
MobiCloud: A Reliable Collaborative MobileCloud
Management System

(Invited Paper)

Ahmed Khalifa¹,², Mohamed Eltoweissy¹
¹ The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia, USA

² Switching Department, National Telecommunication Institute, Cairo, Egypt
e-mail: {akhalifa, toweissy}@vt.edu

Abstract—Mobile cloud computing (MCC) is evolving to
efficiently and collaboratively utilize the ever-increasing pool of
computing resources available on mobile devices. In such high
dynamic networks, nodes are susceptible to failure for many
reasons, for example, being out of battery or hijacked. Managing
reliability of dynamic mobile resources provides a strong
motivation for proactive autonomic management capabilities in
the MCC. To this end, we propose a reliable collaborative
mobilecloud management system (MobiCloud), which
automatically manages task scheduling and reliable resource
allocation. MobiCloud utilizes our new opt-in, prediction and
trust management services to realize reliable cloud formation and
maintenance in a dynamic mobile environment. In this paper, we
present MobiCloud architecture and its associated Proactive
Adaptive List-based Scheduling and Allocation AlgorithM (P-
ALSALAM) for MCC. This algorithm dynamically maps
applications' requirements to the currently or potentially reliable
mobile resources. Simulation results demonstrate that our
proposed system not only significantly improves performance,
but also substantially enhances the stability of mobileclouds.

Keywords- Cloud management; mobile cloud computing; fault
management; reliability; autonomic computing; collaborative
computing

I. INTRODUCTION

Cloud computing is a rapidly growing paradigm promising
more effective and efficient utilization of computing resources
by invariably all cyber-enabled domains ranging from defense,
to government, to commercial enterprises. In its most basic
realization, cloud computing involves dynamic, on-demand
allocation of both physical and virtual computing resources and
software, usually as commodities from service providers over
the public Internet [1].

Recently, principles of cloud computing have been
extended to the mobile computing domain, leading to the
emergence of Mobile Cloud Computing (MCC). A MCC
system (MCCS) has been defined from different views in the
literature [2]. One of these perspectives defines a MCCS as a
way of outsourcing the computing power and storage from
mobile devices into an infrastructure cloud of fixed
supercomputers. Here, a mobile device is simply a terminal
which accesses services offered in the cloud. Another view
defines a MCCS as an infrastructure-less cloud that is formed
locally by a group of mobile devices, sharing their computing
resources to run applications. This paper adopts and extends
the latter definition as follows: A MCCS is a shared pool of

configurable computing resources that are harvested from
available or potentially available local or remote nodes that are
either mobile or fixed over a network to provide on-demand
computational services to users. Therefore, MCCS, and its
associated term mobilecloud that we coin here, enables
exploiting the computing power of mobile and fixed devices
directly even when no Internet is available.

Every mobile node with a connection to the mobilecloud
can be a user or a provider of the mobilecloud’s resources. The
mobile nodes freely using or providing the resources available
are considered to be self-directing, self-organizing and self-
serving. But the providers of mobile resources can find it
difficult to remain motivated to participate in a mobilecloud.
On the other hand, selecting the right resource in a mobilecloud
environment for any submitted applications has a major role to
ensure QoS in term of execution times and performance.
Reputation mechanism acts as a complementary approach
which relies on analyzing the history of the quality of service
provided to do resource selection for submitted applications.
However, most of the proposed approaches [3] [4] consider
each participant locally stores its own rating values of
reputation that would be a threat when that self storage
reputation information is not reachable. Consequently, there is
a need for a solution that globally monitors the runtime
performances of services and provides reputable mobile
resource providers.

 Participants of a mobilecloud depend on the access
network to be able to connect to the cloud, while permanent
connectivity may be not always available. This problem is
common in wireless networks due to traffic congestion and
network failures [5]. In addition, mobile nodes are susceptible
to failure for many reasons, e.g., being out of battery of
hijacked. Managing reliability of dynamic resources confined
in a mobilecloud provides a strong motivation for proactive
autonomic management capabilities for mobileclouds. In
general, there is a need to know how a provider of mobile
resources is suitable to participate and form a mobilecloud.

In this paper, our main contribution is in the area of
reliability for mobile cloud computing along two directions:
First, we propose a mobilecloud architecture, MobiCloud,
which utilizes our new opt-in, prediction and trust management
services to realize reliable mobilecloud formation and
maintenance in a dynamic mobile environment. Second, we
propose a Proactive Adaptive List-based Scheduling and
Allocation Algorithm to map applications' requirements to the

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254179

currently or potentially available mobile resources. This would
support formed mobilecloud stability in a dynamic resource
environment.

The remainder of this paper is organized as follows. In
section II, we present our previously proposed PlanetCloud
system. In section III, we discuss some related works to form a
reliable mobilecloud. Proposed services for trust management
and prediction of resource availability are presented in sections
IV and V, respectively. In section VI, we present a model to
form and maintain a mobilecloud and detail our proposed
proactive adaptive task scheduling and resource allocation
algorithm. In section VII, we discuss the performance
evaluation. Finally, section VIII concludes the paper and
outlines future work.

II. BACKGROUND

In [6], we proposed the PlanetCloud concept to enable
MCC to tap into the otherwise unreachable resources, which
may be located on any opt-in reachable node, rather than being
exclusively located on a static cloud service providers’ side. A
key PlanetCloud component was the Global Resource
Positioning System (GRPS) that we presented in detail in [7].
GRPS adopts a spatiotemporal calendaring mechanism with
real-time synchronization to support dynamic real-time
recording and tracking of idle mobile or fixed resources. The
calendar consists of records including data about time, location,
and computing capabilities of GRPS participants. GRPS also
forecasts the availability of resources, anytime and anywhere.
GRPS makes use of the analysis of calendaring data coupled
with data from other sources such as social networking to
improve the prediction accuracy of resource availability. In
addition, the GRPS provides hierarchical zone architecture with
a synchronization protocol between different levels of zones to
enable scalable resource-infinite computing.

