Supporting Secure Collaborations with
Attribute-based Access Control'

Carlos E. Rubio-Medrano, Clinton D’Souza and Gail-Joon Ahn
Ira A. Fulton Schools of Engineering
Arizona State University
Tempe, Arizona, USA, 85282
{crubiome, cvdsouza, gahn}Qasu.edu

Abstract—Attribute-based access control (ABAC) has been
regarded in recent years as an effective way for providing
security guarantees in collaboration environments, due to its
alleged flexibility and efficiency for meeting the access control
requirements of heterogeneous organizations. Despite the growing
interest in ABAC, there still need consensus on a reference
model that comprehensively describes all necessary components
and functions, in such a way non-trivial security properties can
be effectively taken into account. In order to overcome this
limitation, we propose an abstract model that includes a precise
definition of attributes and relevant core components. In addition,
we introduce the notion of security tokens that serve as a layer of
association between attributes and access rights. We also validate
our results by presenting both a case study and a comparison
with existing approaches that have been previously proposed in
the literature.

Keywords—attribute-based, access control, collaboration

I. INTRODUCTION

Access control has been recognized as an effective way
to provide security assurance of mission-critical software
systems, by restricting access to the sensitive resources that
may be consumed during execution, e.g., confidential files,
communication channels, etc. For collaborative systems, the
proper enforcement of access control rules becomes crucial,
as the overall safety of the collaborative environment may rely
on an access control that can effectively allow users (human
agents, automated processes) from different organizations to
access the resources required for collaboration, while still
preventing unauthorized access to resources. In recent years,
attribute-based access control (ABAC) [1], [2] has obtained
considerable attention as a flexible and effective means for
managing the crucial and non-trivial task in specifying access
control requirements of collaborative systems, as the use of
attribute-based constraints may better accommodate the speci-
fication of inter-domain access control policies among diverse
organizations, which in turn may seamlessly implement their
own heterogeneous access control models and mechanisms [3].
Despite its alleged benefits, there still exists no reference model
of ABAC in the literature, in such a way relevant security
properties in software systems can be properly verified. In
order to alleviate this challenge, this paper presents an abstract
model for ABAC intended to provide a basis for the rigorous
analysis of access control configurations by means of ABAC

TAIl correspondences should be addressed to: Dr. Gail-Joon Ahn at
gahn@asu.edu.

policies. We first start by describing a sample use case involv-
ing attribute-based constraints in the collaboration domain, in
an effort to locate some common patterns that better describe
the main features desired for our proposed model. Next, we
aim to define the main ABAC component: attributes, which
we use extensively throughout the rest of our work. Based
on this, we provide the main features of our proposed model,
which introduce the concept of security tokens. These first-
class objects are intended to provide an abstract representation
of the set of relevant security states devised for software
systems, in such a way access rights can be associated with
states to better meet access control requirements. Security
tokens establish an association between the aforementioned
attributes and permissions, which are commonly described in
the literature as a well-defined representation of access rights,
relating protected resources with an operation that can be per-
formed upon them. We describe how attributes are associated
with access control entities, e.g. users, protected resources, etc.
and how they can be turned into security tokens. We provide an
empirical evaluation of our model by describing an illustrative
case study in the collaboration domain and by presenting a
comparison with existing approaches in the literature, in such
a way the novelty and the benefits introduced by our approach
are articulated. The rest of this paper is organized as follows:
we introduce the problem being addressed in Section II, which
has influenced our proposed ABAC model described in Section
III. In order to illustrate the applicability of our approach,
Section IV presents an empirical evaluation of our approach
and exhibits a set of interesting access control challenges that
are efficiently addressed by means of our ABAC model. We
then discuss the future direction of our work and conclude the
paper in Section V.

