ERROR MEASURE
actual approximated | calculated
value value error

48 49 2.00%
14 15 2.00%
2 3 2.00%
0 1 2.00%




D. Jumping baseline compression

For our lossy compression algorithm, we begin with
jumping baseline compression introduced in [11f Vhlues in
the stream are compressed to a step function bgsahp a
baseline value for a sensed value and only chantjieg
baseline when the current sensed value differs fitbin
baseline by more than the maximum tolerable eflfoe. values
selected as baselines are in the fédEnwherek is any integer
andE is the maximum integer error that can be toleréted
stream while remaining within the maximum errorqegtage
Erax-

The initial baseline is selected by choosing thedaate
baseline closest to the first value sensed ineastr So for a
sensed value the baselindB would be selected as shown in
Equation 4. Adding 0.5 and truncating with the flfunction is
done as an efficient method of rounding.

K = F + o.sJ
E (@

b =kE

When a sensed value differs from the current basdly

more tharE, a new baseline must be selected. Note that there

will be two candidate baselines that would be withiof the
new value. The algorithm chooses the baseline basedhich
direction the data is trending. A data stream carnnbone of
three states: trending up, trending down, or stagiomewhat
constant. If data is trending either up or dowrenttthe next
baseline should be selected as far in the diredtiendata is
trending as it can be within the error bounds.hé data is
remaining relatively constant, then the next basetihould be
selected as close to the current value as posdibke.state is
determined by tracking whether the new baselinabisve or
below the previous baseline for two jumps. If bjptimps were
in the same direction, the data is trending eitlq@ror down
depending on the direction of the jumps. All thatds to be
cached is the previous value and the previous jdirgztion.
The additional computation is also trivial. For exde, Table
IV shows an example of a light sensor with a maximerror
set at +/- 10 lux.

Table IV BASELINE COMPRESSION EXAMPLE
Seqno | Sensed Last Last This Baseline
value value | jump jump
1 242 -- -- -- 240
2 253 242 -- up 250
3 261 253 up up 270
4 276 261 up -- 270
5 284 261 up up 290

Initially, the baseline is selected as close asiptsto the
actual sensed value. When the upward trend is l=$tad at
sequence number 3, the baseline is selected as$igbssible
while remaining within the error tolerance of +8.IThen as
the data continues to trend upward, the baselines dmwt
require as many jumps while remaining within theximaum
tolerable error. This process is shown in detaflgorithm 1.

Algorithm 1 CheckReading( p, S, d)

Objective: Check current reading, select next loese
Input: Sensed valug previous baselinB, max differencé,
previous jump directiod
Output: New baseline (reported vall)
If [p—Vv| >E
B := floor(V/E + 0.5)
If v>B Andd == UP

B:=B+E
Else ifv <r Andd == DOWN
B:=B-E
End If
Ifv>p
d:=UP
Else
d:= DOWN
End If
p:=B
Else
B:=p
End If

IV. OUR MULTISTREAM COMPRESSION APPROACH

A. Ralling correlation

A common simple method of approximating one data
stream with another is to use a linear least sguare

approximation. The first stream is translated usindinear
function in the formY =aX + b into an approximation of the
second stream in such a way as to minimize the amolu
error between the approximated stream and the lastieam.

Computing full least squares regression is far too

computationally complex to run on a sensor eveneta new
value is sensed; however, the correlation can bapaoted
incrementally such that only a few calculations chee be
made after each sample while still maintaining aaieu
correlation values.

Also, the correlation is not necessarily the sawmethe
entire run of the sensor network so some decay |dhioe
introduced in the correlation equation such thatrtiost recent
data contributes a higher weight to the correlatowl older
data contributes less. Such decaying rolling siegifiave been
used many times for other applications [6][14][16lere we
refine the rolling least squares to optimize fangicity of
calculation for the sensor networks.

A common method for calculating the slope and agpt
of the regression line (correlation function¥ ax+b is shown
in Equation 5 wherey is the standard deviation & E(X) is
the expected value (mean) of and r is the Pearson
Correlation ofX andY.

Ox ()



The standard deviation of a variable can be expceds on the fly in a similar fashion. The general ecquratifor
terms of the expected values of the variable apdstjuare of calculating mean square error over varial{eandY given the

the variable as shown in Equation 6. correlation function defined by sore and b is shown in
Equation 11.
o =\/Ex2—(Ex2) 6) N 2
< V) E0 36 - x, +o)
The Pearson Correlation coefficient is also commyonl MSE = — N (11)
expressed in those terms as shown in Equation 7.
E(XY)— E(X)E(Y) This can be expanded and shown in the same fortheas
= (7)  other equations used here as shown in Equation 12.
Oy 0y
19 2
Combining equations 5, 6, and 7 we can derive Eou&t MSE = Nz ((Y| —aX; - b) ) (12)

E(xY)-E(X)E(Y) o, |
£V EOEY)

b=

13,2 2
:NZ(Y. —aY,X; —bY, -a’X +ain+b2)

= [Yz]:/v - a[XY]W -bY,, - az[xz]w +abX,, +b?