Integral to PlanetCloud is a Collaborative Autonomic
Resource Management System (CARMS) [8], which
automatically manages task scheduling and resource allocation
to realize efficient cloud formation and computing in a
dynamic mobile environment. We designed our CARMS
architecture using the key features, concepts and principles of
autonomic computing systems. Components of both CARMS
and GRPS architectures interact with each other to
automatically manage resource allocation and task scheduling
to affect cloud computing in a dynamic mobile environment.
CARMS comprises two primary types of nodes: Cloud Agent
and participant nodes. A Cloud Agent, as a requester to form a
cloud, manages the formed cloud by keeping track of all the
resources joining its cloud using the updates received from the
GRPS. A participant has a knowledge unit that includes a local
spatiotemporal calendar, which includes spatial and temporal
information of the involved resources. The participant obtains
settings about the scheduled/requested clouds and some priority
defined parameters through the knowledge unit. Also, it
contains information about the formed cloud, e.g., types of
resources needed, the amount of each resource type needed,
and billing plan for the service. The design of our previous
work did not consider the reliability of offered resources.

III. RELATED WORK

We discuss related work in some areas relevant to
scheduling and allocating reliable resources for supporting
stable MCC formation as follows:

A. Availability of Clouds

In a cloud environment, it may be possible that some nodes
will become inactive because of failure. Therefore, the entire
work of unsuccessful jobs has to be restarted, and the cloud
should migrate these jobs to the other node. The redundancy
concept is a solution to achieve failover for handling failures
[9] [10] [11].There are basically two options of redundancy:
replication and retry.

Replication is redundancy in space where a number of
secondary nodes, in stand-by mode, are used as exact replicas
of a primary active node. They continuously monitor the work
of the primary node to take over if it fails. However, this
approach is only feasible for fixed servers or if the nodes are
few [9]. As this paper focuses on providing the high
availability for mobile nodes, having replica of all mobile
nodes will not be feasible as it will increase complexity, cost
etc.

Retry is redundancy in time where a try again process starts
after a failure is detected [11]. In this paper, we consider a retry
options to achieve failover coupled with forecasted information
about the future resource availability, as an input to our
proposed proactive management algorithm, to minimize the
mean time to repair (MTTR). MTTR is the time required to
detect the failure and try again.

Most of the existing resource management systems [12-
14]for MCC were designed to select the available mobile
resources in the same area or those follow the same movement
pattern to overcome the instability of the mobile cloud
environment. However, they did not consider more general
scenarios of users’ mobility where mobile resources should be
automatically and dynamically discovered, scheduled, allocated
in a distributed manner largely transparent to the users.
Additionally, most current task scheduling and resource
allocation algorithms [15-19] did not consider the prediction of
resource availability or the connectivity among mobile nodes in
the future, or the channel contention, which affects the
performance of submitted applications. Consequently, there is a
need for a solution that effectively and autonomically manages
the high resource variations in a dynamic cloud environment. It
should include autonomic components for resource discovery,
scheduling, allocation and monitoring to provide ubiquitously
available resources to cloud users.

B. Reliability and reputability of resource providers

Research in resource management systems and algorithms
for mobile cloud computing is still in its infancy. In [12],
authors proposed a preliminary design for a framework to
exploit resources of a collection of nearby mobile devices as a
virtual ad hoc cloud computing provider. In [13], a mobile
cloud computing framework was presented. Experiments for
job sharing were conducted over an ad-hoc network linking a
user group of mobile devices. The Hyrax platform [14]
introduced the concept of using mobile devices as resource
providers. The platform used a central server to coordinate data

Figure 1. Trust Management Service.

and jobs on connected mobile devices. Task scheduling and
resource allocation algorithms were reported in [15-19]. These
algorithms used cost, time, reliability and energy as criteria for
selection.

The majority of previous frameworks for service discovery
and negotiation models between cloud users and providers such
as [20] did not consider the reliability of offered resources.
However, in all mentioned works [11-20], a method that can
determine the reputability of offered resources is missing.

IV. TRUST MANAGEMENT SERVICE

Reputation is one measure by which trust among different
participants of a mobilecloudcan be quantified and reasoned
about. Reputation systems can be used to manage reputation of
mobile nodes as resource providers, according to the QoS
provided, as well as reputation of mobile nodes as users,
according to their usage of resources.

In our trust management service, as shown in Fig. 1,
automatic feedback, about participants’ behavior are
aggregated and distributed. In a mobilecloud, the resources
allocated to a user’s application are known to the user, as a
cloud agent, making it easy to obtain user’s feedback. This
feedback is an indication of the satisfaction a user achieves
after obtaining a service. Thus, the information of this feedback
is used to create reputation about particular resource providers
and users. Reputation of resource providers could be used by
our CARMS to improve allocation of user tasks by selecting
reputable mobile resource providers. While, reputation of users
could be used to achieve security level required by resource
providers.

We integrate the trust management service as part of the
GRPS to interact with CARMS and help in selecting the
resource providers based on their score of credibility to deliver
the requested computing capability. Integral to the trust
management service is a reputation evaluator.

Trust Management Service provides a trust model which
enables a symmetric trust relationship between a participant
and a GRCS. We quantify the trustworthiness of a participant
in various degrees of trust, which is expressed as a numerical
range. The trust management services consist of the following
components.

Security Evaluator: evaluates the types of authentication
and authorization mechanisms considered in the security

service. A numerical trust value, score of credibility, is
assigned for these mechanisms.

