
Android Keylogging Threat
Fadi Mohsen, Mohammed Shehab

Department of Software and Information Systems
University of North Carolina at Charlotte

Charlotte, NC, USA
{fmohsen, mshehab}@uncc.edu

Abstract—The openness of Android platform has attracted
users, developers and attackers. Android offers bunch of capabil-
ities and flexibilities, for instance, developers can write their own
keyboard service-similar to Android soft keyboards-using the
KeyboardView class. This class is available since api level 3.0 and
can be part of the layout of an activity. Users prefer to download
and install third-party keyboards that offer better experience and
capabilities. However, there are security risks related to users
installing and using these custom keyboards. Attackers can build
or take advantage of existing third-party keyboards to create
keyloggers to spy on smartphones users. Third-party keyboard
once activated would substitute the Android standard keyboard,
so all keys events pass this app. As results, many attacks can
be launched identified by the permissions granted to these apps.
The objective of this paper is to present these attacks, analyze
their causes, and provide possible solutions.

Index Terms—mobile security, mobile apps, keyboard logging

I. INTRODUCTION

Mobile devices are becoming more popular than televi-
sions globally. They are running by different mobile operating
systems (OS) such as Google’s Android, Apple’s iOS, Nokia’s
Symbian, Blackberry Ltd’s BlackBerry OS, Samsung’s Bada,
Microsoft’s Windows Phone, etc. Mobile operating systems
can also be extended by installing different kind of mobile
applications (apps). Developing mobile apps is becoming
more accessible to developers, and plenty of development
resources and support are available. As a result, thousands
of applications are now available in the market, some of them
are free, others are not. For example, in the first quarter of
2013, Apple customers have downloaded more than 40 billion
apps, the developers have created more than 775,000 apps,
and generating billions in revenue. Android US market share
dips slightly, remains on top as of April 2013 [23]. In a
race to one million apps between Google’s Android operating
system and Apple’s iOS, Google declared victory on July 2013
announcing that the Google Play store had more than one
million apps in its app store. Android’s noticeable popularity
among consumers and developers alike is tightly related to its
openness and powerful development framework.

The Android’s platform openness has triggered a great
rise in privacy concerns and malware. For instance, the major-
ity of Android applications require permissions to access the
phone resources: phone book, camera, sensors, etc. Therefore,
many concerns have risen regarding data privacy [19], [12],

[17], [11], [18]. Many solutions were implemented as well
[13], [10], [25], [27] to detect and prevent from information
leakage. In the other hand, Android Play store has attracted
hackers to spread their malicious apps (malware). The most
common Android malwares are spyware and (SMS) trojans
that: collect private information, send SMSs to premium num-
bers, record voice calls, etc. Malware is a general term used
to refer to a variety of forms of hostile or intrusive software,
including: computer viruses, worms, trojan horses, rootkits,
keyloggers, and other malicious software. the work of [29]
emphasized the importance of understanding these malwares
to build effective defense mechanism.

In this paper, we study the possibility of keylogging
attacks on Android. Which is a security threat pertaining
to Android openness on specific feature, the keyboard. The
Android system shows an on-screen keyboard–known as a soft
input method– when any text field within the system or appli-
cation gets focus. Before the soft keyboard, Android supported
the hardware keyboard. The keyboards since then have evolved
and users have learned to customize their keyboards and install
new ones. The need for customized keyboard varies, multi-
language support, different themes, or people with disabili-
ties or health problems [26]. Android provides accessibility
features and services for helping these users navigate their
devices more easily. Android provides an extensible input
method framework that allows applications to provide users
alternative input methods, such as on-screen keyboards or
even speech input. Android developers use KeyboardView to
build their keyboards to work within their applications’ context
(embedded) or as a stand-alone application. In this paper, we
focus only on stand alone third-party keyboards. This facility
poses some security threats on phone users’ data. Given that
most data passes through keyboards, users’ privacy can be
greatly impacted with malicious keyboards.

