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Abstract -Wireless sensor networks possess significant limitations 
in storage, bandwidth, and power. This has led to the 
development of several compression algorithms designed for 
sensor networks. Many of these methods exploit the correlation 
often present between the data on different sensor nodes in the 
network; however, correlation can also exist between different 
sensing modules on the same sensor node. Exploiting this 
correlation can improve compression ratios and reduce energy 
consumption without the cost of increased traffic in the network. 
We investigate and analyze approaches for compression utilizing 
collaboration between separate sensing modules on the same 
sensor node. The compression can be lossless or lossy with a 
parameter for maximum tolerable error. Performance 
evaluations over real world sensor data show increased energy 
efficiency and bandwidth utilization with a decrease in latency 
compared to some recent approaches for both lossless and loss 
tolerant compression. 

Keywords - wireless sensor network; real-time; collaborative; 
compression; 

I. INTRODUCTION 

Wireless sensors are used to collect and transmit data in a 
wide variety of applications. Many such applications utilize 
sensor nodes that collect several different streams of data on 
different sensing modules on the same sensor node. For 
example, sensor nodes in the Great Duck Island project [1] and 
an Intel Berkeley Labs experiment [2] were used to collect 
temperature, humidity, light intensity, and more. Even 
applications that primary just sense one thing often send 
multiple streams of data from the same sensor. For example, 
ZebraNet [3] tracked locations of zebras sending two streams 
of data for the GPS readings (easting and northing) and some 
metadata such as voltage and count of satellites in range of the 
GPS sensor. 

It is well known that wireless sensor networks possess 
significant limitations in processing, storage, bandwidth, and 
power. This has, naturally, led to the development of many 
compression algorithms specific to sensor networks. Many of 
these algorithms rely on the data readings from a single sensor 
being correlated to previous readings on that same sensor 
(temporal locality) [4][5][6]. Others rely on correlations 
between similar data streams on other sensor nodes (spatial 
locality) [7][8][9][10]. Correlation can also exist between 
different streams of data collected on the same sensor node; 
however, very little work has yet been done which exploits this 
correlation. 
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Figure 1 Multistream sensor readings 
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Figure 2 Scaled multistream sensor readings 

To illustrate this correlation, Figure 1 shows values from 
12,000 readings of temperature, humidity, and light intensity 
sensors on a single sensing node taken from the Intel Lab 
dataset. Figure 2 shows those same values scaled with the 
simple linear transformations shown in Equation 1 where hn is 
the nth humidity reading and hn' is the scaled value. Similarly, 
tn and ln are for the temperature and light intensity, respectively 
along with their scaled notation. Clearly some benefits could be 
gained by leveraging the correlation between the different data 
streams. 
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In this paper, we present TinyPack-Collaborative 
(TinyPack-C), a lightweight compression algorithm leveraging 
the temporal correlation within each stream and the correlation 
between multiple streams of data on an individual sensing 
node. TinyPack-C is based on the initial code set presented in 
[6] and extended to include collaboration between the multiple 
streams from the various sensors on the same sensing node. 
Collaboration is computed based on a rolling linear regression 
scheme requiring constant time memory use and processing for 
each correlated pair of sensed values. 

If some loss is tolerable in the data, compression is 
enhanced by first performing a modified version of the jumping 
baseline transformation introduced in [11] which converts the 
stream into a step function. The rolling linear regression is then 
applied to the flattened streams. The maximum tolerable error 
can be configured low for simply removing noise from the data 
or high if the application is not concerned with low variation in 
the data. 

We present and analyze compression schemes for both 
lossless compression and loss tolerant compression with a 
configurable maximum error. We compare both varieties 
against state of the art compression methods. For the lossless 
case, we compare against the original TinyPack algorithm, 
LEC [5] and S-LEC[12]. We compare our lossy compressor 
with LTC [13] and the single sensor jumping baseline approach 
[11]. Simulations using TOSSIM [18] were done over several 
real life datasets covering a wide variety of sensor applications. 