Reputation Evaluator: verifies the participant's response by
comparing it with the data of a participant which are saved in
its group spatiotemporal resource calendar. The result of this
verification is evaluated by assigning a numerical trust value to
a participant. After, a participant finish execution of the
assigned task, a Cloud Agent sends a feedback as an indication
of the satisfaction a user achieves after obtaining a service. The
reputation evaluator assigns and adds the results of its
evaluation to this feedback to the total numerical trust value.

The more successful participation of a mobile node in a
mobilecloud,the more credit a participant can get in
PlanetCloud related to its past behavior. The score of each
mobile participant is an estimate to its future credibility that the
participant is reliable. These values might be used to improve
both reliability and fault tolerance of the mobilecloud. A result
a node will be accepted as a participant of a mobilecloud if a
participant owns at least the minimum threshold score.

Trust values of participants are stored and synchronized as
records in both local and group spatiotemporal resource
calendars at PRCS and GRCS, respectively.

At time t, the score of credibility is computed by weighing
the numerical trust value record in a spatiotemporal calendar
with a time decay weight. This would motivate the providers of
mobile resources to participate in a mobile cloud formation and
not remain inactive for long period of time.

V. PREDICTION SERVICE

A key module of the GRPS is a prediction service (PS) as
shown in Fig. 2. It uses different sources of data to increase the
forecasting precision of resource availability. We use different
types of databases that are related to the participant, (i.e. the
group spatiotemporal resource calendar, event calendar, the
resource profile, data from social networks and other
databases). PS contains three main processes as follows:

1) Data preparation: Data may be collected and selected
from different database inputs. Cleaning and preprocessing are
performed on the selected data set for removing discrepancies
, inconsistencies,and improving the quality of data set.

2) Knowledge extraction: It is used to find out the possible
patterns and rules from existing databases. Association Rules
Mining Service (ARMS) is a major service of the PS, which is
used for turning the data of a participant into useful
information and knowledge.

3) Prediction model: This uses the extracted knowledge,
from both history and future data, as an input of the prediction
algorithm. This model gives a probabilistic value to the
expected availability of resources in the future.

PS delivers the data of resource availability in future to the
calendar manager, which updates them in a spatiotemporal
resource calendar. These data can help in cloud maintenance.

VI. MOBILECLOUD FORMATION AND MAINTENANCE

In PlanetCloud, a cloud application comprises a number of
tasks. At the basic level, each task consists of a sequence of

Figure 2. Prediction Service.

Figure 3. Parallel task execution in MCC.

instructions that must be executed on the same node. Tasks of a
submitted application are represented by nodes on a directed
acyclic Graph. The set of communication edges among these
nodes show the dependencies among the tasks. The edge
e�,�joins nodes v� and v� , where v� is called the immediate
predecessor of v�, and v� is called the immediate successor of
v�. A task without any immediate predecessor is called an entry
task, and a task without any immediate successors is called an
exit task. Only after all immediate predecessors of a task finish,
that task can start its execution.

A. Application Model

For simplicity, we start with a basic application model. The
load of submitted application is defined by the following
parameters: the number of submitted applications, the number
of tasks per application, and the settings of each task. For
example, the input and the output file size of a task before and
after execution in bytes, the memory and the number of cores
required to execute this task, and the execution time of a task.

Based on the criteria for selection, we mainly define two
matrices: Criteria costs matrix, C, of size v ×p, i.e., c�,� gives
the estimated time, cost, or energy consumption to execute task
��on participant node 	
; and a R matrix, of size p × p, which
includes criteria costs per transferred byte between any two
participant nodes. For Example, time or cost to transfer n bytes
of data from task ��, scheduled on 	�, to task �
, scheduled on
	�.

As an example of time-based selection criteria, a set of
unlisted parent-trees is defined from the graph where a critical-
node (CN) represents the root of each parent-tree. A CN refers
to the node that has zero difference between its earliest start
time (EST) and latest start time (LST).The EST of a task	�� is
shown in (1). It refers to the earliest time that all predecessor
tasks can be completed. ET is the average execution time of a
task.

EST	�v�� � 	 max
��∈��������

� EST	�v � ! ET�v �"									�1�

Where $%��&�	 is the average execution time of a task �&,
and pred(��) is the set of immediate predecessors of ��. The
LST of a task �� is shown in (2).

LST	�v�� � 	 max
��∈()**����

� LST	�v �" + ET�v��									�2�

Where succ(v�) is the set of immediate successors of ��.

A CARMS-managed cloud consists of resources on virtual
nodes that meet the cloud applications’ requirements. Each
virtual node is emulated by a subset of the real physical mobile

nodes, participants. The subset locally stores the state of the
emulated virtual node. The real nodes perform the tasks
assigned to their emulated virtual node. If a mobile node fails
or leaves the cloud, it ceases to emulate the virtual node; a
mobile node that joins the cloud attempts to participate in the
emulation. CARMS attempts to provide each subset with a
sufficient number of real mobile nodes, such that in case of
failure, a redundant node can be ready to substitute the failed
node.

B. Mobilecloud Formation

The mobilecloud formation process can then be started by a
Cloud Agent by submitting an application which details the
preferred number participants, duration, etc. To form a
mobilecloud, we need to find suitable participants during a
node filtering phase as a shown in Fig. 3. In node filtering
phase, data is needed from prospective participants in three
categories: i) future availability, ii) reputation, and iii)
preferences. Data gathered in a node filtering phase enables the
Resource Manager to form a cloud which aims at increased
reliability as an outcome.

 Participants willing to participate in the mobilecloud can
submit the required data to the CARMS Resource Manager of a
Cloud Agent. All data are assessed, which results in a measure
of fit between participants and submitted applications.