In this paper, we show the potential risks related to
downloading and installing third-party keyboards. The risks
are centralized around spying on whatever users enter via like
these keyboards. Moreover, the attacks are dependent on the
permissions requested by these applications upon installation.
Our contributions are as follows:

1) Conducted an empirical study on a set of keyboards
collected from the market

2) Provide different scenarios for possible attacks and im-
plementing them

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254209



3) From the empirical study and previous work we identify
dangerous permissions related to the attack scenarios

4) Develop an Android application, KBsCheckers, detects
all running keyboard services, identify potential risks and
alert the user to take some actions.

II. BACKGROUND

In this section, we give background information on Android
keyboards, Android permission system, and the key-logging
threat.

A. The Evolution of Android Keyboards

The Android operating system started on October 22nd,
2008. It was designed primarily for touchscreen mobile de-
vices such as smarphones and tablet computers. The initial
release was missing many features that we consider nowadays
necessities, for instance, the on-screen keyboards. The evolu-
tion of Android keyboards has gone through many stages:

1) Android 1.5 Known by its codename, Cupcake [3], sup-
ported both virtual and physical keyboards. The virtual
keyboard supports both landscape and portrait orientation
modes and works with the built in applications (e.g. SMS,
web browser, etc.) and third-party applications. It also
provides auto-correct capability, a suggestion algorithm
and dictionary of suggestions, and support for custom
user dictionaries. Moreover, it supports tactile feedback
using screen vibration. Finally, it integrated the hooks
necessary for third-party developers to develop their own
customized keyboards.

2) Android 2.0/2.1 Known by its codename, Eclair [4], in-
troduced some improvements over the soft keyboard. For
example, Eclair used multitouch data on the keyboard to
detect secondary presses while typing rapidly, it resulted
in improving the accuracy especially for fast typists.

3) Android 2.3 Known by its codename, Gingerbread [5],
improved the keyboard design and functionality. The
design and coloration of the keys changed significantly.
The multitouch on the other hand has also improved with
“chording”, allowing users to press multi-key combina-
tions to quickly access the secondary symbol keyboard.

4) Android 4.0 Known by its codename, Ice Cream Sand-
wich [6], the changes were made to improve the cor-
rection intelligence with an attractive implementation of
inline spellcheck and replacement.

From the above items, we conclude that Android supported
the third-party developers in developing their own keyboards
since version 1.5. Moreover, the correction intelligence was
the main functionality that received the most attention since
then. In other words, Android developers had the motive and
the flexibility to develop their own customized keyboards.

B. Android Permissions

Android permission system mandates applications to
possess permissions in order to make API system calls. The
APIs provide access to system and user resources such that
contacts, messages and camera. The permissions are granted

by the user upon installation. Application developers declare
the required permissions in the AndroidManifest.xml file using
the uses-permission tag. For example, an application needs to
request the READ CONTACTS permission to read the user’s
address book. Once installed, an application’s permission can’t
be changed.

There are normal permissions and dangerous permis-
sions. The former type has lower-risk and gives requesting
applications access to isolated application-level features, with
minimal risk to other applications, the system, or the user.
The system automatically grants this type of permission to a
requesting application upon installation without user consent.
The dangerous permission though has higher-risk that gives
requesting applications access to private user data or control
over the device which could impact the user negatively.
Because of that, the system displays these permissions to the
user upon installation. The user can then approve or deny them.

Many security threats were connected to the unsafe
usage of Android permissions. For instance, applications can
be granted more permissions than they actually need, what
researchers called a “overprivilege” [16] or “permission gap”
[10]. Malware can leverage the unused permissions for mali-
cious purposes, for instance using code injection. The threat
level is not only connected to the meaning of a single permis-
sion, instead the permissions combinations play an important
role in understanding the potential implications. Android key-
board applications can also request to have permissions upon
installation, some of these permissions may impose privacy
threat.

C. Key-Logging Threat

Keyloggers or also known for keystroke recorders are
softwares whose main purpose is to monitor user’s keyboard
actions. keyloggers in the computer community can be mainly
classified into two categories: hardware and software. Hard-
ware keyloggers take the form of small electronic devices used
for capturing the data in between a keyboard and I/O port
[15]. They have their own built-in memory, the place where
the captured data is stored. It can be either plugged into the
end of the keyboard cable or installed inside the computer
case, or inside the keyboard itself. This type of keylogger
is hard to be detected by the anti-viral software or scanners
because: it doesn’t use any computer resource, it doesn’t use
computer hard disk for storing keystroke logs, and it can be
placed in different locations. Though, the main disadvantage
of this type is that they require physical installation. Software
keyloggers on the other hand collect keystroke data within the
target machine, store them temporary on local storage before
sending them to the attacker who installed the keylogger. It
could also be the case where keystroke data sent directly
without temporal local storage. The Monitoring methods for
software keyloggers are operating-system specific. Keyloggers
pose security and privacy risks on users. In Android, software
keyloggers are the only type that may exist. In that case, the
keylogger must have certain permissions to record, store, and
send the keystroke data.