In summary, this paper makes the following contributions: 

• Novel algorithms for lossless compression leveraging 
collaboration across multiple streams on a single sensor 
node 

• Additional algorithms for lossy compression with a 
configurable upper bound for error 

• Lightweight mechanisms  for computing correlation 
between signals 

• Detailed analysis over several real world datasets 

• Methods for performing mathematical operations and 
aggregation on the compressed data without first 
decompressing the data 

• Analysis of effects of a simple signal reconstruction 
method on measured error 

II. RELATED WORK 

A. S-LEC 

S-LEC, a lossless data compression scheme, is proposed in 
[12]. S-LEC begins with the static set of codes used in LEC [5] 
to represent delta values in a data stream. In LEC, each reading, 
the previous value is subtracted from the current value and the 
resulting delta value is coded based on a static table of codes 
derived from those used in JPEG compression. Smaller delta 
values have shorter codes. For S-LEC, codes that are the same 
length are said to be in the same group and two bits are 
prepended to each value noting whether the current delta value 
is in the same, one higher, one lower, or any other group as the 

previous delta value. This enables reducing the size of the 
prefix come and improves the compression ratio when data is 
changing in a consistent fashion. 

B. TinyPack 

Another lossless method is presented in [6], TinyPack 
initially uses a similar set of static codes for its compression, 
but the codes were optimized for wireless sensor data instead of 
JPEGs. Those codes are then dynamically modified either by 
counting the frequency of each value or by approximating 
those frequencies using a rolling average and standard 
deviation. The initial set of codes used in TinyPack-Init is 
shown in Table I and forms the basis on which the compression 
in this work is built. 

Table I STATIC CODES 

prefix suffix range values 

1 n/a 0 
01 0...1 -1.1 
001 00...11 -3,-2,2,3 
0001 000...111 -7,...,-4,4,...,7 
00001 0000...1111 -15,...,-8,8,...,15 
000001 00000...11111 -31,...,-16,16,...,31 
0000001 000000...111111 -62,...,-32,32,...,63 
00000001 0000000...1111111 -127,...,-64,64,...,127 

 

Except in the case of 0, the last bit of the suffix is the sign 
bit. For example, if the current reading was 3 higher than the 
previous reading, a delta value of +3 would be transmitted as 
00110. A delta value of -4 would be encoded as 0001001. Note 
that in [6] the sign bit was at the beginning of the prefix, but 
computing mathematical operations on the compressed data is 
easier if the sign bit is moved to the end. 

C. LTC 

In [13] a lossy compression scheme is introduced that 
approximates the data stream by a sequence of linear segments. 
As the data is collected by the sensor, the algorithm fits a line 
to the data as long as the line can be defined such that no point 
in the transformed data exceeds a maximum error bound. When 
a data point is sensed that cannot be fit to the line without 
exceeding the allowed error, that line is transmitted and a new 
line starts. The algorithm is effective but does introduce 
additional latency since the data is not transmitted until the 
sensed reading that necessitates a new line. 

D. Jumping Baselines 

The jumping baseline approach in [11] approximates the 
data stream as a discrete step function which can be 
reconstructed to a linear function similar to the one generated 
by LTC at the sink. Any time a sensed value is outside the 
maximum tolerable error away from the current baseline, a new 
baseline is selected. The possible candidate baselines are 
selected from multiples of the maximum error such that the 
new value can be expressed as the number of baseline jumps 
above or below the previous baseline. The new baseline is also 
selected as far in the direction the data has been trending as 
possible without violating the maximum tolerable error. This 
process is described in more detail in section 0 and forms the 
basis on which our lossy compression is built. 



III.  BACKGROUND 

A. Temporal locality 

Data from wireless sensor networks generally exhibits 
temporal locality (data values from the same stream are 
correlated to values that are close together in time). Any type of 
data stream which changes in a continuous fashion will be 
temporally located such as humidity, position, light intensity, 
water level, etc. In fact, it can be demonstrated that any sensor 
stream sampled at non-random intervals will either generate 
temporally located data or random noise.  

Consider an arbitrary sensor sensing a stream of values {v1, 
v2, …, v2N} sensed at times {t1, t2, …, t2N} where N is an 
integer. Assume that the values are not correlated. Then 
sampling at {t1, t3, …, t2N-1} and {t2, t4, …, t2N} would yield 
completely different values. Thus, offsetting the sample period 
would generate entirely different data. Therefore, application 
with time-based sampling which did not exhibit temporal 
locality must be sampling random noise. Excluding such 
applications we can assume that successive readings at each 
sensor will be correlated. Delta compression (storing the data 
as the change in value from the previous reading) would then 
increase the frequency of certain values thus increasing the 
compressibility of the data. 