The data required are already gathered such that the PS
delivers the data of resource availability in future to the
calendar manager of a participant resource calendaring service
(PRCS). Also, reputation data of resource providers are
obtained as the score of credibility provided by the trust
management service of their PRCSs. The preferences of
resource providers are obtained from the knowledge unit of the
participants. The assessment of Preferences of participants
determines the overlap between the cloud characteristics and a
participant related preferences. If they do not overlap, a
participant will not be included in a mobilecloud formation,
e.g., when a participant only want to participate in a traffic
management cloud, while the requested mobilecloud will
provide a multimedia services, thus this two participant will
never be included in a mobilecloud. As a first step in the
mobilecloud formation process, the preferences assessment can
limit the number of resource providers to be considered.

Figure 4.Work procedures of cloud formation.

However, resource providers could negotiate preferences and
change them. After this first step is completed, the cloud
formation process continues with the reputation and future
availability data. An example of these interactions is illustrated
in Fig. 4, which depicts the procedures of cloud formation.

However, the main focus of this paper is on how
mobilecloud can be formed when the data required is already
gathered. In this part, we only briefly introduce how the
assessments are designed to work.

We define general mobilecloud formation rules are for
targeting specific outcomes. In this paper, three general
mobilecloud formation rules are defined, which enable the
Resource Manager to form clouds that are aimed at increased
reliability as an outcome. Then, we translated the rules into
mobilecloud formation expressions.

Assuming the data from the resource availability and
reputation assessments and the characteristics of requested
mobilecloud “preferred cloud size and duration” are available,
the Resource Manager combines the two separate sets of data
by following particular mobilecloud formation rules. We
consider prior research findings on mobilecloud formation in
the design of these rules. We present the general rules we
deduced for forming clouds suited to achieve a reliable cloud.
Based on the general rules, we present two mobilecloud
formation expressions.

C. mobileclouds fit for increased reliability

The follow research outcomes are considered for the
formation of mobileclouds with increased reliability:

1) Mobility of resources is a main concern that would
impede connectivity among a mobilecloud’s participants [12-
13];

2) Resources of a mobilecloud’s participants should be
capable and available within the execution of a submitted
tasks[12-14];

3) Security is fostered when mobilecloud participants
show a reputability fit in behaviours, where accessible data
relying on trust between cloud provider and customer [21].

The general mobilecloud formation rule we deduce from
these findings is: Reliability is fostered when participants show
high levels of preferences, resource availability and trust
between resource providers and a Cloud Agent for the
requested mobilecloud.

Based on this rule, we mainly define three matrices:
Criteria preferences matrix, Pr, of size v ×p, i.e., Pr�,� gives the
preferences to execute task ��on participant node		
; a T
matrix , of size p ×p, which includes trust score between any
two participant nodes; and a Av matrix, of size v ×p, which
includes criteria availability of a participant node 	
 from the
time a task �� has been delivered to it till results are submitted
to another participants. For example, Av�,� equals 0 when the
resources of a participant node 	
 is not available at least for a
period of time required to receive data of task ��, execute this
task and submit its results.

We translate this rule into a mobilecloud formation
expression for reliable cloud participants as shown in (3).
When applied, it determines which participants have the
highest average reliability scores.

kj,ji,
ji, T*A
Pr_

Pr
TAPi WvW

Max
WFitR +∗+∗= (3)

Where FitRi is the fitness of a participant i for reliability
outcomes, Max_Pris the maximum possible preferences score
of a submitted task, Tj,k is the trust score between node j and
node k, and WP, WA, WT are weights.

After the node filtering phase, task scheduling and resource
allocation algorithm will come into action to schedule and
allocate the tasks of given applications to reliable nodes.

D. Proposed Algorithm

We propose a generic GRPS-driven algorithm for the task
scheduling and resource allocation: Proactive Adaptive List-
based Scheduling and Allocation AlgorithM (P-ALSALAM)
for mobile cloud computing. P-ALSALAM supports the
stability of a formed cloud in a dynamic resource environment.
Where, a certain resource provider is selected to run a task
based on the proactive resource discovery and forecasting
information provided by the GRPS. The algorithm consists of
two phases: initial static scheduling and assignment phase, and
an adaptive scheduling and reallocation phase which will be
detailed later in the mobilecloud maintenance subsection.

1) Initial static scheduling and assignment phase
After, the information of virtual resources is sent to the

Resource Manager for the appropriate real mobile nodes’
resource allocation, the Resource Manager uses its Resource
Allocator unit, which interacts with the GRPS to find the
available resources of every possible node a Cloud Agent could
reach. GRPS provides the requester of a cloud with the
information that matches the application requirements. The
information includes location, time and the computing
capabilities, future availability of these resources, and
reputation and preferences of the providers of these resources.
This information affects matrices of criteria for node selection.
Based on the next waypoint, a destination obtained from
GRPS, of each mobile node and the updated location of the

Cloud Agent, we can estimate which mobile nodes will pass
through the transmission range of the Cloud Agent.

After filtering node phase of nodes, a priority is assigned to
a node depending on the criteria of selection. For example, in a
time-based approach, we may select a host such that the highest
priority is given to the nodes which are located inside the
transmission range of a Cloud Agent, followed by the nodes
which are located outside this transmission range and will cross
it, and finally to the rest of the nodes. Within each group, nodes
are listed in descending order according to the available
computing capabilities, e.g. their number of cores or central
processing units (CPUs). Nodes, with the same computing
capabilities, are listed in descending order according to the time
they will spend in the transmission range of a Cloud Agent.
This could minimize the overall execution and communication
time. As a result, a host list, H, is formed based on the priorities
as shown in Algorithm 1 presented in Appendix.