III. ANDROID INPUT METHODS

There are two parts in developing a keyboard in Android:
the interface and the implementation. We first talk about
Android input method framework then we explain how to
create new input method.

A. Input Method Framework Architecture

Android input method framework architecture (IMF) is
composed mainly of three components: input method man-
ager [8], input method (IME)[7], and client applications. The
InputMethodManager is the key component that mediates
interaction between the other parts. It can be expressed as
the client-side API that exists in each application and talks
with a global system service which manages the interaction
across all processes. Android InputMethod interface represents
any method that can generate key events and texts, such as
text messages, emails, different languages characters, while
handling various input events, and send the text back to the
application that requests text input. An Android application
that contains an instance of EditText or TextView need not to
worry about implementing the InputMethod interface, instead
it relies on the standard interaction provided by these two
components.

Implementing an input method in Android is done through
deriving a class from InputMethodService or any of its sub-
classes. It involves providing two types of interfaces: top-
level interface and session interface. The former provides
full access to the input method and it is only accessible by
the system. To ensure that only the system can bind to it,
an input method must require that clients should hold the
BIND INPUT METHOD, otherwise the system won’t bind
and will consider that method as compromised. The session
interface is what client applications use to communicate with
the input method.

B. Creating an Input Method

In this section, we show how to create a keyboard in
Android, which is an example of input method (IME). Through
out the rest of the paper we use the terms keyboard and IME
interchangeably.

1) Declaring IME Components in the Manifest: In the
Android system, an IME is an application that contains a
special IME service. The manifest should contain service
declaration, permission request, metadata, intent filter, and an
optional “settings” activity. The intent filter must match the
action “action.view.InputMethod”, the metadata defines the
characteristics of the IME service, and the settings activity
is to allow the user pass new options.

2) Designing the Input Method UI: Android keyboard
(IME) main components are: the layout component, manifest
entry, xml file, and program component. First of all, the
KeyboardView [2] which is a view that renders a virtual Key-
board. It handles rendering of keys and detecting key presses
and touch movements. Like any other Views, KeyaboardView
should be included in the layout file of the application. Second,
the Keyboard class [1] loads an XML description of a keyboard

Fig. 1. Warning message upon activating the new keyboard

and stores the attributes of the keys. A keyboard consists of
rows of keys. For instance, we could define myKeyboardView
as an instance of a custom implementation of KeyboardView
that renders myKeyboard, which is an instance of Keyboard
class . There are some UI design considerations for IMEs,
like handling multiple screen sizes and handling different input
types (e.g. Text, Numbers, URL, etc.). Developers can handle
these issues by modifying the XML files and program section.

3) Sending Text to the Application: The purpose of the
IME (e.g. keyboard) is to provide the interface, handle user
events and then send the text to applications. As the user
inputs text with the active IME, text can be sent to the
application by sending individual key events or by editing
the text around the cursor in the application’s text field. In
both cases, an instance of InputConnection is required to
deliver the text. This instance can be retrieved by calling
InputMethodService.getCurrentInputConnection().

IV. THREAT MODEL FOR MOBILE PLATFORMS

In this section we present an overview on the security
challenges mobile platforms are facing. We present attacker’s
motives and goals, attack vectors and mobile malwares. The
overview will set up the basis before discussing the risks of
Android KeyboardView or Android third-party keyboards, thus,
displaying these risks on regard to the overall risks.

A. Motivation

In smarphones arena, attacker’s motives can be classified
into two main motives. The first one is to harm the user by
disrupting the normal operation of a mobile device. The second
is done for financial gain. In addition, there is the spying
motive that may overlap with any of the two main motives
or may not.

