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Abstract—Mobile cloud computing (MCC) is evolving to 
efficiently and collaboratively utilize the ever-increasing pool of 
computing resources available on mobile devices. In such high 
dynamic networks, nodes are susceptible to failure for many 
reasons, for example, being out of battery or hijacked. Managing 
reliability of dynamic mobile resources provides a strong 
motivation for proactive autonomic management capabilities in 
the MCC. To this end, we propose a reliable collaborative 
mobilecloud management system (MobiCloud), which 
automatically manages task scheduling and reliable resource 
allocation.  MobiCloud utilizes our new opt-in, prediction and 
trust management services to realize reliable cloud formation and 
maintenance in a dynamic mobile environment. In this paper, we 
present MobiCloud architecture and its associated Proactive 
Adaptive List-based Scheduling and Allocation AlgorithM (P-
ALSALAM) for MCC. This algorithm dynamically maps 
applications' requirements to the currently or potentially reliable 
mobile resources. Simulation results demonstrate that our 
proposed system not only significantly improves performance, 
but also substantially enhances the stability of mobileclouds. 

Keywords- Cloud management; mobile cloud computing; fault 
management; reliability; autonomic computing; collaborative 
computing 

I.  INTRODUCTION  

Cloud computing is a rapidly growing paradigm promising 
more effective and efficient utilization of computing resources 
by invariably all cyber-enabled domains ranging from defense, 
to government, to commercial enterprises.  In its most basic 
realization, cloud computing involves dynamic, on-demand 
allocation of both physical and virtual computing resources and 
software, usually as commodities from service providers over 
the public Internet [1]. 

Recently, principles of cloud computing have been 
extended to the mobile computing domain, leading to the 
emergence of Mobile Cloud Computing (MCC). A MCC 
system (MCCS) has been defined from different views in the 
literature [2]. One of these perspectives defines a MCCS as a 
way of outsourcing the computing power and storage from 
mobile devices into an infrastructure cloud of fixed 
supercomputers. Here, a mobile device is simply a terminal 
which accesses services offered in the cloud. Another view 
defines a MCCS as an infrastructure-less cloud that is formed 
locally by a group of mobile devices, sharing their computing 
resources to run applications.  This paper adopts and extends 
the latter definition as follows: A MCCS is a shared pool of 

configurable computing resources that are harvested from 
available or potentially available local or remote nodes that are 
either mobile or fixed over a network to provide on-demand 
computational services to users. Therefore, MCCS, and its 
associated term mobilecloud that we coin here, enables 
exploiting the computing power of mobile and fixed devices 
directly even when no Internet is available.  

Every mobile node with a connection to the mobilecloud 
can be a user or a provider of the mobilecloud’s resources. The 
mobile nodes freely using or providing the resources available 
are considered to be self-directing, self-organizing and self-
serving. But the providers of mobile resources can find it 
difficult to remain motivated to participate in a mobilecloud. 
On the other hand, selecting the right resource in a mobilecloud 
environment for any submitted applications has a major role to 
ensure QoS in term of execution times and performance. 
Reputation mechanism acts as a complementary approach 
which relies on analyzing the history of the quality of service 
provided to do resource selection for submitted applications. 
However, most of the proposed approaches [3] [4] consider 
each participant locally stores its own rating values of 
reputation that would be a threat when that self storage 
reputation information is not reachable. Consequently, there is 
a need for a solution that globally monitors the runtime 
performances of services and provides reputable mobile 
resource providers. 

 Participants of a mobilecloud depend on the access 
network to be able to connect to the cloud, while permanent 
connectivity may be not always available. This problem is 
common in wireless networks due to traffic congestion and 
network failures [5]. In addition, mobile nodes are susceptible 
to failure for many reasons, e.g., being out of battery of 
hijacked. Managing reliability of dynamic resources confined 
in a mobilecloud provides a strong motivation for proactive 
autonomic management capabilities for mobileclouds. In 
general, there is a need to know how a provider of mobile 
resources is suitable to participate and form a mobilecloud. 

In this paper, our main contribution is in the area of 
reliability for mobile cloud computing along two directions: 
First, we propose a mobilecloud architecture, MobiCloud, 
which utilizes our new opt-in, prediction and trust management 
services to realize reliable mobilecloud formation and 
maintenance in a dynamic mobile environment. Second, we 
propose a Proactive Adaptive List-based Scheduling and 
Allocation Algorithm to map applications' requirements to the 
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currently or potentially available mobile resources. This would 
support formed mobilecloud stability in a dynamic resource 
environment. 

The remainder of this paper is organized as follows. In 
section II, we present our previously proposed PlanetCloud 
system. In section III, we discuss some related works to form a 
reliable mobilecloud.  Proposed services for trust management 
and prediction of resource availability are presented in sections 
IV and V, respectively. In section VI, we present a model to 
form and maintain a mobilecloud and detail our proposed 
proactive adaptive task scheduling and resource allocation 
algorithm. In section VII, we discuss the performance 
evaluation. Finally, section VIII concludes the paper and 
outlines future work. 