Naturally this does not apply to event driven sampling 
(where time between samples is random) such as a sensor that 
measures the speed once for each passing automobile. These 
applications do not necessarily exhibit temporal locality and 
were not included in this study. 

The previously sensed value in each sensed stream can then 
be used as a baseline for compressing the value of the next 
sample in the stream. For lossless compression, the value can 
be transmitted as the difference between the current sensed 
value and the previous value (the baseline value). For lossy 
compression, the data can be approximated using the baseline 
value until the current value differs from the baseline value by 
more than the upper limit for tolerated error. 

B. Collaborative compression 

In the case of collaborative compression, one sensed stream 
serves as the baseline for one or more of the other sensed 
streams on the same sensor. The data from this baseline stream 
is compressed leveraging temporal locality as discussed in the 
previous section and the data from the correlated streams are 
encoded based on the difference from some linear function of 
the baseline stream referred to as the baseline function. As with 
the single stream compression of the baseline stream, the 
lossless case would require that a delta value be sent every time 
the sensor samples data while the lossy case can use the 
baseline function as the approximated values for the 
compressed stream until the value is above or below the 
baseline function by more than the maximum tolerable error. 
The algorithm is shown in more detail section 0. 

C. Measuring error 

For the lossy compression, we consider a parameterized 
maximum tolerable error percentage Emax. Instead of reporting 
every value exactly as sensed, if a value deviates from its 
baseline less than Emax, the baseline value can be used instead. 

This allows for much greater compression while keeping the 
error bound by the tunable maximum. This parameter can be 
adjusted based on the application need, i.e., in real-time, but 
can tolerate some error (lossy), or non-lossy, but can tolerate 
some latency. 

A common method of measuring error, E, between a 
reported value, VR, and the actual value VA, is shown in 
Equation 2. 

  
A

RA

V

VV
E

−
=  (2) 

Unfortunately, that measure does not work well for many 
kinds of sensor data when introducing error because the error 
varies wildly when working with values near zero. 

Consider a sensor which reported relative humidity 
readings with a maximum error of +/- 1. Table II shows several 
possible actual readings and their approximated values within 1 
of the actual value. Also shown is the calculated error using the 
formula shown in Equation 2. 

Table II INCONSISTENT ERROR MEASURE 

actual 
value 

approximated 
value 

calculated 
error 

48 49 2.08% 
14 15 7.14% 
2 3 50% 
0 1 undefined 

 

In practice, the best way to set an upper bound for error 
would be to explicitly set the bounds in terms of the scale. For 
example, when set by the end user, the tolerable error for a 
temperature reading could be +/- 1°C. For analysis, however, it 
is useful to have a method of normalizing the error to a 
percentage. Another common method of measuring error is to 
divide the difference by the maximum range. The formula 
could use the maximum range of the sensor; however, since 
this range can be very large compared to the actual sensed 
range, the error percentages would be artificially low. For our 
analysis we use the maximum range of actual sensed values as 
the denominator for the error normalization (see Equation 3). 

  
MINMAX

RA

VV

VV
E

−
−

=  (3) 

 Table III shows the calculated error for the same data 
assuming the humidity measurements ranged from 0 to 49. 
This is a much better error measure for the work presented in 
this paper. 

Table III CONSISTENT ERROR MEASURE 

actual 
value 

approximated 
value 

calculated 
error 

48 49 2.00% 
14 15 2.00% 
2 3 2.00% 
0 1 2.00% 



D. Jumping baseline compression 

For our lossy compression algorithm, we begin with the 
jumping baseline compression introduced in [11]. The values in 
the stream are compressed to a step function by choosing a 
baseline value for a sensed value and only changing the 
baseline when the current sensed value differs from the 
baseline by more than the maximum tolerable error. The values 
selected as baselines are in the form kE where k is any integer 
and E is the maximum integer error that can be tolerated in a 
stream while remaining within the maximum error percentage 
Emax.  