1) Financial Gain: For the financial motive, there are many
ways to achieve that. Premium rate number billing is one
example. In this scenario, attackers set up and register a
premium-rate number that when calling or sending an SMS



to it, the caller is billed a premium rate above the normal cost
of an SMS or phone call. The revenue is then shared by the
attacker, carrier, and the SMS aggregator. Android applications
can request permissions to send SMS messages at installa-
tion time. The SMS messages can be sent without the user
confirmation. Moreover, Android developers usually benefit
financially, either by selling their apps or embedding one of
the many ad libraries available on smartphone platforms. Some
attackers repackage a legitimate ad-supported application then
make it available on the market. So, whenever a user installs,
use and clicks on the ads the revenue goes to the attacker. More
examples like: pay-per-click, pay-per-install, mTAN stealing,
etc.

2) Cause Harm: Some attacks are designated to cause harm
to the user and the device. Malicious actions that can drain the
battery [28], generate huge network traffic, or destroy the data
are examples of this type of attack. While these type of attacks
have low motive, yet they can cause financial loss.

3) Spying: Attackers write Android applications that allow
someone to track and monitor a smartphone user. These
applications may collect and export all SMS messages, emails,
call logs, GPS locations, or listen to voice messages. Typically,
some of these applications are developed by vendors and made
available to purchase by an attacker who then gain physical
access to the victim’s phone. These applications generate
revenue for their vendors, from selling them on the Android
Market. The motivation for the attacker is then not to achieve
revenue but other matters. For example, it can be used by
a family (or a business) to monitor people communications
without their knowledge. It can also be used by malicious
individuals to steal passwords or credit card information.

B. Mobile Malware

Malware, short for malicioius software, is software used or
developed by attackers to interrupt computer operation, collect
sensitive information, or gain access to private computer
systems. It can take the form of scripts, code, and other
software. Malware is a general term used to refer to a variety
of forms of hostile or intrusive software, including: computer
viruses, worms, trojan horses, rootkits, spyware, keyloggers,
and other malicious software. Recent studies indicated that
mobile malware is on the rise as more businesses and con-
sumers migrate to phones and tablets. Mobile attacks using
malware are growing in both numbers and complexity. The
work of [29] has identified 1,200 malware samples that cover
the majority of existing Android malware families ranging
from their debut in August 2010 to October 2011. The study
emphasized the importance of understanding these malware
as the best mean to defend against them. In this paper, we
provide different scenarios for using KeyboardView to keylog
user inputs.

C. Attack Vector

They are the collective means and gates through which
attackers get into the target mobile platforms to achieve
specific goals. The goals can be to access system resources

(e.g. camera, GPS, microphone, etc.) or stored data (e.g.
pictures, emails, contacts, etc.). Mobile platforms contains
many attack vectors, which include: Internet, Bluetooth, USB,
Mobile Network Services (e.g. SMS and MMS). Attacks
would also take advantage of internal vulnerabilities, such that
bugs within software, running on the device and processing
external data (e.g. WebView and Browser). If the attacker
fails to trick the user into installing her malicious software,
a physical access to victim’s device would be necessary to get
that done.

1) Android Keylogging Attack Vector and Adversary Model:
A keylogger can be part of a spyware or a legitimate key-
board application. Keyloggers are sometimes part of spyware
packages downloaded onto smartphones without the owners’
knowledge. Most keyloggers allow keyboard strokes to be
captured and stored on the local storage, but some are pro-
grammed to automatically transmit data over the network
to a remote computer or Web server. An attacker buys a
spyware, get physical access to the victim’s device and then
installs it. An advanced attacker may choose to modify an
existing keyboard application available through an official
market, to act maliciously. This is possible due to the fact that
reverse engineering Android applications is trivial and requires
low effort with the assumption that no code obfuscation is
used. The modified application can be then made available
on (alternative Android Markets) non-market places. In other
scenario, an attacker may also choose to develop keyboard
application on its own, insert the keylogging code and then
upload the final application on the official markets. Morevoer,
developers may leverage some existing code, for instance,
Google made some sample code available online [21].