The Cloud Agent sends the cloud formation requests,
through its Communicator unit, to all resource providers to in
the list of hosts H. According to the (earliest) responses
received about resource available time from all responders and
the criteria of selection, the responders’ IDs are pushed by the
Resource Manager in increasing order of parameters which
reduce their costs. For example, the responding node,0&�1,
with the minimum sum of expected computation time (ECT) of
a task and expected ready time (ERT) of a node is on the top
of responders stack RS, top(RS). The expected ready time for a
particular node is the time when that node becomes available
after being connected with their peers and having executed the
tasks previously assigned to it. This could reduce the queuing
delay and therefore enhance the overall execution time.

The Task Scheduler unit of the resource manager assigns
and distributes the task at the top of the list of tasks L, top (L)
to the host at the top of responders stack RS, top(RS).

2) Mobile Cloud Maintenance
We propose that each virtual node is emulated by a subset of
the real physical mobile nodes, participants. The subset locally
stores the state of the emulated virtual node. The real nodes
perform the tasks assigned to their emulated virtual node. If a
mobile node fails or leaves the cloud, it ceases to emulate the
virtual node.

There is a need to design a robust mobilecloud with enough
redundancy in order to avoid service downtime. However, real
mobilecloud is not failure free.

In this paper, we consider a failure model where one or
more than one mobile nodes as resource providers may
experience downtime due to failure. The available resource
providers will be classified in two different groups: active
participants, and redundant participants. The active participants
group contains the mobile nodes that are currently participating
and running tasks of the formed cloud. The redundant
participants are working mobile devices waiting for tasks that
eventually may need them in case of failure of an active
participant. CARMS attempts to provide each subset with a
sufficient number of real mobile nodes, such that in case of
failure, a redundant node can be ready to substitute the failed
node. A redundant participant becomes an active when a

submitted task is successfully restored on it. After the mobile
node got repaired, it becomes part of the pool which includes
redundant participants.

The actual measures, e.g., time, cost or energy, required to
finish a task may differ from the estimated due to the mobility
of hosts, the resource contention and the failure of mobile
nodes. For example, the mobility of hosts affects the actual
finish time of a task due to the delay a host takes to submit task
results to other hosts in a mobilecloud.

The Estimated Finish Time of a task v� on a node p�,
EFT(v�, p�), is shown in (4), where ERAT is the earliest
resource available time.

EFT	(v�, p�) = min{ERT	(v�, p�) + ECT(v�, p�)}								(4)

We propose an adaptive task scheduling and resource
allocation phase to adjust the resource allocation and
reschedule the tasks dynamically based on both the updated
measurements, provided by the Monitoring Manager, as well as
the evaluation results performed by the Performance Analyzer.

3) Adaptive scheduling and reallocation phase
The Monitoring Manager of CARMS aggregates the

information about the current executed tasks periodically, as a
pull mode. Due to the dynamic mobile environment, hosts of a
cloud update the Monitoring Manager with any changes in the
status of their tasks, as a push mode. Also, hosts periodically
update the cloud registry of a Cloud Agent with any changes in
the status of resources, e.g. in case of failure. Consequently, the
Performance Analyzer could re-calculate the estimated
measures of the submitted tasks. As a result, tasks and
resources could be rescheduled and reallocated according to the
latest evaluation results and measurements.

In algorithm 2, in Appendix, a rescheduling threshold is
predefined by the Performance Analyzer such that tasks and
resources could be rescheduled and reallocated periodically. If
a successor does not receive results of a task from its
immediate predecessor within a period of time equals a
predefined rescheduling threshold,	R9:���(:;<�	, then the
Monitoring Manager of the cloud agent forms a task list, E,
which contains the tasks needed to be scheduled. The
Monitoring Manager of the cloud agent informs the
Performance Analyzer to re-calculate the EFT of a task, top(E).
The EFT is computed according to the latest information
obtained from the GRPS and the Monitoring Managers of
participants.

As a result, The Resource Manager interacts with the GRPS
to find the available resources of every possible node a Cloud
Agent could reach, which match the task requirements.

A priority is assigned to a node depending on the criteria of
selection defined in the initial static phase. Also, the
responders’ IDs are pushed by the Resource Manager in
increasing order of parameters which reduce their costs, e.g.,
EFT(v�, p�). The Task Scheduler unit of the resource manager,
in the Cloud Agent, assigns and distributes the task at the top
of the list of tasks E, top(E) to the host at the top of responders
stack RS, top(RS).

Figure 5. Average Execution Time of Application Vs Number of Hosts
per cloud at different scheduling mechanisms and rescheduling threshold.

TABLE I. PARAMETERS

Parameters Values Parameters Values

Density of nodes
30 - 100

(Nodes/Km²)
Communication

range
0.1-1 (km)

Number of
Hosts/Cloud

2-22

Application
Arrival Rate

(Poisson
distribution)

7
(Applications/sec)

Number of
tasks/Application

30-40
Expected

execution time
for a task

800
(Sec)

Number of
applications/Cloud

1 – 10

Number of
CPUs/Cores

per host
(Uniform

distribution)

1-8

Inactive Node rate
(Node/Sec)

(Poisson Process)

1/300 -1/60

Average Node
Speed

(Uniform
distribution)

1.389,10,20
(m/sec)

VII. EVALUATION

To simulate the mobilecloud environment, we have
extended the CloudSim simulator [22]to support the mobility
of nodes by incorporating the Random Waypoint (RWP)
model. A mobile node moves along a line from one waypoint
=� to the next=�>?. These waypoints are uniformly distributed
over a unit square area. At the start of each leg, a random
velocity is drawn from a uniform velocity distribution.

In our evaluation model, an application is a set of tasks with
one primary task. Each task, or cloudlet, runs in a single virtual
machine (VM) which is deployed on a mobile node. VMs on
mobile nodes could only communicate with the VM of the
primary task node and only when a direct ad-hoc connection is
established between them. For simplicity, a primary node
collects the execution results from the other tasks which are
executed on other mobile nodes in a cloud. There is only one
cloud in this simulation. For scheduling any application on a
VM, first-come, first-served (FCFS) is followed.