The initial baseline is selected by choosing the candidate 
baseline closest to the first value sensed in a stream. So for a 
sensed value v the baseline B would be selected as shown in 
Equation 4. Adding 0.5 and truncating with the floor function is 
done as an efficient method of rounding. 
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 When a sensed value differs from the current baseline by 
more than E, a new baseline must be selected. Note that there 
will be two candidate baselines that would be within E of the 
new value. The algorithm chooses the baseline based on which 
direction the data is trending. A data stream can be in one of 
three states: trending up, trending down, or staying somewhat 
constant. If data is trending either up or down, then the next 
baseline should be selected as far in the direction the data is 
trending as it can be within the error bounds. If the data is 
remaining relatively constant, then the next baseline should be 
selected as close to the current value as possible. The state is 
determined by tracking whether the new baseline is above or 
below the previous baseline for two jumps. If both jumps were 
in the same direction, the data is trending either up or down 
depending on the direction of the jumps. All that needs to be 
cached is the previous value and the previous jump direction. 
The additional computation is also trivial. For example, Table 
IV shows an example of a light sensor with a maximum error 
set at +/- 10 lux. 

Table IV BASELINE COMPRESSION EXAMPLE 

Seq no Sensed 
value 

Last 
value 

Last 
jump 

This 
jump 

Baseline 

1 242 -- -- -- 240 
2 253 242 -- up 250 
3 261 253 up up 270 
4 276 261 up -- 270 
5 284 261 up up 290 

 

Initially, the baseline is selected as close as possible to the 
actual sensed value. When the upward trend is established at 
sequence number 3, the baseline is selected as high as possible 
while remaining within the error tolerance of +/- 10. Then as 
the data continues to trend upward, the baseline does not 
require as many jumps while remaining within the maximum 
tolerable error. This process is shown in detail in Algorithm 1. 

Algorithm 1 CheckReading(v, p, S, d) 
Objective:  Check current reading, select next baseline 
Input:  Sensed value v, previous baseline B, max difference E,       
  previous jump direction d 
Output: New baseline (reported value) B 
 If |p – v| > E 
  B := floor(v/E + 0.5) 
  If v > B And d == UP 
   B := B + E 
  Else if v < r And d == DOWN 
   B := B – E 
  End If 
  If v > p 
   d := UP 
  Else 
   d := DOWN 
  End If 
  p := B 
 Else 
  B := p 
 End If 

IV.  OUR MULTISTREAM COMPRESSION APPROACH 

A. Rolling correlation 

A common simple method of approximating one data 
stream with another is to use a linear least squares 
approximation. The first stream is translated using a linear 
function in the form Y =aX + b into an approximation of the 
second stream in such a way as to minimize the amount of 
error between the approximated stream and the actual stream. 
Computing full least squares regression is far too 
computationally complex to run on a sensor every time a new 
value is sensed; however, the correlation can be computed 
incrementally such that only a few calculations need to be 
made after each sample while still maintaining accurate 
correlation values. 

Also, the correlation is not necessarily the same for the 
entire run of the sensor network so some decay should be 
introduced in the correlation equation such that the most recent 
data contributes a higher weight to the correlation and older 
data contributes less. Such decaying rolling statistics have been 
used many times for other applications [6][14][15]. Here we 
refine the rolling least squares to optimize for simplicity of 
calculation for the sensor networks. 

A common method for calculating the slope and intercept 
of the regression line (correlation function) Y = aX+b is shown 
in Equation 5 where σX is the standard deviation of X, E(X) is 
the expected value (mean) of X, and r is the Pearson 
Correlation of X and Y. 
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The standard deviation of a variable can be expressed in 
terms of the expected values of the variable and the square of 
the variable as shown in Equation 6. 

  ( ) ( )( )22 XEXEX −=σ  (6) 

The Pearson Correlation coefficient is also commonly 
expressed in those terms as shown in Equation 7. 
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Combining equations 5, 6, and 7 we can derive Equation 8. 
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Since E(X) is simply the sum of X divided by the count of 
samples, if a running total is kept for X, Y, XY, and X2 , then the 
correlation function can be updated incrementally at each 
sensed value with a computational complexity of O(1). 

To allow more recent samples to have a greater impact on 
the correlation function we introduce a window size W over 
which to compute the statistics. We use the notation XW to 
indicate the average of X over the window W. At each sensed 
value of Xi, XWi is recomputed using Equation 9 so that the 
effect of older samples on the value of XW slowly decays 
toward zero. We use [XY]W and [X2]W for the averages of XY 
and X2 respectively. 
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In practice, if the current number of samples N was less 
than W, then N was substituted for W in the equations. In that 
case XW is the actual mean of the current samples of X1 through 
XN. 