D. Android Keylogging Attack

In Android, keylogging [22] attacks is highly possible
because since Android 1.5, Android has integrated the hooks
necessary for third-party developers to develop their own
customized keyboards. A third-party keyboard in this case will
reside between the end user and any system or third-party
application that requires user input. A similar attacks is man
in the middle attack [24]. Thus, the target is mainly the text
inserted by the end users using these keyboards. The text can
be limited in scope in case of customized keyboard running in
an application context and coupled with few view components.
It can be tremendous though in case of the keyboards used in
substitute of the standard keyboard. In keylogging attacks, the
data can be sent directly to the attacker or stored temporarily
on a local storage or remote server. Luckily, in Android we
can determine the capability of any third-party keyboard or any
other application by the permissions it holds. For instance, if
a keyboard has the permission android.INTERNET, then that
permission will allow it to open network sockets.

In this paper we assume that Keylogging attacks on Android
can be done in a two-step or three-step scenario. The three
steps are:

1) Collecting: the assumption here is that all data entered
by keyboard app is susceptible for being collected and



Fig. 2. Android keyboard attack scenarios

logged. The keyboard can store the input text before
sending it to the requested app.

2) Storing: Android provides several options for the devel-
opers to save data parmentally. Developers choose the
one that fits thier needs, such as whether the data should
be private or shared with other applications.

3) Sending: The last step is to send the stolen data to remote
places (e.g. servers).

So, in a two-step scenario the attacker writes a code that
collects data then sends it to a specific location. In a three-
step scenario the attacker writes a code that collects data,
stores it temporarily on a local storage, then sends it to a
specific location. The user input data could be known to the
attacker, e.g. in case of local keyboard coupled with specific
text fields. Or, could be any text, e.g. in case of a keyboard app.
The processing though is done in case of the data collected
by the keyboard app, e.g. pattern matching. We identified the
permissions requirements of the two scenario. Kirin [14] used
similar approach in that it blocks the installation of apps that
request particular permissions combinations. In this paper, the
attack model is defined by the requested permissions.

E. Permissions Requirement

The road map to any attack in Android requires that an
application possessing some permissions. Starting from the
collection step, an application that displays keyboard interface
to the end user needs to define a service with the permission,
android.permission.BIND INPUT METHOD. For the storage
methods on Android, one can choose from the following list:

1) Shared Preferences: Store private primitive data in key-
value pairs.

2) Internal Storage: Store private data on the device memory.
3) External Storage: Store public data on the shared external

storage.
4) SQLite Databases: Store structured data in a private

database.
5) Network Connection: Store data on the web with your

own network server.
The above storage methods aggregately re-

quires the following set of Android permissions:

Fig. 3. Android keyboard attack graph

WRITE EXTERNAL STORAGE, INTERNET, AC-
CESS NETWORK STATE. The last two are also required for
sending data over the Internet.

In Figure 3, we distinguish between four possible at-
tack types with third-party keyboards: A, A+, B, and
B+. In case of A, a keyboard needs only the IN-
TERNET permission, A+ requires INTERNET and AC-
CESS NETWORK STATE permissions, B is A plus the
WRITE EXTERNAL STORAGE permission, and B+ is A+
plus the the WRITE EXTERNAL STORAGE permissions.

V. EXAMPLE OF A MALICIOUS KEYBOARD

Users install like these keyboards and let them take over
the system for the purpose of enjoying their capabilities and
overcoming the system keyboard limitations. They need a
keyboard that supports different languages, smarter in terms
of auto completion and correction, and offers more symbols.
All the data that is entered by the user in any application:
system app or third party app, will pass through the new
keyboard. In order to demonstrate how user typing could
be collected and sent to a remote destination, we present
here a simple malicious keyboard application for the Android
platform. Android platform adopts permission based security
model where user is one of the key security factors. Since
the user decide to install certain application and grant it the
requested permissions. So, tricking the user to install malicious
application is part of the attack model.

The scenario consists of four entities: the attacker, user,
application, and Android market. First, the attacker deploys
the malicious application into official Android market or
alternative market (1). The user using a search engine will
look for a keyboard application, finds the malicious on the
official market or the alternative (2). She then clicks on the
link and installs it on the device after accepting the requested
permissions (3). As the user types in using the malicious
keyboard, the keystrokes is being sent to a remote server (4).