For calculating the collision delay, we consider the worst
case scenario, a saturation condition, where each node has a
packet to transmit in the transmission range.

We set the number of inactive nodes to be sampled
following a Poisson Process during a time t. Also, we set the
preference of each mobile node to the highest value to
participate in a requested cloud. During our evaluation, we
consider that a submitted application has its own minimum
value of reputation threshold, that a mobile node should have to
participate in a cloud, and each node has its own score of trust.

We suppose that the distribution of detection time of failure
is uniform from 0 to 1 second. Detection time represents the
length of a period from the time when a participant starts
crashing to the time to be suspected.

A. Metrics and Parameters

We evaluate the average application execution time, which
is the time elapsed from the application submission to the
application completion. Also, the Mean Time To Repair
(MTTR) is evaluated, which is the time to detect the failure
plus the time to make the backup live.

We set parameters in the simulation according to the
maximum and minimum values shown in Table I. The number
of hosts represents the mobile nodes that provide their
computing resources and participate in the cloud.

B. Assumptions

• Communication between nodes is possible within a
limited maximum communication range, x (km).
Within this range, the communication is assumed to be
error free and instantaneous.

• The distribution of speed is uniform.

C. Experiments

1) High reliability Scenario
In this experiment, we consider that every mobile node can

always function well all the time with high reliability and does
not fail. For example, all nodes are always available, reputable

and they have the highest preference valueto accept the
submitted applications.

We started our evaluation by studying the effect of applying
adaptive scheduling and reallocation phase on the performance
of the submitted application. Let all 40 mobile nodes have a
random number of cores, heterogeneous resources, ranging
from 1 to 8 cores. Fig. 5 shows the average execution time of
an application at a different number of hosts, ranging from 2 to
22 hosts. We consider five applications are submitted to be
executed. Each node has a transmission range equals 0.4 km,
and its average speed equals 1.389 (m/sec). This evaluation
provides that there are no significant differences between
results of the two cases, static/ adaptive scheduling using the P-
ALSALAM at a larger number of hosts per cloud, e.g., 14
hosts/cloud. This is because at transmission range equals 0.4
km, we can neglect the effect of the connectivity, i.e. a node is
almost always connected with others. However, at smaller
number of hosts per cloud, where the queuing delay is
dominant, e.g., at2 hosts/cloud, dynamic scheduling has worst
performance than static one due to the overheads of
rescheduling. The larger value of rescheduling threshold, e.g. at
threshold equals 1600 sec, leads to reduce the overheads of
rescheduling and slightly enhance the performance at a smaller
number of hosts per cloud equals 2. The more the frequency of
rescheduling in the formed cloud, e.g. at threshold equals 1100
sec, the more overheads to execute these tasks.

Figure 6. Average Execution Time of Applications Vs number of hosts per
cloud using dynamic scheduling mechanism at different communication

range of a mobile node.

Figure 7. Average Execution Time of Applications Vs number of hosts per
cloud at different scheduling mechanisms and at different communication

range of a mobile node.

Figure 8. Average Execution Time of Applications when applying different

reliability based algorithms.

In the next evaluation, we compare results at difference
transmission ranges equal 0.2km and 0.4 km, using dynamic
scheduling of P-ALSALAM algorithm. In this evaluation, we
set the value of rescheduling threshold equals 1100 sec. Fig. 6
shows that the average execution time of an application at a
transmission range equals 0.4 (km) almost has a better
performance than the case of a transmission range equals 0.2
(km) at the same number of hosts. Also, we can see that at a
small number of hosts per cloud, e.g. 2, a worst performance is
obtained, where the queuing delay is dominant. While, it has a
better performance, at a number of hosts equals 16, than in case
of a number of hosts equals 4. This observation is quite obvious
because at this large number of hosts, greater than the total
computing capabilities of the selected hosts. On the other hand,
the larger the value of a number of hosts, at a number of hosts
per cloud equals 22, the performance is degraded again. This is
because of the significant effect of the mobility of hosts. The
reason is that tasks are assigned to more nodes in the formed
cloud, and this leads to increase in the communication time
until the primary node collects results from the other nodes.

We repeat our evaluation at a different number scheduling
mechanisms, static and dynamic, and at a different value of
transmission ranges equals 0.2, and 0.4 (km). Fig. 7 shows that
the dynamic scheduling mechanism significantly outperforms
the static one in terms of the average execution time of an
application at a small transmission range equals 0.2 (km) at the
same number of hosts. Also, we can see that at a large number
of hosts, e.g., 22 hosts, a worst performance is obtained in
static scheduling where the communication delay is dominant,
while dynamic scheduling has a better performance, at the
same number of hosts equals 22. This is because our algorithm
frequently reschedules the delayed tasks and this minimizes the
effect of communication delay.

2) Variable reliability Scenario
In this evaluation, we consider that mobile nodes are

different in their reliability, in terms of future availability and
reputation, for the requested mobilecloud.

We perform an evaluation to obtain the expected execution
time of an application at number of hosts per application equals
6. In this evaluation, we consider one application is submitted
to be executed, with a number of tasks equals 30. We consider
the density of nodes equals 100 (nodes/km²). Each node has a
transmission range equals 0.4 km, and its average speed equals

1.389 (m/sec). The results of this evaluation showed that the
expected execution time of an application equals 4000 seconds.
We use it to calculate the number of inactive nodes at different
arrival rates of inactive nodes for the next evaluations. We set
the rescheduling threshold equals the expected execution time
of an application, e.g. 4000 seconds. Also, we assume that the
primary node is always reliable.