This leads us to the final equations for rolling least squares 
calculations for the correlation function used in this work 
shown in Equation 10. 
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The mean square error (MSE), a measure of the average 
deviation from the correlation function, can also be computed 

on the fly in a similar fashion. The general equation for 
calculating mean square error over variables X and Y given the 
correlation function defined by some a and b is shown in 
Equation 11. 
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This can be expanded and shown in the same form as the 
other equations used here as shown in Equation 12.  
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The coefficient of determination, usually written as R2 and 
used to measure the strength of the correlation, can also be 
computed incrementally. R2 is simply the square of the r value 
from Equation 7 and is shown in Equation 13. 
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B. Collaborative correlation 

The above formulas can be used to dynamically track the 
correlation function between two streams as well as to 
periodically reevaluate which streams are correlated with 
which other streams. 

Since the correlation function is computed in real time as 
the data stream is sensed, the correlation is built on the 
previous values and is not affected by the current sensed value 
until that value has been transmitted. This enables the 
calculations to be done on the sink side as well the data is being 
decoded so that the correlation function is known without the 
need to transmit the correlation function across the sensor 
nodes wireless channel. This helps to reduce the total amount 
of bandwidth required by the application. 

For the lossy case, the correlations must be computed after 
the values have been truncated to the baselines otherwise the 
sink side would not have the same data on which the 
correlations were built and would thus be unable to decode the 
stream unless the correlation functions were transmitted 
periodically along with the data. 

A correlated stream can then encode its values as offsets 
from its correlation function of its baseline stream. A higher R2 
value indicates a higher correlation and therefore serves as a 
good metric for which stream to choose as a base for which 
other streams. 
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Figure 3 Compressed size for correlated pairs by R2 value 

The computational complexity for computing the 
correlation for every pair of streams is on the order of O(S) 
where S is the number of streams. The number of streams on a 
single sensor node tends to be relatively low (the Great Duck 
Island weather dataset [1] had 12 which is the highest count of 
any of the datasets studied here). Even though the number of 
streams is low, the computation is still too heavy to be ideal. 
However, while the correlation function can be very dynamic, 
the sets of correlated streams tend to be rather static, i.e., if 
some set of streams is found to be correlated, they are typically 
correlated for the entire run of the dataset. The R2 values then 
need not be recomputed every time but only on occasion. Also 
in many applications, the computations can be done on the sink 
(which typically has much more processing power) and the 
correlated sets communicated back through the network. In our 
experiments, we recomputed the correlation sets every 10W 
samples (where W is the window size of the correlation 
functions). 

To determine when to apply a correlation function, we 
analyzed each pair of streams on the sensor nodes from the 
Great Duck Island weather dataset. Figure 3 shows the R2 value 
of each pair along with the compressed size using the 
correlation function divided by the compressed size using just 
the TinyPack-Init codes. If two streams were not correlated, 
then adding the correlation function as the baseline for a stream 
naturally required more bits to transmit the data. Most of the 
pairs of streams with an R2 value greater than 0.25 had 
compression gains when using the correlation function. In our 
algorithm, any pair of streams with a measured R2 value greater 
than 0.25 is defined as a correlated set. 

If two streams are correlated to only each other, the one 
with the lower index is chosen as the baseline stream. If three 
or more are correlated to each other, then the R2 values are 
summed for each pair a stream is in and the stream with the 
highest R2 sum is selected as the baseline stream. For example, 
consider a sensor node sensing temperature (T), humidity (H), 
and light intensity (L) with the R2 values for the stream pairs 
measured as shown in Equation 14. The humidity stream would 
be selected as the base stream since it has the highest sum of R2 

values as shown in Equation 15. 
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V. EXPERIMENTAL SET UP 

A. Datasets 

The datasets used for simulation were pulled from a wide 
variety of domains, which utilize wireless sensor networks 
including environment monitoring, animal tracking, vehicle-to-
vehicle communication, and smart phone accelerometers. All 
are from publicly available real deployments of wireless sensor 
networks. 

The Great Duck Island (GDI) [1] experiment deployed 
sensor nodes in and around the burrows of Leach's Storm 
Petrels. 32 sensors were deployed monitoring sensor voltage 
and various types of temperature, humidity, barometric 
pressure, and solar radiation. Data was analyzed to provide 
knowledge about the nesting conditions and behaviors of the 
birds. Strong correlations were observed between temperature, 
humidity, and solar radiation. Barometric pressure was also 
somewhat correlated. 