= ()
2
(UX) The coefficient of determination, usually writtesi Rf and
_ E(XY)— E(X)E(Y) used to measure the strength of the correlation, atso be
- computed incrementally& is simply the square of threvalue
E(X 2)_ (E(X)z) from Equation 7 and is shown in Equation 13.

SinceE(X) is simply the sum oK divided by the count of R? = ([XY]W - X Yy )2
samples, if a running total is kept f8rY, XY, andX?, then the -
correlation function can be updated incrementaflyeach ([x Z]W - XWZ)([YZ]W —YWZ)

sensed value with a computational complexitpgr).

To allow more recent samples to have a greaterdtmpa  B. Collaborative correlation
the correlation function we introduce a window sieover The above formulas can be used to dynamically ttaek
which to compute the statistics. We use the naialig o correlation function between two streams as well tas
indicate the average of over the windowV. At each sensed periodically reevaluate which streams are corrdlatgth
value of X;, Xy is recomputed using Equation 9 so that theyhich other streams.
effect of older samples on the value X§, slowly decays

(13)

toward zero. We uspXY]w and[X?w for the averages oY Since the correlation function is computed in riale as
andX? respectively. the data stream is sensed, the correlation is lmultthe
previous values and is not affected by the cursensed value

_wW-1 1 until that value has been transmitted. This enatifes

Xw - T va,,1 +W X ) calculations to be done on the sink side as wellita is being

decoded so that the correlation function is knowhaut the
need to transmit the correlation function across $ensor
nodes wireless channel. This helps to reduce tia daonount
of bandwidth required by the application.

In practice, if the current number of samphswvas less
thanW, thenN was substituted fovV in the equations. In that
caseXy is the actual mean of the current sample¥;aghrough
Xn- For the lossy case, the correlations must be coedpafter
the values have been truncated to the baselinesvotie the
sink side would not have the same data on which the
correlations were built and would thus be unabldgoode the
stream unless the correlation functions were trétesmn

This leads us to the final equations for rollingdesquares
calculations for the correlation function used histwork
shown in Equation 10.

eriodically along with the data.
b= [XY]W — Xy Yo P Y J )
A correlated stream can then encode its valuesffast®
[X Z]W — (Xw )2 (10) from its correlation function of its baseline streaA higherR2
value indicates a higher correlation and therefmaes as a
a=Y, —bX, good metric for which stream to choose as a baseviiich

other streams.
The mean square erroM&E), a measure of the average
deviation from the correlation function, can alse domputed
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Figure 3 Compressed size for correlated pairs By&ue
The computational complexity for computing the

correlation for every pair of streams is on theeordf O(S)
whereSis the number of streams. The number of strearme on
single sensor node tends to be relatively low (@neat Duck
Island weather dataset [1] had 12 which is the dsglcount of
any of the datasets studied here). Even thougmuineber of
streams is low, the computation is still too hetwybe ideal.
However, while the correlation function can be vdgnamic,
the sets of correlated streams tend to be ratlagic,st.e., if
some set of streams is found to be correlated, dneyypically
correlated for the entire run of the dataset. Rhealues then
need not be recomputed every time but only on d@gaglso
in many applications, the computations can be adonghe sink
(which typically has much more processing powenr)l &me
correlated sets communicated back through the mktwo our
experiments, we recomputed the correlation setsyet@®wV
samples (whereW is the window size of the correlation
functions).

To determine when to apply a correlation functiove
analyzed each pair of streams on the sensor nodes the
Great Duck Island weather dataset. Figure 3 shbe&tvalue
of each pair along with the compressed size usimg
correlation function divided by the compressed sigimg just
the TinyPack-Init codes. If two streams were notelated,
then adding the correlation function as the basdtin a stream
naturally required more bits to transmit the datast of the
pairs of streams with af® value greater than 0.25 had
compression gains when using the correlation fanctin our
algorithm, any pair of streams with a measuRégalue greater
than 0.25 is defined as a correlated set.