In the next evaluation, we compare results of two cases:
Using P-ALSALAM algorithm, which determines the best
participants that have the highest average reliability scores to
the requested cloud and the random-based algorithm, which
does not use this information, where random mobile nodes with
random reliability scores are selected to execute the submitted
application. We perform the evaluation with various values of
the arrival rate of inactive nodes, ranging from 1/300 to 1/60
(nodes/sec). As expected, this evaluation provides significant
differences between results of the two cases, with/without
using the P-ALSALAM. The results of Fig. 8 show that a better
performance, in terms of the average execution time of an
application, is obtained at a smaller arrival rate of inactive
nodes, e.g. 1/300 (nodes/sec) than in case of results at a larger
arrival rate of inactive nodes, e.g. 1/60 (nodes/sec). This is
because at larger arrival rate of inactive nodes, the probability a
node could fail increases.

Fig. 9 compares the results of applying P-ALSALAM
algorithm and random-based algorithm in terms of the average
MTTR when we consider different arrival rate of inactive

Figure 10. Average MTTRat different densities of nodes when applying P-

ALSALAM algorithm.

Figure 9. Average MTTR Vs inactive node rates when applying different

reliability based algorithms.

nodes. The average MTTR has lower value at a smaller arrival
rate of inactive nodes, e.g. 1/300 (nodes/sec) due to low
probability a host might fail. While, noticeable differences
among results appear at a larger arrival rate of inactive nodes,
e.g. 1/60 (nodes/sec) due to the high probability a host could
fail.

Fig. 10 depicts the results of applying P-ALSALAM
algorithm in terms of the average MTTR when we consider
different densities of nodes at different values of reputation
threshold. We perform this evaluation with an arrival rate of
inactive nodes equals 1/60 (nodes/sec). Each node has a
transmission range equals 1 km, to neglect the effect of
communication disruptions. Also, we consider two applications
are submitted to be executed. Each application has an expected
execution time equals 1500 seconds. The results show that the
average MTTR has a higher value at a small node density, e.g.
35 (nodes/km²) due to low probability to find the required
number of reliable host to maintain the cloud in case of failure.
While, the average MTTR has a lower value at higher node
densities, e.g. 55 nodes/km². Also, the figure shows that the
average MTTR at a smaller reputation threshold, e.g. zero
threshold in case of all nodes are reputable, than in case of
results at a larger reputation threshold, e.g. 0.6, at the same
density of nodes. This is because the larger the reputation
threshold the lower the probability to provide nodes that could
achieve the application requirements at the same time these
nodes should be available in future to participate in a
mobilecloud.

A. Findings

Our findings can be summarized as follows.

1) There is a tradeoffbetween the communication delay
and the queuing delay as the number of hosts per submitted
application is varied.The higher number of hosts per an
application, the higher total computing capability within the
cloud is. Therefore, the queuing delay of a task is decreased.
While, increasing the number of nodes per application leads to
increasing the time until the primary node collects results from
other resource provider nodes, and therefore this increases the
communication delay.

2) A better performance may be obtained, at a shorter
transmission range, if weapply the adaptive scheduling and
reallocation phase especially at a larger number of hosts
assigned to a mobilecloud. This is because our algorithm
frequently reschedules the delayed tasks and this minimizes
the effect of communication delay. While at a longer
transmission range, where the communication delay could be
neglected, we have to select the static scheduling and
assignment phase to eliminate the overhead of rescheduling
and slightly enhance the performance especially at a smaller
number of hosts per cloud.

3) The MTTR may be enhanced, at less densities of nodes,
if we use a low value of reputation threshold per submitted
application which maximizes the number of reliable nodes that
could meet the application requirements and therefore
participate in a mobilecloud.

VIII. CONCLUSION AND FUTURE WORK

Mobile cloud computing provides new opportunities to
efficiently utilize the ever-increasing pool of computing
resources available on mobile devices. In this paper, we
propose a MobiCloud architecture, which utilizes our new opt-
in, prediction and trust management services to realize
collaborative reliable cloud formation and maintenance in a
dynamic mobile environment. We also proposed a distributed
Proactive Adaptive List-based Scheduling and Allocation
AlgorithM (P-ALSALAM) to dynamically map applications'
requirements to the currently or potentially reliable mobile
resources. This would support the stability of a formed cloud in
a dynamic resource environment. Results have shown that P-
ALSALAM significantly outperforms the random-based
reliability algorithm in terms of the average execution time of
an application and the MTTR. Also, we can adapt the
performance according to number of hosts per cloud,
communication range, density of mobile nodes and inactive
node rate.

Our ongoing research extends our proposed architecture to
enhance the prediction accuracy of resource availability by
utilizing complementary data sources, such as from social
networking.

REFERENCES
[1] C. Wang, K. Ren, W. Lou, and J. Li, “Toward publicly auditable secure

cloud data storage services,” IEEE Network, vol. 24, no. 4, pp. 19 –24,
2010.

Algorithm 1
Initial task scheduling and assignment based on

priorities
1:
2:
3:
4:
5:
6:

7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

18:

19:
20:

21:
22:
23:
24:
25:
26:

The EST of every task is calculated.
The LST of every task is calculated.
The ECTs of every task on all nodes are calculated.
The ERT of every node is calculated.
Empty list of tasks L and auxiliary stack S.
Push tasks of CN tree into stack S in decreasing order of
their LST.
while the stack S is not empty do
 If there is unlisted predecessor of top(S) then
 Push the predecessor with least LST first into stack S
else
enqueue top(S) to the list L
 pop the top(S)
 end if
end while
while the list L is not empty do
dequeue top(L).