For the Intel Berkeley Labs (Lab) [2] deployment, 54 
sensor nodes were configured inside a laboratory and used to 
transmit readings of temperature, humidity, light intensity, and 
voltage. Temperature, humidity, and light were all correlated, 
but voltage was not correlated to any other stream. 

The ZebraNet project (ZNet) [3] tracked Kenyan zebras 
generating sensor readings of GPS position and some 
contextual data about the sensor nodes themselves such as the 
voltage, count of connected satellites, and horizontal delusion 
of precision. The sensors were attached to the Zebras and data 
was used to analyze the social patterns of the animals. 

The GATech Vehicular dataset (GATech) [16] was 
obtained testing a vehicle-to-vehicle network while the vehicles 
were in motion. Data streams included location, altitude, and 
speed of the vehicles along with bytes sent and received, signal 
strength, and noise. 

The CenceMe project [17] examined the performance of a 
system combining off-the-shelf sensor-enabled mobile phones 
and the automatic sharing and aggregation of the data using 
social networking applications. Data was gathered by 22 
different users and contained readings from the various sensors 
on the mobile phones including the Bluetooth, GPS, and 
accelerometer sensors. 

B. Implementation 

The algorithms were implemented in TOSSIM [18] on 
simulated MicaZ [19] motes. Experiments were done to show 
the impact of collaborative compression between the streams 
on bandwidth usage, energy consumption, and latency. 
PowerTOSSIM [20] was used to simulate the energy usage for 
each of the algorithms. 
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Figure 4 Bandwidth for lossless algorithms 

Latency was measured by implementing the algorithms on 
TelosB motes [21] sending to a base station connected to a 
notebook computer. The data was stored on the sensor nodes 
before the experiments and was compressed and transmitted as 
if the sensors had sensed it. Thus, the time required for actually 
sensing the data was not included in the experiments; however, 
since those times are not related to the compression method 
used, the data would be uninteresting and would approximately 
be constant for each dataset. 

Lossy compression was done four times for each algorithm 
and dataset. Maximum error was set to 5%, 2%, 1%, and 0.5% 
respectively for the four runs. Results are shown in the 
following sections. 

VI.  RESULTS 

A. Bandwidth, lossless 

Bandwidth results are shown in Figure 4. Note that the lines 
between the data points are to aid in visual grouping, not to 
imply a linear relationship. Bandwidth is shown as a percentage 
of the bandwidth required to send the data uncompressed and is 
equivalent to the compressed size of the data as a percentage of 
the uncompressed size. Collaboration between the streams 
made significant improvements in bandwidth usage for most of 
the algorithms. The CenceMe data was not highly correlated 
causing TinyPack-Collaborative to only improve upon the 
TinyPack-Init codes by a small fraction. In contrast, 
compression of the GATech Vehicular dataset benefited greatly 
from the TinyPack-C algorithm since the data contained a high 
degree of correlation between the streams at a single sensor.  

If no correlation is detected at all in the data, then 
TinyPack-Collaborative and TinyPack-Init should function 
identically in terms of bandwidth although TinyPack-
Collaborative would consume more energy. 

B. Bandwidth, lossy 

Figure 5 shows the results of the error tolerant version of 
our algorithm. As with the lossless case, the introduction of 
correlation between the sensed streams on the individual sensor 
node significantly reduced the amount of bandwidth usage 
needed to transmit the data. As expected, all the algorithms 
performed better as more error was allowed in the system. The 
effect of leveraging correlation between the streams was 
roughly equivalent to the lossless case. The datasets that had 
high degrees of correlation saw the most benefit. 
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Figure 5 Bandwidth for lossy algorithms, all datasets 
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Figure 6 Bandwidth for lossy algorithms, selected datasets 

The results vary greatly from one dataset to the next. This is 
due to the individual characteristics of the dataset. ZebraNet 
and CenceMe sensed data at a lower frequency than the others 
which decreases the benefits that can be gained by relying on 
temporal locality. The Lab, GDI, and GATech results are also 
shown in Figure 5 along with ZNet and CenceMe for 
comparison and are also shown in Figure 6 for greater clarity 
and readability. 

As with the lossless case, the low degree of correlation in 
the CenceMe and ZNet dataset caused TinyPack-Collaborative 
to only perform slightly better than the other algorithms, while 
the GDI and GATech datasets were able to be consistently 
compressed to near or below half the size achieved by the 
Jumping Baseline algorithm. 