If two streams are correlated to only each otheg, dane
with the lower index is chosen as the baselineastrdf three
or more are correlated to each other, thenRhealues are
summed for each pair a stream is in and the stigiimthe
highestR? sum is selected as the baseline stream. For examp
consider a sensor node sensing temperairengmidity H),
and light intensity I() with the R® values for the stream pairs
measured as shown in Equation 14. The humiditastreould
be selected as the base stream since it has theshisum oR?
values as shown in Equation 15.

R%4 =0.68 R%.L =0.62 R?%,.=0.53 (14)

sum, = R%rn +R%L =1.21
sum, =R%*n +R% =1.32
sum =R%*. +R%,. =115

(15)

V. EXPERIMENTAL SET UP

A. Datasets

The datasets used for simulation were pulled fromide
variety of domains, which utilize wireless sensatworks
including environment monitoring, animal trackinghicle-to-
vehicle communication, and smart phone accelerasefédl
are from publicly available real deployments ofeléss sensor
networks.

The Great Duck Island (GDI) [1] experiment deployed
sensor nodes in and around the burrows of LeadioenS
Petrels. 32 sensors were deployed monitoring sevisitaige
and various types of temperature, humidity, baroimet
pressure, and solar radiation. Data was analyzeprdgide
knowledge about the nesting conditions and behsvadrthe
birds. Strong correlations were observed betwespéeature,
humidity, and solar radiation. Barometric pressw@s also
somewhat correlated.

For the Intel Berkeley Labs (Lab) [2] deploymeny 5
sensor nodes were configured inside a laboratodyused to
transmit readings of temperature, humidity, lightensity, and
voltage. Temperature, humidity, and light were calirelated,
but voltage was not correlated to any other stream.

The ZebraNet project (ZNet) [3] tracked Kenyan asbr
generating sensor readings of GPS position and some
contextual data about the sensor nodes themsealebsas the
voltage, count of connected satellites, and hot&otelusion
of precision. The sensors were attached to theagedind data
was used to analyze the social patterns of theadsim

The GATech Vehicular dataset (GATech) [16] was
obtained testing a vehicle-to-vehicle network wiiile vehicles
were in motion. Data streams included locationituale, and
speed of the vehicles along with bytes sent aneived, signal
strength, and noise.

The CenceMe project [17] examined the performaricg o
system combining off-the-shelf sensor-enabled neopflones
and the automatic sharing and aggregation of tha dsing
social networking applications. Data was gathergd 22
different users and contained readings from th@warsensors
on the mobile phones including the Bluetooth, GRSd
accelerometer sensors.

B.

The algorithms were implemented in TOSSIM [18] on
Smulated Micaz [19] motes. Experiments were danshow
the impact of collaborative compression betweenstneams
on bandwidth usage, energy consumption, and latency
PowerTOSSIM [20] was used to simulate the energgedor
each of the algorithms.

I mplementation
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Figure 4 Bandwidth for lossless algorithms

Latency was measured by implementing the algoritbms
TelosB motes [21] sending to a base station coedetd a
notebook computer. The data was stored on the seastes
before the experiments and was compressed ananiitéet as
if the sensors had sensed it. Thus, the time red/dior actually
sensing the data was not included in the expersnéotvever,
since those times are not related to the compmessiethod
used, the data would be uninteresting and wouldoxipately
be constant for each dataset.

Lossy compression was done four times for eachritihgo
and dataset. Maximum error was set to 5%, 2%, b ,0a5%
respectively for the four runs. Results are shownthe
following sections.

VI. RESULTS

A. Bandwidth, lossless

Bandwidth results are shown in Figure 4. Note thatlines
between the data points are to aid in visual grayipnot to
imply a linear relationship. Bandwidth is showregsercentage
of the bandwidth required to send the data uncosspeand is
equivalent to the compressed size of the datgpascentage of
the uncompressed size. Collaboration between trearnss
made significant improvements in bandwidth usagerfost of
the algorithms. The CenceMe data was not highlyetated
causing TinyPack-Collaborative to only improve uptire

TinyPack-Init codes by a small fraction. In contras

compression of the GATech Vehicular dataset bestkfireatly
from the TinyPack-C algorithm since the data cawtdia high
degree of correlation between the streams at éessegsor.

If no correlation is detected at all in the dathent
TinyPack-Collaborative and TinyPack-Init should dtian

identically in terms of bandwidth although TinyPack

Collaborative would consume more energy.