II. PROBLEM DEFINITION

In ABAC, a given access control request, e.g. reading
a confidential data file, is granted upon the satisfaction of
constraints involving some security-relevant properties, also
known as attributes, that are exhibited by the access control
entities involved in the request. Commonly, such access con-
trol entities include actors, i.e., human agents or computer
processes running on behalf of them; rargets, i.e., protected re-
sources such as data files or network ports, and any applicable
context, i.e., the running environment where a given software
system is executed, such as an operative system or a cloud
setting. In this section, we introduce a simple use case example
in the collaboration domain that involves the specification of
access control constraints based on attributes obtained from

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254168



different entities, in an effort to properly identify how attributes
are used for defining constraints and how constraints are in
turn related to access rights (permissions). For illustrative
purposes, consider a setting when actors may request access
to a shared data file. Such an access right is represented by a
permission named readFilePermission, which is only granted
if the requesting actor happens to be the owner of the file,
or if the file is labeled for sharing purposes (by naming the
file as “shared.txt”). Such a constraint depicts a collaboration
setting when an access to a shared resource is granted to a
collaborative actor only for working hours. A corresponding
use case is depicted in Fig. 1: the constraint C; restricts access
to a given file only if its name attribute has a value equal
to the “shared.txt” and the time attribute exhibited by the
context environment fits within a certain range. Moreover, the
access control constraint Cs restricts access to files only when
the name attribute presented by the requesting actor is the
same as the ownername attribute defined for the requested file.
This use case depicts a scenario when attributes are retrieved
from all the involved access control entities, and several
constraints are defined in order for the readFilePermission
to be granted. Based on this sample case, some noticeable
patterns emerge: first, different attributes exhibited by different
access control entities may be used to define constraints, and
not all of the entities involved may need to provide attributes
in order for an access control decision to be made, as noticed
in the C; constraint, where the entity requesting access is
required to show no attributes for the constraint guarding
the requested permission. Second, the same set of attributes
exhibited by a given access control entity may be used to
define more than one constraint, as shown in C; and Cs,
where attributes from the target are used to define two different
constraints. Third, constraints may be in turn composed of
different sub-constraints and may be evaluated simultaneously
while making an access control decision (C;). Finally, many
different constraints, which may be constructed upon different
attributes from different access control entities, may be used to
guard access to the same permission. The patterns discussed
above provide an insight on how flexible an scheme based
on attributes and constraints should be for modeling access
control requirements: as many different options are available,
policy designers may choose the ones that better fit the needs
devised for a given collaboration setting. However, at the cost
of flexibility, we must also consider such diversity may also
cause unexpected challenges when analyzing some non-trivial
security properties of a given ABAC setting. As an example,
consider the case of performing a risk analysis [4] on the
ABAC setting depicted in Fig. 1: in order to determine under
which situations readFilePermission may be granted. Such an
analysis may involve the analysis of each constraint guarding
the readFilePermission, and attributes on each entity, including
the range of possible values such attributes may take and
the number of possible combinations that may be obtained
from them. Such a process gets complicated by the fact that
no standardized definition of both attributes and constraints
exists in the literature, nor a standardized policy language for
a reference ABAC model exists. These problems may turn
the security analysis process cumbersome in real-life systems
where diverse constraints may be in place for guarding a given
permission.

ITII. MODEL DEFINITION
A. General Description

In order to support access control patterns depicted in
Section II, we first define the main components of our proposed
model:

e qctors are users (i.e. human agents) or subjects (i.e.
computer processes) acting on behalf of users;

e  targets are the protected resources within a software
system,;

e requests are initiated by actors when access to a
specific target is needed; and

e  context is the running (executing) environment, e.g.
operative system, supporting platform, etc., where a
given action is issued and/or served.