While more tolerated error allowed for better compression 
in all cases, the relative compressed sizes for the different 
algorithms was roughly similar for all configured levels of 
tolerable error. 
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Figure 7 Energy consumption for lossless algorithms 
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Figure 8 Energy consumption for lossy algorithms 

C. Energy 

The MicaZ motes simulated in PowerTOSSIM for 
measuring energy consumption have three different radio 
power settings that can be used requiring 11, 14, and 17.4 mA 
respectively. We selected the 11 mA radio for our experiments. 
Choosing a higher powered radio would make the results for 
energy consumption look almost identical to bandwidth since 
all the energy would be spent transmitting the data. 

The results for the lossless case are shown in Figure 7. 
Since the bandwidth savings on CenceMe were not much 
greater for the TinyPack-C, the extra processor utilization was 
enough to cause it to require more energy than the jumping 
baseline method. The high number of streams in the GDI 
dataset caused a higher increase in the energy requirements for 
TinyPack-C relative to the other datasets. Even using the low 
powered radios, the bandwidth savings are still enough to cause 
a lower energy profile for sensors running TinyPack-C over the 
other algorithms for most datasets. 

The results for the lossy case are shown in Figure 8 based 
on the 1% maximum error configuration. The lower bandwidth 
requirements of the error tolerant algorithms cause the 
increased processor utilization to have a more significant 
impact on overall energy consumption; however, energy 
consumption for TinyPack-C was still close to or better than 
the other algorithms for all the datasets studied. 
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Figure 9 Latency for lossless algorithms 
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Figure 10 Latency for lossy algorithms 

D. Latency 

Latency results are shown for the lossless methods in 
Figure 9 and for lossy in Figure 10. Latency is shown as a 
percentage of the time that would be required to transmit the 
data uncompressed. Results are shown as the average across all 
the datasets including the processing, transmission, and wait 
time used by the algorithms. 

As with energy, the higher processor utilization for 
TinyPack-Collaborative caused an increase in latency 
compared to the lighter weight TinyPack-Init and jumping 
baseline methods; however, in a multi-hop environment, the 
average latency per hop decreases with each hop and 
approaches the sum of the transmit time and the wait time as 
shown in Figure 11. 
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Figure 11 Latency for multi-hop environment 
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Figure 12 Average total error for raw baseline and reconstructed 

VII.  ERROR ANALYSIS 

The step function used to approximate the stream in the 
lossy case can be reconstructed into a series of line segments as 
done for the jumping baselines in [11]. This can reduce the 
total measured error in the data. The points at which new 
baselines were selected are used as the endpoints of the line 
segments. 

Since the algorithm tracks whether the data was trending 
up, trending down, or peaking, this information can be used to 
better approximate the end points. If the data was trending up 
or down, then the line segment endpoint is selected as the 
average of the previous and current baselines. If the data is 
peaking (last jump was up, current jump was down or vice 
versa), then the previous baseline value serves as the endpoint. 

Figure 12 shows the total error for both the raw baseline 
step function and for the reconstructed streams for each of the 
four configured maximum error percentages. Total error for the 
step functions is shown as dotted lines. The total error after 
reconstructing the streams as sequences of line segments are 
shown as solid lines. Data points for both raw and 
reconstructed for the same maximum error are shown with the 
same shape in the figure. Again, the lines between data points 
are to aid in visual grouping, not to imply a linear relationship. 

Raw baseline step function total error was typically around 
one half of the maximum tolerable error. This is expected since 
the candidate baselines are integer multiples of the maximum 
tolerated error. The total error for the reconstructed streams 
ranged from around one quarter to one sixth of the maximum 
tolerable error. The more the data in a stream approximates a 
straight line over a short interval, the more accurate the 
reconstruction. 

Experiments were also conducted using b-spline 
interpolation as a curve fitting technique, but the results were 
almost identical to the linear approximation and were much 
more computationally intense. 

VIII.  AGGREGATION OF COMPRESSED VALUES 

As detailed previously, TinyPack-Collaborative, for both 
lossless and lossy compression, transmits values as the delta 
over some previous value or baseline function encoded using 
the TinyPack-Init codes. Some mathematical operations and 
aggregation can be performed on these encoded deltas without 
the need to first decode the data. 