B. Bandwidth, lossy

Figure 5 shows the results of the error toleramsioa of
our algorithm. As with the lossless case, the duaiion of
correlation between the sensed streams on theidodivsensor
node significantly reduced the amount of bandwiddage
needed to transmit the data. As expected, all therithms
performed better as more error was allowed in fiséesn. The
effect of leveraging correlation between the streawas
roughly equivalent to the lossless case. The datdbat had
high degrees of correlation saw the most benefit.
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Figure 6 Bandwidth for lossy algorithms, selected datasets

The results vary greatly from one dataset to the. fidnis is
due to the individual characteristics of the dataZebraNet
and CenceMe sensed data at a lower frequency hieaothers
which decreases the benefits that can be gaineeliyng on
temporal locality. The Lab, GDI, and GATech resulte also
shown in Figure 5 along with ZNet and CenceMe for
comparison and are also shown in Figure 6 for gredarity
and readability.

As with the lossless case, the low degree of ctioal in
the CenceMe and ZNet dataset caused TinyPack-©oditibe
to only perform slightly better than the other altfons, while
the GDI and GATech datasets were able to be cemsigt
compressed to near or below half the size achidwedhe
Jumping Baseline algorithm.

While more tolerated error allowed for better coagsion
in all cases, the relative compressed sizes fordifferent
algorithms was roughly similar for all configuredvels of
tolerable error.
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C. Energy Latency results are shown for the lossless mettinds

Figure 9 and for lossy in Figure 10. Latency isvghas a
percentage of the time that would be required dogmit the
data uncompressed. Results are shown as the avmags all
the datasets including the processing, transmissiod wait
time used by the algorithms.

The Micaz motes simulated in PowerTOSSIM for
measuring energy consumption have three differetior
power settings that can be used requiring 11, Ad,14.4 mA
respectively. We selected the 11 mA radio for ogregiments.
Choosing a higher powered radio would make theltse$or
energy consumption look almost identical to bandhwisince As with energy, the higher processor utilizationr fo
all the energy would be spent transmitting the .data TinyPack-Collaborative caused an increase in Igtenc
compared to the lighter weight TinyPack-Init andnping

_ The results for the lossless case are shown inr&igu . qjine methods; however, in a multi-hop enviromméhe
Since the bandwidth savings on CenceMe were nothmuc

X L average latency per hop decreases with each hop and
greater for the TmyPack-C, _the extra processd:rzatpon was approaches the sum of the transmit time and theé timaé as
enough to cause it to require more energy thanjuimping shown in Figure 11
baseline method. The high number of streams in Gid '
dataset caused a higher increase in the energireswants for 16%
TinyPack-C relative to the other datasets. Evengutiie low
powered radios, the bandwidth savings are stilughdo cause
a lower energy profile for sensors running TinyR&ckver the
other algorithms for most datasets.

14% X

12% "
\\L\ —+— Baselines

10% km::——‘ ——TP-C

8%

6%

The results for the lossy case are shown in Figubased
on the 1% maximum error configuration. The lowendaidth
requirements of the error tolerant algorithms caubke I : e
increased processor utilization to have a more ifgignt 1 2 3 456 7 8 9
impact on overall energy consumption; however, gner Number of hops
consumption for TinyPack-C was still close to ottéethan
the other algorithms for all the datasets studied. Figure 11 Latency for multi-hop environment
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VIl.  ERROR ANALYSIS

The step function used to approximate the strearthén
lossy case can be reconstructed into a series@égments as
done for the jumping baselines in [11]. This caduee the
total measured error in the data. The points atchviiew
baselines were selected are used as the endpéitie d¢ine
segments.

Since the algorithm tracks whether the data wasding
up, trending down, or peaking, this information ¢enused to
better approximate the end points. If the data tnesding up
or down, then the line segment endpoint is seleetedhe
average of the previous and current baselineshdfdata is
peaking (last jump was up, current jump was dowrvioe
versa), then the previous baseline value servdgeandpoint.

Figure 12 shows the total error for both the rawetiae
step function and for the reconstructed streamsdch of the
four configured maximum error percentages. Totadreor the
step functions is shown as dotted lines. The tetedr after
reconstructing the streams as sequences of linmeseg are
shown as solid lines. Data points for both
reconstructed for the same maximum error are shaitinthe
same shape in the figure. Again, the lines betwdsda points
are to aid in visual grouping, not to imply a linealationship.

Raw baseline step function total error was typycaliound
one half of the maximum tolerable error. This ipeoted since
the candidate baselines are integer multiples efnlaximum
tolerated error. The total error for the recongedcstreams
ranged from around one quarter to one sixth ofnlagimum
tolerable error. The more the data in a streamaxupates a
straight line over a short interval, the more aatarthe
reconstruction.