Besides the core ABAC component attributes, we also
introduce the concept of security tokens: first-class objects
that are intended to provide an abstract representation of a
set of security states that may be relevant to the domain-
specific properties in collaborative systems. Moreover, these
security tokens are helpful to represent the attributes exhibited
by access control entities. Attributes are related to security
tokens through token provisioning functions (TP-Functions),
which map each attribute to a corresponding security token,
and are intended to model the constraints shown in Section
II. They also produce security tokens as a result and allow
to define the relationship between permissions and attributes.
It must be noticed that the precise definition of such TP-
Functions falls in the scope of the collaborative system domain.
Fig. 2 shows a visual representation of our proposed model,
which leverages a similar representation shown in [5]. In
the diagram, the sets of either access control entities or
elements (e.g. attributes) are modeled as circles connected by
either unidirectional or bidirectional arrows, which can also be
single-headed or double-headed. Unidirectional arrows depict
functions, whereas bidirectional ones are used for relations.
For instance, attributes are related to its corresponding access
control entity by means of the attribute assignment (AA)
relation. Moreover, double-headed arrows depict multiplicity
of appearances of members of sets (denoted by circles) in
the relation depicted by the arrow, whereas single-headed
ones may depict a single appearance. As an example, the
AA relation depicts an access control entity is related to
several attributes, whereas an attribute may be related only
to a single access control entity. Attributes are also related to
security tokens through our proposed TP-Functions, which are
depicted as unidirectional arrows in the diagram. Moreover,
TP-Functions also relates security tokens with other security
tokens. Following this approach, a security token that is
produced by means of a TP-Function is provisioned. Security
tokens are related to access rights (permissions) by means of
the permission assignment (PA) relation. Permissions are in
turn depicted as a combination of a protected source (target)
and an operation that can be performed on it. Following
the convention for double-headed arrows introduced earlier,
a security token may be related to one or more permissions,
and a given permission may be related to one or more security
tokens. Finally, it must be noticed that our model is intended to
be independent of any supporting technology or methodology
other than the concepts we have enlisted in this section.



Access
Request

ownername

Fig. 1. A combined use case depicting ABAC in the collaboration domain.

B. Definition of Attributes

As described previously, attributes are defined to be
security-relevant properties that are exhibited by access control
entities, namely, actors, targets, policies and any applicable
context. Their physical nature and the way those attributes are
collected from the access control entities remains dependent
on the collaborative application domain. From the use case
and patterns discussed in Section II, attributes are expected to
have at least the following inner components: an identifier (id
for short), which is later used for defining constraints on them,
e.g. the attribute name defined for a given file (target); a value,
which is used when evaluating constraints, e.g. “shared.txt”;
and a data rype, which restricts the nature and the range of
the value defined for the attribute, e.g. the data type String. In
addition, for brevity, we also introduce the concept of attribute
families, which are the sets of attributes where all members
share the same fype and id components. With this in mind, we
proceed with the following definition:

Definition 1: An attribute is a 3-tuple of the form <type,
id, value>, where

e type is a well-defined data type relevant to the collab-
orative application domain, e.g. String, Integer, Date,
Boolean, etc.

e id is a unique identifier, which is required to be non-
empty for the purpose of an access control decision.
The format of the id component, as well as its
associated semantics, is based on the scope of the
collaborative application domain.

e value is a data value of the attribute in the nature and
range defined by type.

[lustrative examples of attributes are as follows: <String,
file.name, ‘“‘shared.txt”>, <String, actorname, “Carlos’>,
<Integer, actorage, 100>, <Date, system.date, “10-10-3">,
<Boolean, file.isOpen, true>, etc.

Definition 2: An attribute family is a set of attributes
where all elements share the same type and id components.

The number of possible elements of an attribute family is
bounded by the range of values defined by the fype component.
In the rest of this paper, we use the term fam-a(id) to refer to
a family of attributes identified by a given id component.