II. BACKGROUND 

In [6], we proposed the PlanetCloud concept to enable 
MCC to tap into the otherwise unreachable resources, which 
may be located on any opt-in reachable node, rather than being 
exclusively located on a static cloud service providers’ side. A 
key PlanetCloud component was the Global Resource 
Positioning System (GRPS) that we presented in detail in [7]. 
GRPS adopts a spatiotemporal calendaring mechanism with 
real-time synchronization to support dynamic real-time 
recording and tracking of idle mobile or fixed resources. The 
calendar consists of records including data about time, location, 
and computing capabilities of GRPS participants. GRPS also 
forecasts the availability of resources, anytime and anywhere. 
GRPS makes use of the analysis of calendaring data coupled 
with data from other sources such as social networking to 
improve the prediction accuracy of resource availability. In 
addition, the GRPS provides hierarchical zone architecture with 
a synchronization protocol between different levels of zones to 
enable scalable resource-infinite computing. 

Integral to PlanetCloud is a Collaborative Autonomic 
Resource Management System (CARMS) [8], which 
automatically manages task scheduling and resource allocation 
to realize efficient cloud formation and computing in a 
dynamic mobile environment.  We designed our CARMS 
architecture using the key features, concepts and principles of 
autonomic computing systems.  Components of both CARMS 
and GRPS architectures interact with each other to 
automatically manage resource allocation and task scheduling 
to affect cloud computing in a dynamic mobile environment. 
CARMS comprises two primary types of nodes: Cloud Agent 
and participant nodes. A Cloud Agent, as a requester to form a 
cloud, manages the formed cloud by keeping track of all the 
resources joining its cloud using the updates received from the 
GRPS. A participant has a knowledge unit that includes a local 
spatiotemporal calendar, which includes spatial and temporal 
information of the involved resources. The participant obtains 
settings about the scheduled/requested clouds and some priority 
defined parameters through the knowledge unit. Also, it 
contains information about the formed cloud, e.g., types of 
resources needed, the amount of each resource type needed, 
and billing plan for the service. The design of our previous 
work did not consider the reliability of offered resources. 

III.  RELATED WORK 

We discuss related work in some areas relevant to 
scheduling and allocating reliable resources for supporting 
stable MCC formation as follows:  

A. Availability of Clouds 

In a cloud environment, it may be possible that some nodes 
will become inactive because of failure. Therefore, the entire 
work of unsuccessful jobs has to be restarted, and the cloud 
should migrate these jobs to the other node. The redundancy 
concept is a solution to achieve failover for handling failures 
[9] [10] [11].There are basically two options of redundancy: 
replication and retry. 

Replication is redundancy in space where a number of 
secondary nodes, in stand-by mode, are used as exact replicas 
of a primary active node. They continuously monitor the work 
of the primary node to take over if it fails. However, this 
approach is only feasible for fixed servers or if the nodes are 
few [9]. As this paper focuses on providing the high 
availability for mobile nodes, having replica of all mobile 
nodes will not be feasible as it will increase complexity, cost 
etc. 

Retry is redundancy in time where a try again process starts 
after a failure is detected [11]. In this paper, we consider a retry 
options to achieve failover coupled with forecasted information 
about the future resource availability, as an input to our 
proposed proactive management algorithm, to minimize the 
mean time to repair (MTTR). MTTR is the time required to 
detect the failure and try again. 

Most of the existing resource management systems [12-
14]for MCC were designed to select the available mobile 
resources in the same area or those follow the same movement 
pattern to overcome the instability of the mobile cloud 
environment. However, they did not consider more general 
scenarios of users’ mobility where mobile resources should be 
automatically and dynamically discovered, scheduled, allocated 
in a distributed manner largely transparent to the users. 
Additionally, most current task scheduling and resource 
allocation algorithms [15-19] did not consider the prediction of 
resource availability or the connectivity among mobile nodes in 
the future, or the channel contention, which affects the 
performance of submitted applications. Consequently, there is a 
need for a solution that effectively and autonomically manages 
the high resource variations in a dynamic cloud environment. It 
should include autonomic components for resource discovery, 
scheduling, allocation and monitoring to provide ubiquitously 
available resources to cloud users. 

B. Reliability and reputability of resource providers 

Research in resource management systems and algorithms 
for mobile cloud computing is still in its infancy. In [12], 
authors proposed a preliminary design for a framework to 
exploit resources of a collection of nearby mobile devices as a 
virtual ad hoc cloud computing provider. In [13], a mobile 
cloud computing framework was presented. Experiments for 
job sharing were conducted over an ad-hoc network linking a 
user group of mobile devices. The Hyrax platform [14] 
introduced the concept of using mobile devices as resource 
providers. The platform used a central server to coordinate data 



 

Figure 1.  Trust Management Service. 

and jobs on connected mobile devices. Task scheduling and 
resource allocation algorithms were reported in [15-19]. These 
algorithms used cost, time, reliability and energy as criteria for 
selection. 

The majority of previous frameworks for service discovery 
and negotiation models between cloud users and providers such 
as [20] did not consider the reliability of offered resources. 
However, in all mentioned works [11-20], a method that can 
determine the reputability of offered resources is missing.  