Experiments were also conducted
interpolation as a curve fitting technique, but thesults were
almost identical to the linear approximation andrevenuch
more computationally intense.

using b-spline

VIIl.  AGGREGATION OF COMPRESSED VALUES

As detailed previously, TinyPack-Collaborative, footh
lossless and lossy compression, transmits valugheaslelta
over some previous value or baseline function eedagsing
the TinyPack-Init codes. Some mathematical operatiand
aggregation can be performed on these encoded delttzout
the need to first decode the data.

For instance, in an ad-hoc network, if an interratginode
between the sensor publishing the data and the &tatien
begins forwarding data without seeing the initiaséline
value, it can still perform aggregations on theadahich the
base station can apply to the baseline.

A. Adding encoded values

Adding two encoded deltas can be done without cdimge
the value to a standard encoded integer. The coolatsin a
prefix, a suffix and a sign bit. In the case of tpasitive or two
negative numbers, the two suffixes with their perebits
prepended can be added in simple binary, if thb pigfix bit
overflows (is set to 0), then the prefix lengthnsremented by
one and the sign bit remains unchanged. In the oése
positive and negative number, the negative numtser
expressed in 2's complement. The two numbers atedads
before and the prefix length is reduced by the rembf
leading zeros in the sum.

B. Dropping packets

If a sensor network is being overloaded such thsgresor
needs to conserve additional bandwidth, one commetnod
for quick bandwidth savings is to drop a packet. dn
compressed stream, simply dropping a packet catlses
decoding process to produce incorrect results; Wewedelta
compressors such as TinyPack-Collaborative can paggets
without invalidating the data as long as the de#hues of all
the dropped packets are summed into the next tittedm
packet. For example, if a sensor received the gaiye, 12 9
10 and transmitted them as +5, +2, +5, -3, +1 aeded to
drop every other packet, it could send +5, +7,r@ tne sink
would decode them as 5, 12, 10. Any intermediatteameed
not know the baseline on which the first packdizdsed.

C. Minimum and maximum
Maintaining the maximum of a portion of a stream te

raw anddone without knowing the baseline by maintaining durrent

max delta and offset from the max delta by sumntirggdelta
values. For example, consider a sensor in an achbtwork
that samples the following values: 15, 13, 10,112, 13. The
15 is transmitted to the base station through otermediate
node and the remaining values through another nidue new
intermediate node first sees the -2 and maintdiesntax as
shown in Table V. Minimum can be maintained equudy.

Table V MAX DELTA EXAMPLE
sensed sent delta current offset from | actual max
value max delta max (delta+15)
15 -- -- -- 15
13 -2 0 2 15
10 -3 0 5 15
12 +2 0 3 15
17 +5 +2 0 17
13 -4 +2 4 15




D. Average

Maintaining an average of a portion of a streamtzadone
without knowing the baseline as long as the cotirgamples
included in the average is transmitted. The inteliate sensor
maintains the current offset by keeping a running of the
delta values. The sensor then maintains a sumosktbffsets.
Dividing that sum of offsets by the count gives tinerage
delta value which can be added by the base statiothe
known baseline value to obtain the overall averager
example, consider a sensor that samples the folfpwalues:
10, 13, 17, 14, 8, 7, 15. Again, the intermediabdelen starts
receiving and forwarding the data in the middletha stream
starting with the 13. This process is shown in &ahl

Table VI AVERAGE DELTA EXAMPLE
sensed sent sumof | sumof | count | avg | actual avg
value | delta | deltas sums delta | (delta+10)
10 - - - 0 -
13 +3 +3 +3 1 3 13
17 +4 +7 +10 2 5 15
14 -3 +4 +14 3 4.67 14.67
8 -6 -2 +12 4 3 13
7 -1 -3 +9 5 1.8 11.8
13 +6 +3 +12 6 2 12

IX. CONCLUSIONS AND FUTURE WORK

TinyPack-Collaborative compression
compared to related methods in terms of bandwidtage,
energy requirements, and end-to-end latency. Cmitalon
between the data streams improved
performance in all experiments compared to commess
without inter-stream collaboration. While collabtoa
between the same streams on different sensor riatebeen
shown to be effective in increasing compressiomga other
published works, collaboration between streamshensame
sensor node can also be used to achieve greatgression
leading to longer deployments, more data collecti@mver
collisions, and faster response times for a widdetya of
wireless sensor applications.

While the rolling least squares regression use@ hes
shown to be effective, other more sophisticatechous such
as Kalman Filters [22] or Principal Component Aséy[23]
could be potentially improve the accuracy of thesdtiae
correlation functions. It would also be useful tody the effect
of node failures on compression and error calcutati
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