C,: grant readFilePermission if
File.name = “shared.ext” and
Context.time == *“08:00" and
Contexttime <= *17:00"

C;: grant readFilePermission if
File.ownerName=Requester.name

ReadFilePermission

C. Definition of Security Tokens

As described previously, we aim to provide a description
of the main features of ABAC by introducing the concept
of security tokens. Informally, such tokens are obtained by
processing the attributes from access control entities through
the aforementioned TP-Functions, and are intended to provide
an abstract representation of the security states within a soft-
ware system (e.g. a collaborative application), on which access
rights can be granted safely. As an example, TP-Functions may
provide functionality intended to validate a given attribute, by
inspecting its value component and producing a proper security
token as a result. Thus, a validated attribute may put the system
in a secure state, and access rights can be safely granted as
a result. As described in Section III-A, permissions can be
assigned to security tokens, which then serve as a layer of
association between attributes and permissions. Such a layer
helps identify the attributes that may be ultimately involved in
granting a given permission, as well as the set of constraints
represented by TP-Functions that may be involved in such
process. Moreover, our model also allows for TP-Functions
to take security tokens as an input, or may also take both
attributes and security tokens as an input altogether to produce
security tokens as a result, as depicted in Fig. 2. We define
security token as follows:

Definition 3: A security token is a tuple of the form <id,
value>, where id is a unique identifier, whose format as well
as associated semantics remain in the scope of the collaborative
application domain, and value is the devised value of the token,
if any, which may also be in the scope of the application
domain, and may not necessarily match a given value depicted
by the attribute (or set of attributes) the token is originated
from.

Note that our definition of security tokens does not include
the concept of data type, which is included in the definition of
attributes, in order to allow for an enhanced flexibility in the
definition of the range of values. Examples of security tokens
include: <jobPosition, manager>, <jobPosition, employee>,
<isUnderage, true>, <isSuperUser, false>, etc. With at-
tributes, security tokens are grouped into token families, which
have a similar definition to the ones defined for attributes. A
token family groups a set of security tokens that share the same
id component as follows:

Definition 4: A security token family is a set of security



== Permissions
1

Security
Tokens

Operations

Fig. 2. Graphical depiction of a model based on security tokens for ABAC.

tokens where all members share the same id component.

As with attribute families, we denote a security family
identified by id as fam-t(id). Examples of security token
families include: fam-t(jobPosition) = {<jobPosition, man-
ager>, <jobPosition, employee>} and fam-t(isUnderage) =
{<isUnderage, true>, <isUnderAge, false>}.

D. Definition of Token-Provisioning Functions

As introduced in Section III-A, our TP-Functions represent
a core component of our model that is intended to provide a
conceptual foundation to the constraints depicted in the use
case discussed in Section II. TP-Functions are expected to
provide a strong mapping between a given attribute defined
in an attribute family and a single security token defined in
a security token family. On the other hand, not all tokens in
a given security token family are expected to be originated
from an attribute through a given TP-Function. Fig. 3 shows a
representation of a pair of TP-Functions mapping attributes
from the attribute family identified by fam-a(a) to security
tokens in the token families fam-t(t) (TPFy) and fam-t(¢’)
(TPF,). Fig. 3 illustrates two interesting properties of our
proposed TP-Functions: first, TP-Functions are said to be non-
injectivel, as two or more elements from a TP-Function input
set (domain) may be mapped to the same element in the output
set (codomain). As an example, consider the case of attributes
a; and a,, from the attribute family fam-a(a), shown in Fig.
3, which are both mapped to the same element #; in fam-t(t)
by TPF;. Second, TP-Functions are said to be non—surjectivez,
as none of elements in the output (codomain) set are required
to have a corresponding element in the input (domain) set. As
an example, Fig. 3 shows the security token #3 belonging to
the fam-t(¢) family has no originating attribute from fam-a(a)
by TPF;.

Definition 5: A token-provisioning function (TP-Function)
is a non-bijective as well as non-surjective, mapping sets of
attribute families and security token families to security token
families.

The combination of families of attributes and security
tokens as an input to TP-Functions can be achieved by taking
the cartesian product of all the families involved. Moreover,
as depicted in Section III-A, security tokens are associated
with access rights (permissions) by means of the PA relation.
As shown in Fig. 3, TP-Functions can be chained together
to produce a graph-like structure showing how attributes and
security tokens are used to produce security tokens. Such a
structure is defined as follows:

IA function f: A — B is said to be injective or one-to-one, if V a, a’ € A,
fla) # f@).