Send task requests of top(L) to all participant nodes in
the list of hosts H which match the task requirements.
Receive the earliest resource available time responses
for top(L) from all responders.
Empty auxiliary responders stack RS.
Push IDs of hosts which respond to requests into
responders stack RS in increasing order according to
EFT.
while the host stack RS is not empty do

find the responder R �@ with minimum EFT in use.
assign task top(L) to responder R �@.
remove top(L) from the list L.

end while
end while

Algorithm 2
Adaptive task scheduling and assignment based

on priorities
1:
2:
3:
4:

5:
6:
7:

8:

9:
10:

11:
12:

13:
14:
15:
16:
17:
18:

Empty list of running tasks E
Define rescheduling threshold R9:���(:;<�	
while the list E is not empty do
 If a successor does not receive results within
R9:��(:;<�	 then
Dequeue top(E).
 Compute the EFT of top(E).

 Send task requests of top(E) to all participant nodes
in the list of hosts H which match the task
requirements.
Receive the earliest resource available time responses
for top(E) from all responders.

 Empty auxiliary responders stack RS.
 Push IDs of hosts which respond to requests into

responders stack RS in increasing order according to
the EFT.

 while the host stack RS is not empty do
find the responder R �@ with minimum EFT in use.
assign task top(E) to responder R �@.
end while

 else
remove top(E) from the list E.

 end if
end while

[2] I. Chandrasekaran, “Mobile computing with cloud,” Advancesin Parallel
Distributed Computing, Communications in Computer and Information
Science, vol. 203, 2011, pp. 513–522.

[3] J. Hongmeiand W. Lianhua, “Interval-valued Fuzzy Subsemigroups and
Subgroups Associated by Interval-valued Fuzzy Graphs,” In Proceedings
of theWRI Global Congress on intelligent Systems - Volume 01. IEEE
Computer Society, Washington, DC, May 2009,pp. 484-487.

[4] L. Hao, S. Lu, J. Tang, and S. Yang, “An Efficient and Robust Self-
Storage P2P Reputation System,” Int. J. Distrib. Sen. Netw. 5, 1, Jan.
2009, pp. 40-40.

[5] Bourguiba, M.; Agha, K.A.; Haddadou, K., "Improving networking
performance in virtual mobile clouds," Third International Conference
on the Network of the Future (NOF), pp.1-6, 21-23 Nov. 2012.

[6] A. Khalifa, R. Hassan, and M. Eltoweissy, “Towards Ubiquitous
Computing Clouds,” 3rd International Conference on Future
Computational Technologies and Applications, Rome, Italy, Sept. 2011.

[7] A. Khalifa and M. Eltoweissy, “A global resource positioning system for
ubiquitous clouds,” in the Eighth International Conference on
Innovations in Information Technology (IIT), UAE, March, 2012, pp.
145–150.

[8] A. Khalifaand M. Eltoweissy, “Collaborative Autonomic Resource
Management System for Mobile Cloud Computing,” in the The Fourth
International Conference on Cloud Computing, GRIDs, and
Virtualization, Spain, 2013.

[9] Singh, D.; Singh, J.; Chhabra, A., "High Availability of Clouds: Failover
Strategies for Cloud Computing Using Integrated Checkpointing
Algorithms," International Conference on Communication Systems and
Network Technologies (CSNT), , pp.698-703, 11-13 May 2012.

[10] Pandey, S.; Nepal, S., "Modeling Availability in Clouds for Mobile
Computing," 2012 IEEE First International Conference on Mobile
Services (MS), pp.80-87, 24-29 June 2012.

[11] http://web.mit.edu/6.826/www/notes/HO28.pdf

[12] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for
mobile devices,” Proc. 1st ACM Workshop on Mobile Cloud Computing
& Services: Social Networks and Beyond, USA, 2010, pp.1-5.

[13] N. Fernando, S.W. Loke, and W. Rahayu, “Dynamic mobile cloud
computing: Ad hoc and opportunistic job sharing,” Fourth IEEE
International Conference on Utility and Cloud Computing (UCC),
Australia, 2011, pp.281-286.

[14] E. Marinelli, “Hyrax: cloud computing on mobile devices using
MapReduce,” Master thesis, Carnegie Mellon University, 2009.

[15] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost optimization
algorithm for workflow scheduling in hybrid clouds,” Journal of Internet
Services and Applications, vol. 2, Dec 2011, pp. 207–227.

[16] C. Lin, S. Lu, “Scheduling scientific workflows elastically for cloud
computing,” in IEEE 4th International Conference on Cloud Computing,
USA, 2011, pp. 746 - 747.

[17] K. Bessai, S. Youcef, A. Oulamara, C. Godart, and S. Nurcan, “Bi-
criteria workflow tasks allocation and scheduling in cloud computing
environments,” 5th International Conference on Cloud Computing,
USA, 2012, pp. 638-645.

[18] B. Yang, X. Xu, F. Tan, and D. H. Park, “An utility-based job
scheduling algorithm for cloud computing considering reliability factor,”
International Conference on Cloud and Service Computing (CSC), Hong
Kong, 2011, pp. 95-102.

[19] L. Wang, G. von Laszewski, J. Dayal, and F. Wang, “Towards energy
aware scheduling for precedence constrained parallel tasks in a cluster
with DVFS,” Proc. 10th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGRID’10, Australia, 2010, pp.
368–377.

[20] F. H. Zulkernime and P. Martin, “An adaptive and intelligent SLA
negotiation system for Web servcies”, IEEE Trans. On
ServiceComputing, volume 4, number1,pages 31-43, 2011.

[21] Behl, “Emerging Security Challenges in Cloud Computing:An insight to
Cloud security challenges and their mitigation,” World Congress on
Information and Communication Technologies (WICT), Mumbai, Dec.
2011, pp. 217 -222.

[22] S. K. Garg and R. Buyya, “NetworkCloudSim: modelling parallel
applications in cloud simulations,” Proc. 4th IEEE International
Conference on Utility and Cloud Computing (UCC 2011), Melbourne,
Australia, Dec. 2011, pp.105–113.

APPENDIX