VI. DATA ANALYSIS

We present in this paper the first empirical study on Android
third-party keyboards phenomenon, giving many details about
these keyboards. In this paper our data analysis is central-
ized around two major points. The first is concerning the



Fig. 4. The download frequency for the collected third-party keyboards

Fig. 5. The frequency for the number of permissions requested by collected
apps

number and type of permissions requested by the collected
keyboard applications set, which tells us the vulnerability of
the keyboard application. The second is the number of users
downloading these applications and their ratings, which tells
us the scale of an attack. We conducted an empirical study
on a set of 125 keyboards apps collected from Google Play
Market. We used the apktool to get their AnadroidManifest
files. We then parse these files for the permission requests.
Moreover, we use the data; app installation count and ratings,
available on the Android Market information page.

A. Permissions Analysis

Among the studied 125 keyboard applications, only 15%
requested zero permissions, the remaining 85% requested
one or more permissions upon installation, see Figure 8. The
number of permissions requested ranges from 1 to 16 with few
exceptions. Figure 7 displays the frequency for each number
of permission, 61% of these applications requested more than
two and less than eight permissions. The highest frequency is
seventeen for one permission. As an extreme case, we found
a keyboard application that requested forty nine permissions.
The application has a rating of 4.6 out of 5 and number of
downloads were between five hundred thousands and one
million. For the type of permissions requested, in Figure 6,
we show the most requested permissions overall keyboard
apps. The permission android.permission.VIBRATE was the

Fig. 7. The rating frequency for the collected third-party keyboards

top most requested permission, 77.60% of the apps requested
this permission.

B. Popularity

Number of downloads and users’ ratings are two measures
for the popularity of any Android application. Thus, as these
two measures go higher, attackers get attracted to use like
these applications to host their malicious code. Figure 7 shows
the ratings distribution among all applications, 62% of the
applications have rating range between 4.1 and 4.6. For the
number of downloads, in Figure 4 we show the downloads
distribution. From the figure, there are thirty applications
with the range of fifty thousands and one hundred thousands
downloads. More than 50% of applications have download
rates between fifty thousands and five millions.

Keyboard apps fall under the “Productivity” category ac-
cording to Google categorization [20]. AppBrain [9] provides
statistics for all Android app categories, follows are some
information particularly given for the “Productivity” category:

1) The total number of apps in this category is 21154 apps
2) The average star rating is 4.0 out of 5.0
3) The number of apps in the category that have more than

50,000 downloads is 1700 apps which is about 8% of the
apps in the “productivity” category.

Based on our results and AppBrain statistics, we conclude
that most third-party keyboards request permissions that would
make them vulnerable to some serious attacks: 48.8% of these
apps are vulnerable to type A attack, 42% to type A+, 29% to
type B attack, and 24% to type B+. The number of downloads
as well as users’ numerical rating is considerably higher than
the average compared to the apps of their category.

VII. RECOMMENDATION AND PROPOSED SOLUTION

In this section, we provide a some recommendations and a
solution to prevent from spying/keylogging. We also discuss
the tool we developed to help users detect potential keylog-
ging/spying applications.



3.2%	
   4.8%	
   5.6%	
   7.2%	
   8.8%	
   9.6%	
   10.4%	
  
14.4%	
  

24.0%	
  

30.4%	
  
32.8%	
  

43.2%	
   44.8%	
   45.6%	
  
48.8%	
   49.6%	
  

77.6%	
  

0%	
  

10%	
  

20%	
  

30%	
  

40%	
  

50%	
  

60%	
  

70%	
  

80%	
  

RE
AD
_S
MS
	
  

GE
T_
TA
SK
S	
  

RE
CE
IVE
_B
OO
T_
CO
MP
LE
TE
D	
  

WA
KE
_L
OC
K	
  

ve
nd
ing
.BI
LLI
NG
	
  

AC
CE
SS
_C
OA
RS
E_
LO
CA
TIO
N	
  

GE
T_
AC
CO
UN
TS
	
  

AC
CE
SS
_W
IFI
_S
TA
TE
	
  

RE
AD
_P
HO
NE
_S
TA
TE
	
  

RE
CO
RD
_A
UD
IO
	
  