IV. TRUST MANAGEMENT SERVICE 

Reputation is one measure by which trust among different 
participants of a mobilecloudcan be quantified and reasoned 
about. Reputation systems can be used to manage reputation of 
mobile nodes as resource providers, according to the QoS 
provided, as well as reputation of mobile nodes as users, 
according to their usage of resources. 

In our trust management service, as shown in Fig. 1, 
automatic feedback, about participants’ behavior are 
aggregated and distributed. In a mobilecloud, the resources 
allocated to a user’s application are known to the user, as a 
cloud agent, making it easy to obtain user’s feedback. This 
feedback is an indication of the satisfaction a user achieves 
after obtaining a service. Thus, the information of this feedback 
is used to create reputation about particular resource providers 
and users. Reputation of resource providers could be used by 
our CARMS to improve allocation of user tasks by selecting 
reputable mobile resource providers. While, reputation of users 
could be used to achieve security level required by resource 
providers. 

We integrate the trust management service as part of the 
GRPS to interact with CARMS and help in selecting the 
resource providers based on their score of credibility to deliver 
the requested computing capability. Integral to the trust 
management service is a reputation evaluator. 

Trust Management Service provides a trust model which 
enables a symmetric trust relationship between a participant 
and a GRCS. We quantify the trustworthiness of a participant 
in various degrees of trust, which is expressed as a numerical 
range. The trust management services consist of the following 
components. 

Security Evaluator: evaluates the types of authentication 
and authorization mechanisms considered in the security 

service. A numerical trust value, score of credibility, is 
assigned for these mechanisms. 

Reputation Evaluator: verifies the participant's response by 
comparing it with the data of a participant which are saved in 
its group spatiotemporal resource calendar. The result of this 
verification is evaluated by assigning a numerical trust value to 
a participant. After, a participant finish execution of the 
assigned task, a Cloud Agent sends a feedback as an indication 
of the satisfaction a user achieves after obtaining a service. The 
reputation evaluator assigns and adds the results of its 
evaluation to this feedback to the total numerical trust value.  

The more successful participation of a mobile node in a 
mobilecloud,the more credit a participant can get in 
PlanetCloud related to its past behavior. The score of each 
mobile participant is an estimate to its future credibility that the 
participant is reliable. These values might be used to improve 
both reliability and fault tolerance of the mobilecloud. A result 
a node will be accepted as a participant of a mobilecloud if a 
participant owns at least the minimum threshold score. 

Trust values of participants are stored and synchronized as 
records in both local and group spatiotemporal resource 
calendars at PRCS and GRCS, respectively.  

At time t, the score of credibility is computed by weighing 
the numerical trust value record in a spatiotemporal calendar 
with a time decay weight. This would motivate the providers of 
mobile resources to participate in a mobile cloud formation and 
not remain inactive for long period of time. 

V. PREDICTION SERVICE   

A key module of the GRPS is a prediction service (PS) as 
shown in Fig. 2. It uses different sources of data to increase the 
forecasting precision of resource availability. We use different 
types of databases that are related to the participant, (i.e. the 
group spatiotemporal resource calendar, event calendar, the 
resource profile, data from social networks and other 
databases). PS contains three main processes as follows: 

1) Data preparation: Data may be collected and selected 
from different database inputs. Cleaning and preprocessing are 
performed on the selected data set for removing discrepancies 
, inconsistencies,and improving the quality of data set. 

2) Knowledge extraction: It is used to find out the possible 
patterns and rules from existing databases. Association Rules 
Mining Service (ARMS) is a major service of the PS, which is 
used for turning the data of a participant into useful 
information and knowledge. 

3) Prediction model: This uses the extracted knowledge, 
from both history and future data, as an input of the prediction 
algorithm. This model gives a probabilistic value to the 
expected availability of resources in the future. 

PS delivers the data of resource availability in future to the 
calendar manager, which updates them in a spatiotemporal 
resource calendar. These data can help in cloud maintenance. 

VI. MOBILECLOUD FORMATION AND MAINTENANCE 

In PlanetCloud, a cloud application comprises a number of 
tasks. At the basic level, each task consists of a sequence of 



Figure 2.  Prediction Service. 

 

Figure 3. Parallel task execution in MCC. 

instructions that must be executed on the same node. Tasks of a 
submitted application are represented by nodes on a directed 
acyclic Graph. The set of communication edges among these 
nodes show the dependencies among the tasks. The edge 
e�,�joins nodes v� and v� , where v� is called the immediate 
predecessor of v�, and v� is called the immediate successor of 
v�. A task without any immediate predecessor is called an entry 
task, and a task without any immediate successors is called an 
exit task. Only after all immediate predecessors of a task finish, 
that task can start its execution. 

A. Application Model 

For simplicity, we start with a basic application model. The 
load of submitted application is defined by the following 
parameters: the number of submitted applications, the number 
of tasks per application, and the settings of each task.  For 
example, the input and the output file size of a task before and 
after execution in bytes, the memory and the number of cores 
required to execute this task, and the execution time of a task.   

Based on the criteria for selection, we mainly define two 
matrices: Criteria costs matrix, C, of size v ×p, i.e., c�,� gives 
the estimated time, cost, or energy consumption to execute task 
��on participant node  	
; and a R matrix, of size p × p, which 
includes criteria costs per transferred byte between any two 
participant nodes. For Example, time or cost to transfer n bytes 
of data from task ��, scheduled on 	�, to task �
, scheduled on 
	�. 