For instance, in an ad-hoc network, if an intermediate node 
between the sensor publishing the data and the base station 
begins forwarding data without seeing the initial baseline 
value, it can still perform aggregations on the data which the 
base station can apply to the baseline. 

A. Adding encoded values 

Adding two encoded deltas can be done without converting 
the value to a standard encoded integer. The codes contain a 
prefix, a suffix and a sign bit. In the case of two positive or two 
negative numbers, the two suffixes with their prefix bits 
prepended can be added in simple binary, if the high prefix bit 
overflows (is set to 0), then the prefix length is incremented by 
one and the sign bit remains unchanged. In the case of a 
positive and negative number, the negative number is 
expressed in 2's complement. The two numbers are added as 
before and the prefix length is reduced by the number of 
leading zeros in the sum. 

B. Dropping packets 

If a sensor network is being overloaded such that a sensor 
needs to conserve additional bandwidth, one common method 
for quick bandwidth savings is to drop a packet. In a 
compressed stream, simply dropping a packet causes the 
decoding process to produce incorrect results; however, delta 
compressors such as TinyPack-Collaborative can drop packets 
without invalidating the data as long as the delta values of all 
the dropped packets are summed into the next transmitted 
packet. For example, if a sensor received the values 5, 7, 12 9 
10 and transmitted them as +5, +2, +5, -3, +1 and needed to 
drop every other packet, it could send +5, +7, -2 and the sink 
would decode them as 5, 12, 10. Any intermediate nodes need 
not know the baseline on which the first packet is based. 

C. Minimum and maximum 

Maintaining the maximum of a portion of a stream can be 
done without knowing the baseline by maintaining the current 
max delta and offset from the max delta by summing the delta 
values. For example, consider a sensor in an ad hoc network 
that samples the following values: 15, 13, 10, 12, 17, 13. The 
15 is transmitted to the base station through one intermediate 
node and the remaining values through another node. The new 
intermediate node first sees the -2 and maintains the max as 
shown in Table V. Minimum can be maintained equivalently.  

Table V MAX DELTA EXAMPLE  

sensed 
value 

sent delta current 
max delta 

offset from 
max 

actual max 
(delta+15) 

15 -- -- -- 15 
13 -2 0 2 15 
10 -3 0 5 15 
12 +2 0 3 15 
17 +5 +2 0 17 
13 -4 +2 4 15 



D. Average 

Maintaining an average of a portion of a stream can be done 
without knowing the baseline as long as the count of samples 
included in the average is transmitted. The intermediate sensor 
maintains the current offset by keeping a running sum of the 
delta values. The sensor then maintains a sum of those offsets. 
Dividing that sum of offsets by the count gives the average 
delta value which can be added by the base station to the 
known baseline value to obtain the overall average. For 
example, consider a sensor that samples the following values: 
10, 13, 17, 14, 8, 7, 15. Again, the intermediate node starts 
receiving and forwarding the data in the middle of the stream 
starting with the 13. This process is shown in Table VI. 

Table VI AVERAGE DELTA EXAMPLE 

sensed 
value 

sent 
delta 

sum of 
deltas 

sum of 
sums 

count avg 
delta 

actual avg 
(delta+10) 

10 -- -- -- 0  -- 
13 +3 +3 +3 1 3 13 
17 +4 +7 +10 2 5 15 
14 -3 +4 +14 3 4.67 14.67 
8 -6 -2 +12 4 3 13 
7 -1 -3 +9 5 1.8 11.8 
13 +6 +3 +12 6 2 12 

IX.  CONCLUSIONS AND FUTURE WORK 

TinyPack-Collaborative compression performed well 
compared to related methods in terms of bandwidth usage, 
energy requirements, and end-to-end latency. Collaboration 
between the data streams improved the compression 
performance in all experiments compared to compression 
without inter-stream collaboration. While collaboration 
between the same streams on different sensor nodes has been 
shown to be effective in increasing compression gains in other 
published works, collaboration between streams on the same 
sensor node can also be used to achieve greater compression 
leading to longer deployments, more data collection, fewer 
collisions, and faster response times for a wide variety of 
wireless sensor applications. 

While the rolling least squares regression used here was 
shown to be effective, other more sophisticated methods such 
as Kalman Filters [22] or Principal Component Analysis [23] 
could be potentially improve the accuracy of the baseline 
correlation functions. It would also be useful to study the effect 
of node failures on compression and error calculations.  
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