WR
ITE
_E
XT
ER
NA
L_
ST
OR
AG
E	
  

RE
AD
_C
ON
TA
CT
S	
  

AC
CE
SS
_N
ET
WO

RK
_S
TA
TE
	
  

WR
ITE
_U
SE
R_
DIC
TIO
NA
RY
	
  

IN
TE
RN
ET
'	
  

RE
AD
_U
SE
R_
DIC
TIO
NA
RY
	
  

VIB
RA
TE
	
  

Pe
rc
en

ta
ge
	
  o
f	
  a

pp
s	
  t
ha

t	
  r
eq

ue
st
ed

	
  it
	
  

Permission	
  

Fig. 6. The 17 most requested permissions and the percentage of third-party keyboards that request them

Fig. 8. Among the studied set, 15% requested 0 permission, 85% requested
one or more permission

1) Recommendations: In section IV, we describe the attack
vector and different attack scenarios. In addition, we provide
some recommendations for Android users, to protect them
against keyloggers to ensure that they don’t become a key
logging victim. The following steps would improve the user’s
chances in subverting a key logging threat:

1) Install applications from the official market especially the
keyboard apps.

2) Carefully read the application description, the ratings and
users’ comments.

3) Upon installation, check the requested permissions thor-
oughly, look for dangerous combinations.

4) When using a third-party keyboard, be alerted if there is
some slowness when typing or if you notice an increase
on the usage of Internet data plan.

The Android third-party developers must also be more
conservative in the permissions requests they mandate to

prevent attackers from using their keyboards to host malicious
components. Our analysis showed that the majority of third-
party keyboards requires several permissions. Nonetheless,
very few require no permissions at all.

A. Proposed Solution

Detecting keyloggers on Android can be done by either
monitoring function calls made by the keylogger or by check-
ing its characteristics. Our solution is based on the later
method, KBsChecker tool checks for any keylogging indica-
tors and alarms the user if any found. It does some analysis
on the installed Android applications specifically reads their
permissions and installation information. The tool retrieves
these information using Android PackageManager and that
includes: applications name, package name, version, required
features, path info, target SDK versions, installation data,
and last modified. Most importantly it retrieves the required
permissions for each application and service components.

Now, we scan the services list for each application to
determine if it is a third-party keyboard or contains an IME
service. In both cases we check the required permissions list
and search them for any dangerous combination that pose
security threat. At the first page of KBsChecker report is a
list of identified third-party keyboards, see Figure 9. The user
can click any of them to view its details information and
related alert message if they exist. For some attack scenarios
the previous information are very helpful, for instance, in case
that the attacker gets physical access to the victim device
and installs the keylogger app. The current analysis considers
malicious keylogging activity to be done by only one installed



Fig. 9. The first page a user sees when KBsChecker starts.

app. There are other scenarios where more than one app are
collaborating to achieve the same goal.

The application requests only one permission and requires
low processing and memory resources. The application will
be made available in the market for users to install and use.

VIII. CONCLUSION AND FUTURE WORK

The paper presented the risks of Android third-party key-
boards on user privacy and secrecy. The paper conducted
an analysis study on a set of 125 third-party Android key-
boards, collected from the market. The number and type of
permissions requested by these keyboards poses privacy risks.
We defined the attack vector for the possible attacks and the
permissions needed to make that happen. The majority of these
keyboards requested these permissions, thus posing security
risks. We also developed an Android application, KBChecker,
that help users find all third party keyboards installed on their
device and look for risk indicators. We conclude the work
with some advices and recommendations for both users and
third-party keyboard developers.

As future work, We will expand our solution to cover
scenarios where multiple apps are collaborating to keylog users
data. We will extend the current model by adding fourth step,
the sharing step. In that case, a malicious keyboard logs user’s
typing, share it with another malicious app on the system, and
that app can then sends it to a remote server. That requires
new ways to enumerate new scenarios and their indicators
and related permissions. We also planning on implementing
and making the solution available on the market.

IX. ACKNOWLEDGEMENTS

This research was partially supported by grants from the
National Science Foundation (NSF-CNS-0831360, NSF-CNS-
1117411) and a Google Research Award.

REFERENCES

[1] Android. Android keyboard class. ”http://developer.android.com/
reference/android/inputmethodservice/Keyboard.html/”, 2013.