As an example of time-based selection criteria, a set of 
unlisted parent-trees is defined from the graph where a critical-
node (CN) represents the root of each parent-tree. A CN refers 
to the node that has zero difference between its earliest start 
time (EST) and latest start time (LST).The EST of a task	�� is 
shown in (1). It refers to the earliest time that all predecessor 
tasks can be completed. ET is the average execution time of a 
task. 

EST	�v�� � 	 max
��∈��������

� EST	�v � ! ET�v �"									�1� 

Where $%��&�	 is the average execution time of a task �&, 
and pred(��) is the set of immediate predecessors of ��. The 
LST of a task �� is shown in (2). 

LST	�v�� � 	 max
��∈()**����

� LST	�v �" + ET�v��									�2� 

Where succ(v�) is the set of immediate successors of ��. 

A CARMS-managed cloud consists of resources on virtual 
nodes that meet the cloud applications’ requirements. Each 
virtual node is emulated by a subset of the real physical mobile 

nodes, participants. The subset locally stores the state of the 
emulated virtual node. The real nodes perform the tasks 
assigned to their emulated virtual node.  If a mobile node fails 
or leaves the cloud, it ceases to emulate the virtual node; a 
mobile node that joins the cloud attempts to participate in the 
emulation. CARMS attempts to provide each subset with a 
sufficient number of real mobile nodes, such that in case of 
failure, a redundant node can be ready to substitute the failed 
node.  

B. Mobilecloud Formation 

The mobilecloud formation process can then be started by a 
Cloud Agent by submitting an application which details the 
preferred number participants, duration, etc. To form a 
mobilecloud, we need to find suitable participants during a 
node filtering phase as a shown in Fig. 3. In node filtering 
phase, data is needed from prospective participants in three 
categories: i) future availability, ii) reputation, and iii) 
preferences. Data gathered in a node filtering phase enables the 
Resource Manager to form a cloud which aims at increased 
reliability as an outcome. 

 Participants willing to participate in the mobilecloud can 
submit the required data to the CARMS Resource Manager of a 
Cloud Agent. All data are assessed, which results in a measure 
of fit between participants and submitted applications. 

The data required are already gathered such that the PS 
delivers the data of resource availability in future to the 
calendar manager of a participant resource calendaring service 
(PRCS). Also, reputation data of resource providers are 
obtained as the score of credibility provided by the trust 
management service of their PRCSs. The preferences of 
resource providers are obtained from the knowledge unit of the 
participants. The assessment of Preferences of participants 
determines the overlap between the cloud characteristics and a 
participant related preferences. If they do not overlap, a 
participant will not be included in a mobilecloud formation, 
e.g., when a participant only want to participate in a traffic 
management cloud, while the requested mobilecloud will 
provide a multimedia services, thus this two participant will 
never be included in a mobilecloud. As a first step in the 
mobilecloud formation process, the preferences assessment can 
limit the number of resource providers to be considered. 



 

Figure 4.Work procedures of cloud formation. 

However, resource providers could negotiate preferences and 
change them. After this first step is completed, the cloud 
formation process continues with the reputation and future 
availability data. An example of these interactions is illustrated 
in Fig. 4, which depicts the procedures of cloud formation.   

However, the main focus of this paper is on how 
mobilecloud can be formed when the data required is already 
gathered. In this part, we only briefly introduce how the 
assessments are designed to work. 

We define general mobilecloud formation rules are for 
targeting specific outcomes. In this paper, three general 
mobilecloud formation rules are defined, which enable the 
Resource Manager to form clouds that are aimed at increased 
reliability as an outcome. Then, we translated the rules into 
mobilecloud formation expressions. 

Assuming the data from the resource availability and 
reputation assessments and the characteristics of requested 
mobilecloud “preferred cloud size and duration” are available, 
the Resource Manager combines the two separate sets of data 
by following particular mobilecloud formation rules. We 
consider prior research findings on mobilecloud formation in 
the design of these rules. We present the general rules we 
deduced for forming clouds suited to achieve a reliable cloud. 
Based on the general rules, we present two mobilecloud 
formation expressions. 

C. mobileclouds fit for increased reliability 

The follow research outcomes are considered for the 
formation of mobileclouds with increased reliability:  

1) Mobility of resources is a main concern that would 
impede connectivity among a mobilecloud’s participants [12-
13]; 

2) Resources of a mobilecloud’s participants should be 
capable and available within the execution of a submitted 
tasks[12-14];  

3) Security is fostered when mobilecloud participants 
show a reputability fit in behaviours, where accessible data 
relying on trust between cloud provider and customer [21]. 

The general mobilecloud formation rule we deduce from 
these findings is: Reliability is fostered when participants show 
high levels of preferences, resource availability and trust 
between resource providers and a Cloud Agent for the 
requested mobilecloud. 

Based on this rule, we mainly define three matrices:   
Criteria preferences matrix, Pr, of size v ×p, i.e., Pr�,� gives the 
preferences to execute task ��on participant node		
; a T  
matrix , of size p ×p, which includes trust score between any 
two participant nodes; and a Av matrix, of size v ×p, which 
includes criteria availability of a participant node  	
 from the 
time a task �� has been delivered to it till results are submitted 
to another participants. For example, Av�,� equals 0 when the 
resources of a participant node  	
 is not available at least for a 
period of time  required to receive data of task ��, execute this 
task and submit its results. 

We translate this rule into a mobilecloud formation 
expression for reliable cloud participants as shown in (3). 
When applied, it determines which participants have the 
highest average reliability scores. 

kj,ji,
ji, T*A
Pr_

Pr
TAPi WvW

Max
WFitR +∗+∗=         (3) 

Where FitRi is the fitness of a participant i for reliability 
outcomes, Max_Pris the maximum possible preferences score 
of a submitted task, Tj,k is the trust score between node j and 
node k, and WP, WA, WT are weights. 

After the node filtering phase, task scheduling and resource 
allocation algorithm will come into action to schedule and 
allocate the tasks of given applications to reliable nodes.  

D. Proposed Algorithm 

We propose a generic GRPS-driven algorithm for the task 
scheduling and resource allocation: Proactive Adaptive List-
based Scheduling and Allocation AlgorithM (P-ALSALAM) 
for mobile cloud computing. P-ALSALAM supports the 
stability of a formed cloud in a dynamic resource environment. 
Where, a certain resource provider is selected to run a task 
based on the proactive resource discovery and forecasting 
information provided by the GRPS. The algorithm consists of 
two phases: initial static scheduling and assignment phase, and 
an adaptive scheduling and reallocation phase which will be 
detailed later in the mobilecloud maintenance subsection. 

1) Initial static scheduling and assignment phase 
After, the information of virtual resources is sent to the 

Resource Manager for the appropriate real mobile nodes’ 
resource allocation, the Resource Manager uses its Resource 
Allocator unit, which interacts with the GRPS to find the 
available resources of every possible node a Cloud Agent could 
reach. GRPS provides the requester of a cloud with the 
information that matches the application requirements. The 
information includes location, time and the computing 
capabilities, future availability of these resources, and 
reputation and preferences of the providers of these resources. 
This information affects matrices of criteria for node selection. 
Based on the next waypoint, a destination obtained from 
GRPS, of each mobile node and the updated location of the 



Cloud Agent, we can estimate which mobile nodes will pass 
through the transmission range of the Cloud Agent.  

After filtering node phase of nodes, a priority is assigned to 
a node depending on the criteria of selection. For example, in a 
time-based approach, we may select a host such that the highest 
priority is given to the nodes which are located inside the 
transmission range of a Cloud Agent, followed by the nodes 
which are located outside this transmission range and will cross 
it, and finally to the rest of the nodes. Within each group, nodes 
are listed in descending order according to the available 
computing capabilities, e.g. their number of cores or central 
processing units (CPUs). Nodes, with the same computing 
capabilities, are listed in descending order according to the time 
they will spend in the transmission range of a Cloud Agent. 
This could minimize the overall execution and communication 
time. As a result, a host list, H, is formed based on the priorities 
as shown in Algorithm 1 presented in Appendix. 

The Cloud Agent sends the cloud formation requests, 
through its Communicator unit, to all resource providers to in 
the list of hosts H. According to the (earliest) responses 
received about resource available time from all responders and 
the criteria of selection, the responders’ IDs are pushed by the 
Resource Manager in increasing order of parameters which 
reduce their costs. For example, the responding node,0&�1, 
with the minimum sum of expected computation time (ECT) of 
a task and expected ready time  (ERT) of a node is on the top 
of responders stack RS, top(RS). The expected ready time for a 
particular node is the time when that node becomes available 
after being connected with their peers and having executed the 
tasks previously assigned to it. This could reduce the queuing 
delay and therefore enhance the overall execution time. 

The Task Scheduler unit of the resource manager assigns 
and distributes the task at the top of the list of tasks L, top (L) 
to the host at the top of responders stack RS, top(RS). 

2) Mobile Cloud Maintenance 
We propose that each virtual node is emulated by a subset of 
the real physical mobile nodes, participants. The subset locally 
stores the state of the emulated virtual node. The real nodes 
perform the tasks assigned to their emulated virtual node.  If a 
mobile node fails or leaves the cloud, it ceases to emulate the 
virtual node. 

There is a need to design a robust mobilecloud with enough 
redundancy in order to avoid service downtime. However, real 
mobilecloud is not failure free. 

In this paper, we consider a failure model where one or 
more than one mobile nodes as resource providers may 
experience downtime due to failure. The available resource 
providers will be classified in two different groups: active 
participants, and redundant participants. The active participants 
group contains the mobile nodes that are currently participating 
and running tasks of the formed cloud. The redundant 
participants are working mobile devices waiting for tasks that 
eventually may need them in case of failure of an active 
participant.  CARMS attempts to provide each subset with a 
sufficient number of real mobile nodes, such that in case of 
failure, a redundant node can be ready to substitute the failed 
node. A redundant participant becomes an active when a 

submitted task is successfully restored on it. After the mobile 
node got repaired, it becomes part of the pool which includes 
redundant participants. 