[2] Android. Android keyboardview class. ”http://developer.android.com/
reference/android/inputmethodservice/KeyboardView.html/”, 2013.

[3] Android. Cupcake. ”http://developer.android.com/about/versions/
android-1.5-highlights.html/”, 2013.

[4] Android. Eclair. ”http://developer.android.com/about/versions/
android-2.0-highlights.html/”, 2013.

[5] Android. Gingerbread. ”http://developer.android.com/about/versions/
android-2.3-highlights.html/”, 2013.

[6] Android. Icecream. ”http://developer.android.com/about/versions/
android-4.0-highlights.html”, 2013.

[7] Android. Inputmethod. ”http://developer.android.com/reference/android/
view/inputmethod/InputMethod.html/”, 2013.

[8] Android. Inputmethodmanager. ”http://developer.android.com/reference/
android/view/inputmethod/InputMethodManager.html/”, 2013.

[9] AppBrain. Appbrain statistics. ”http://www.appbrain.com/”, 2013.
[10] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Automatically

securing permission-based software by reducing the attack surface:
an application to android. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2012, pages 274–277, New York, NY, USA, 2012. ACM.

[11] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-
application communication in android. In MobiSys, pages 239–252,
2011.

[12] E. Chin, A. P. Felt, V. Sekar, and D. Wagner. Measuring user confidence
in smartphone security and privacy. In SOUPS, page 1, 2012.

[13] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In R. Arpaci-Dusseau and
B. Chen, editors, OSDI 2010, 9th USENIX Symposium on Operating
Systems Design and Implementation, Berkeley, CA, USA, Oct. 2012.
USENIX; ACM SIGOPS, USENIX Association.

[14] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM conference on
Computer and communications security, CCS ’09, pages 235–245, New
York, NY, USA, 2009. ACM.

[15] Epiphan. Hardware keylogger. ”http://www.epiphan.com/”, 2013.
[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android

permissions demystified. In ACM Conference on Computer and Com-
munications Security, pages 627–638, 2011.

[17] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner.
Android permissions: user attention, comprehension, and behavior. In
SOUPS, page 3, 2012.

[18] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission
re-delegation: Attacks and defenses. In USENIX Security Symposium,
2011.

[19] M. Frank, B. Dong, A. P. Felt, and D. Song. Mining permission request
patterns from android and facebook applications. In ICDM, pages 870–
875, 2012.

[20] Google. Android categoration. ”https://support.google.com/googleplay/
android-developer/answer/113475?hl=en/”, 2013.

[21] Google. Softkeyboard sample. ”http://developer.android.com/tools/
samples/index.html/”, 2013.

[22] M. Mannan and P. C. van Oorschot. Using a personal device to
strengthen password authentication from an untrusted computer. Tech-
nical report, 2007.

[23] A. Martonik. Android market share. ”http://www.androidcentral.com/
android-us-market-share-dips-slightly-remains-top-april-2013/”, 2013.

[24] U. Meyer and S. Wetzel. A man-in-the-middle attack on umts. In
Proceedings of the 3rd ACM workshop on Wireless security, WiSe ’04,
pages 90–97, New York, NY, USA, 2004. ACM.

[25] M. Nauman, S. Khan, and X. Zhang. Apex: extending android permis-
sion model and enforcement with user-defined runtime constraints. In
Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’10, pages 328–332, New York,
NY, USA, 2010. ACM.

[26] M. Z. P.A. Condado, R. Godinho and F. Lobo. Easywrite: A touch-
based entry methodfor mobile devices. In 13th IFIP TC13 International
Conference on Human-Computer Interaction , Workshop on Mobile
Accessibility., (INTERACT’11), 2011.

[27] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. Addroid: privilege
separation for applications and advertisers in android. In ASIACCS,
pages 71–72, 2012.

[28] R. Racic. Exploiting mms vulnerabilities to stealthily exhaust mobile
phones battery. In In SecureComm 06, pages 1–10. SECURECOMM,
2006.

[29] Y. Zhou and X. Jiang. Dissecting android malware: Characterization
and evolution. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy, SP ’12, pages 95–109, Washington, DC, USA, 2012. IEEE
Computer Society.