The actual measures, e.g., time, cost or energy, required to 
finish a task may differ from the estimated due to the mobility 
of hosts, the resource contention and the failure of mobile 
nodes.  For example, the mobility of hosts affects the actual 
finish time of a task due to the delay a host takes to submit task 
results to other hosts in a mobilecloud.  

The Estimated Finish Time of a task v� on a node p�, 
EFT(v�, p�), is shown in (4), where ERAT is the earliest 
resource available time. 

EFT	(v�, p�) = min{ERT	(v�, p�) + ECT(v�, p�)}								(4) 

We propose an adaptive task scheduling and resource 
allocation phase to adjust the resource allocation and 
reschedule the tasks dynamically based on both the updated 
measurements, provided by the Monitoring Manager, as well as 
the evaluation results performed by the Performance Analyzer. 

3) Adaptive scheduling and reallocation phase 
The Monitoring Manager of CARMS aggregates the 

information about the current executed tasks periodically, as a 
pull mode. Due to the dynamic mobile environment, hosts of a 
cloud update the Monitoring Manager with any changes in the 
status of their tasks, as a push mode. Also, hosts periodically 
update the cloud registry of a Cloud Agent with any changes in 
the status of resources, e.g. in case of failure. Consequently, the 
Performance Analyzer could re-calculate the estimated 
measures of the submitted tasks. As a result, tasks and 
resources could be rescheduled and reallocated according to the 
latest evaluation results and measurements. 

In algorithm 2, in Appendix, a rescheduling threshold is 
predefined by the Performance Analyzer such that tasks and 
resources could be rescheduled and reallocated periodically. If 
a successor does not receive results of a task from its 
immediate predecessor within a period of time equals a 
predefined rescheduling threshold,	R9:���(:;<�	, then the 
Monitoring Manager of  the cloud agent forms a task list, E, 
which contains the tasks needed to be scheduled. The 
Monitoring Manager of the cloud agent informs the 
Performance Analyzer to re-calculate the EFT of a task, top(E). 
The EFT is computed according to the latest information 
obtained from the GRPS and the Monitoring Managers of 
participants. 

As a result, The Resource Manager interacts with the GRPS 
to find the available resources of every possible node a Cloud 
Agent could reach, which match the task requirements. 

A priority is assigned to a node depending on the criteria of 
selection defined in the initial static phase. Also, the 
responders’ IDs are pushed by the Resource Manager in 
increasing order of parameters which reduce their costs, e.g., 
EFT(v�, p�). The Task Scheduler unit of the resource manager, 
in  the Cloud Agent, assigns and distributes the task at the top 
of the list of tasks E, top(E) to the host at the top of responders 
stack RS, top(RS). 



Figure 5. Average Execution Time of Application Vs Number of Hosts 
per cloud at different scheduling mechanisms and rescheduling threshold. 

 

TABLE I. PARAMETERS 

Parameters Values Parameters Values 

Density of nodes  
30 - 100 

(Nodes/Km²) 
Communication 

range 
0.1-1 (km) 

Number of 
Hosts/Cloud 

2-22 

Application 
Arrival Rate 

(Poisson 
distribution) 

7 
(Applications/sec) 

Number of  
tasks/Application 

30-40 
Expected 

execution time 
for a task 

800 
(Sec) 

Number of 
applications/Cloud 

 
1 – 10 

Number of 
CPUs/Cores 

per host 
(Uniform 

distribution) 

1-8 

Inactive Node rate 
(Node/Sec) 

(Poisson Process) 
 

1/300 -1/60 

Average Node 
Speed 

(Uniform 
distribution) 

1.389,10,20 
(m/sec) 

 

VII.  EVALUATION  

To simulate the mobilecloud environment, we have 
extended the CloudSim simulator [22]to support the mobility 
of nodes by incorporating the Random Waypoint (RWP) 
model. A mobile node moves along a line from one waypoint 
=� to the next=�>?. These waypoints are uniformly distributed 
over a unit square area. At the start of each leg, a random 
velocity is drawn from a uniform velocity distribution. 

In our evaluation model, an application is a set of tasks with 
one primary task. Each task, or cloudlet, runs in a single virtual 
machine (VM) which is deployed on a mobile node. VMs on 
mobile nodes could only communicate with the VM of the 
primary task node and only when a direct ad-hoc connection is 
established between them. For simplicity, a primary node 
collects the execution results from the other tasks which are 
executed on other mobile nodes in a cloud. There is only one 
cloud in this simulation. For scheduling any application on a 
VM, first-come, first-served (FCFS) is followed.  

For calculating the collision delay, we consider the worst 
case scenario, a saturation condition, where each node has a 
packet to transmit in the transmission range. 

We set the number of inactive nodes to be sampled 
following a Poisson Process during a time t. Also, we set the 
preference of each mobile node to the highest value to 
participate in a requested cloud. During our evaluation, we 
consider that a submitted application has its own minimum 
value of reputation threshold, that a mobile node should have to 
participate in a cloud, and each node has its own score of trust.  

We suppose that the distribution of detection time of failure 
is uniform from 0 to 1 second. Detection time represents the 
length of a period from the time when a participant starts 
crashing to the time to be suspected. 

A. Metrics and Parameters  

We evaluate the average application execution time, which 
is the time elapsed from the application submission to the 
application completion. Also, the Mean Time To Repair 
(MTTR) is evaluated, which is the time to detect the failure 
plus the time to make the backup live. 

We set parameters in the simulation according to the 
maximum and minimum values shown in Table I. The number 
of hosts represents the mobile nodes that provide their 
computing resources and participate in the cloud.   

B. Assumptions 

• Communication between nodes is possible within a 
limited maximum communication range, x (km). 
Within this range, the communication is assumed to be 
error free and instantaneous. 

• The distribution of speed is uniform. 

C. Experiments 

1) High reliability Scenario 
In this experiment, we consider that every mobile node can 

always function well all the time with high reliability and does 
not fail. For example, all nodes are always available, reputable 

and they have the highest preference valueto accept the 
submitted applications.  

We started our evaluation by studying the effect of applying 
adaptive scheduling and reallocation phase on the performance 
of the submitted application. Let all 40 mobile nodes have a 
random number of cores, heterogeneous resources, ranging 
from 1 to 8 cores. Fig. 5 shows the average execution time of 
an application at a different number of hosts, ranging from 2 to 
22 hosts. We consider five applications are submitted to be 
executed. Each node has a transmission range equals 0.4 km, 
and its average speed equals 1.389 (m/sec). This evaluation 
provides that there are no significant differences between 
results of the two cases, static/ adaptive scheduling using the P-
ALSALAM at a larger number of hosts per cloud, e.g., 14 
hosts/cloud. This is because at transmission range equals 0.4 
km, we can neglect the effect of the connectivity, i.e. a node is 
almost always connected with others. However, at smaller 
number of hosts per cloud, where the queuing delay is 
dominant, e.g., at2 hosts/cloud, dynamic scheduling has worst 
performance than static one due to the overheads of 
rescheduling. The larger value of rescheduling threshold, e.g. at 
threshold equals 1600 sec, leads to reduce the overheads of 
rescheduling and slightly enhance the performance at a smaller 
number of hosts per cloud equals 2. The more the frequency of 
rescheduling in the formed cloud, e.g. at threshold equals 1100 
sec, the more overheads to execute these tasks. 



Figure 6. Average Execution Time of Applications Vs number of hosts per 
cloud using dynamic scheduling mechanism at different communication 

range of a mobile node. 

Figure 7. Average Execution Time of Applications Vs number of hosts per 
cloud at different scheduling mechanisms and at different communication 

range of a mobile node. 

 
Figure 8. Average Execution Time of Applications when applying different 

reliability based algorithms. 

In the next evaluation, we compare results at difference 
transmission ranges equal 0.2km and 0.4 km, using dynamic 
scheduling of P-ALSALAM algorithm. In this evaluation, we 
set the value of rescheduling threshold equals 1100 sec. Fig. 6 
shows that the average execution time of an application at a 
transmission range equals 0.4 (km) almost has a better 
performance than the case of a transmission range equals 0.2 
(km) at the same number of hosts. Also, we can see that at a 
small number of hosts per cloud, e.g. 2, a worst performance is 
obtained, where the queuing delay is dominant. While, it has a 
better performance, at a number of hosts equals 16, than in case 
of a number of hosts equals 4. This observation is quite obvious 
because at this large number of hosts, greater than the total 
computing capabilities of the selected hosts. On the other hand, 
the larger the value of a number of hosts, at a number of hosts 
per cloud equals 22, the performance is degraded again. This is 
because of the significant effect of the mobility of hosts. The 
reason is that tasks are assigned to more nodes in the formed 
cloud, and this leads to increase in the communication time 
until the primary node collects results from the other nodes.  

We repeat our evaluation at a different number scheduling 
mechanisms, static and dynamic, and at a different value of 
transmission ranges equals 0.2, and 0.4 (km). Fig. 7 shows that 
the dynamic scheduling mechanism significantly outperforms 
the static one in terms of the average execution time of an 
application at a small transmission range equals 0.2 (km) at the 
same number of hosts. Also, we can see that at a large number 
of hosts, e.g., 22 hosts, a worst performance is obtained in 
static scheduling where the communication delay is dominant, 
while dynamic scheduling has a better performance, at the 
same number of hosts equals 22. This is because our algorithm 
frequently reschedules the delayed tasks and this minimizes the 
effect of communication delay.  

2) Variable reliability Scenario 
In this evaluation, we consider that mobile nodes are 

different in their reliability, in terms of future availability and 
reputation, for the requested mobilecloud.  

We perform an evaluation to obtain the expected execution 
time of an application at number of hosts per application equals 
6. In this evaluation, we consider one application is submitted 
to be executed, with a number of tasks equals 30. We consider 
the density of nodes equals 100 (nodes/km²). Each node has a 
transmission range equals 0.4 km, and its average speed equals 

1.389 (m/sec). The results of this evaluation showed that the 
expected execution time of an application equals 4000 seconds. 
We use it to calculate the number of inactive nodes at different 
arrival rates of inactive nodes for the next evaluations. We set 
the rescheduling threshold equals the expected execution time 
of an application, e.g. 4000 seconds. Also, we assume that the 
primary node is always reliable. 

In the next evaluation, we compare results of two cases: 
Using P-ALSALAM algorithm, which determines the best 
participants that have the highest average reliability scores to 
the requested cloud and the random-based algorithm, which 
does not use this information, where random mobile nodes with 
random reliability scores are selected to execute the submitted 
application. We perform the evaluation with various values of 
the arrival rate of inactive nodes, ranging from 1/300 to 1/60 
(nodes/sec). As expected, this evaluation provides significant 
differences between results of the two cases, with/without 
using the P-ALSALAM. The results of Fig. 8 show that a better 
performance, in terms of the average execution time of an 
application, is obtained at a smaller arrival rate of inactive 
nodes, e.g. 1/300 (nodes/sec) than in case of results at a larger 
arrival rate of inactive nodes, e.g. 1/60 (nodes/sec).  This is 
because at larger arrival rate of inactive nodes, the probability a 
node could fail increases. 

Fig. 9 compares the results of applying P-ALSALAM 
algorithm and random-based algorithm in terms of the average 
MTTR when we consider different arrival rate of inactive 



 
Figure 10. Average MTTRat different densities of nodes when applying P-

ALSALAM algorithm. 

 
Figure 9. Average MTTR Vs inactive node rates when applying different 

reliability based algorithms. 

nodes. The average MTTR has lower value at a smaller arrival 
rate of inactive nodes, e.g. 1/300 (nodes/sec) due to low 
probability a host might fail. While, noticeable differences 
among results appear at a larger arrival rate of inactive nodes, 
e.g. 1/60 (nodes/sec) due to the high probability a host could 
fail. 

Fig. 10 depicts the results of applying P-ALSALAM 
algorithm in terms of the average MTTR when we consider 
different densities of nodes at different values of reputation 
threshold. We perform this evaluation with an arrival rate of 
inactive nodes equals 1/60 (nodes/sec). Each node has a 
transmission range equals 1 km, to neglect the effect of 
communication disruptions. Also, we consider two applications 
are submitted to be executed. Each application has an expected 
execution time equals 1500 seconds. The results show that the 
average MTTR has a higher value at a small node density, e.g. 
35 (nodes/km²) due to low probability to find the required 
number of reliable host to maintain the cloud in case of failure. 
While, the average MTTR has a lower value at higher node 
densities, e.g. 55 nodes/km². Also, the figure shows that the 
average MTTR at a smaller reputation threshold, e.g. zero 
threshold in case of all nodes are reputable, than in case of 
results at a larger reputation threshold, e.g. 0.6, at the same 
density of nodes.  This is because the larger the reputation 
threshold the lower the probability to provide nodes that could 
achieve the application requirements at the same time these 
nodes should be available in future to participate in a 
mobilecloud.  

A. Findings 

Our findings can be summarized as follows. 

1) There is a tradeoffbetween the communication delay 
and the queuing delay as the number of hosts per submitted 
application is varied.The higher number of hosts per an 
application, the higher total computing capability within the 
cloud is. Therefore, the queuing delay of a task is decreased. 
While, increasing the number of nodes per application leads to 
increasing the time until the primary node collects results from 
other resource provider nodes, and therefore this increases the 
communication delay.  

2) A better performance may be obtained, at a shorter 
transmission range, if weapply the adaptive scheduling and 
reallocation phase especially at a larger number of hosts 
assigned to a mobilecloud. This is because our algorithm 
frequently reschedules the delayed tasks and this minimizes 
the effect of communication delay. While at a longer 
transmission range, where the communication delay could be 
neglected, we have to select the static scheduling and 
assignment phase to eliminate the overhead of rescheduling 
and slightly enhance the performance especially at a smaller 
number of hosts per cloud. 

3) The MTTR may be enhanced, at less densities of nodes, 
if we use a low value of reputation threshold per submitted 
application which maximizes the number of reliable nodes that 
could meet the application requirements and therefore 
participate in a mobilecloud. 

VIII.  CONCLUSION AND FUTURE WORK 

Mobile cloud computing  provides new opportunities to 
efficiently utilize the ever-increasing pool of computing 
resources available on mobile devices. In this paper, we 
propose a MobiCloud architecture, which utilizes our new opt-
in, prediction and trust management services to realize 
collaborative reliable cloud formation and maintenance in a 
dynamic mobile environment. We also proposed a distributed 
Proactive Adaptive List-based Scheduling and Allocation 
AlgorithM (P-ALSALAM) to dynamically map applications' 
requirements to the currently or potentially reliable mobile 
resources. This would support the stability of a formed cloud in 
a dynamic resource environment. Results have shown that P-
ALSALAM significantly outperforms the random-based 
reliability algorithm in terms of the average execution time of 
an application and the MTTR. Also, we can adapt the 
performance according to number of hosts per cloud, 
communication range, density of mobile nodes and inactive 
node rate. 

Our ongoing research extends our proposed architecture to 
enhance the prediction accuracy of resource availability by 
utilizing complementary data sources, such as from social 
networking. 
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