2A function f: A — B is said to be surjective or onto, it Vb € B, 3a €
A, f(a) = b.

fam-a(a) fam-i(t)

fam-f{t’)

readFilePermission

Fig. 3.  An example of TP-Functions, token families and an associated
permission.

Definition 6: A token-provisioning graph (TP-Graph) is a
directed, weakly connected, and possibly cyclic graph, whose
vertices (nodes) represent either families of attributes or fam-
ilies of security tokens, and its edges (arcs) represents token-
provisioning functions (TP-Functions).

TP-Graphs are directed, since TP-Functions represent uni-
directional edges due to their nature. Moreover, TP-Graphs are
also weakly connected, as there is no requirement for all nodes
(families) to be connected to each other. Finally, TP-Graphs
are also possibly cyclic. Leveraging this definition, security
tokens are obtained by traversing a given TP-Graph. Fig. 3
shows an example of a TP-Graph that has been annotated with
a permission, which is in turn associated with a given security
token #1. The process of granting the depicted readFilePer-
mission is summarized as follows: at runtime, the access
control entities involved in the request must exhibit attributes
a; and as. An attribute a; is turn into the security token #;
by means of the TPF; function. Token f#;, in combination
with attribute a; (from family fam-a(a)) is also turned into
the security token 7’1, which is related to the aforementioned
readFilePermission by means of an entry in the PA relation.
As explained in Section III-A, a permission is granted if a
requesting actor is able to provision a token that is associated
with the PA relation. Following Definition 6, security tokens
are provisioned by traversing a TP-Graph. Besides providing
a stronger definition of the way security tokens are generated
within our model, TP-Graphs allow for the development of
security analysis techniques based on graph theory. Finally,
the process of applying TP-Functions to attributes/security
tokens (by traversing a given TP-Graph) is named as foken
provisioning. We also call the set of security tokens that
can be potentially provisioned from a TP-Graph as the roken
repository.

IV. EVALUATION
A. Case Study

In order to illustrate the access control model proposed
in Section III, we performed a case study with a document
management system (DMS). Such an application is intended
for end-users to store and share document files, e.g. text files,
pictures, etc., while still enforcing a set of access control rules
to protect the confidentiality and integrity of the documents
managed by the system. Users are allowed to upload docu-
ments into the system, in such a way documents are owned



by the user who uploaded them in the first place. Users are
also allowed to share documents they own with other users by
specifying the following access modes: read (R), write (W) and
execute (X). As an example, a user #; may share a document
d with another user u, by granting him/her the read access
mode. Therefore, us is allowed to inspect d, but not to change
its contents. In addition, three different categories of end-
users are defined, namely: Employee, Departmental Manager
and CEO. Users with the Employee category are grouped in
departments led by one or more users holding the Department
Manager category, which in turn oversee users with the CEO
category. The access control requirements for each category
are as follows:

e  Users with the Employee category share full access
privileges (RWX) only with their corresponding De-
partment Manager and the CEO by default.

e  Users with the Department Manager category share
full access privileges with the CEO as well, but not
with Employee .

e  Users with the CEO category share no access privi-
leges with any other users by default.

Finally, the access control privileges defined for document
owners remain intact despite the job category defined for a
given user. This case study shows a couple of interesting
features in terms of access control: first, it clearly depicts
an approach involving access control constraints based on
attributes. Second, derived from the aforementioned set of
access control requirements based on organizational jobs, an
access control model depicting the well-known role-based
access control (RBAC) [5] immediately comes to mind. How-
ever, as depicted in [6], applying attributes (along with their
corresponding access control constraints) to an RBAC setting
is not a straightforward task. With this in mind, our case study
presents an interesting alternative by leveraging an ABAC
setting modeled with the approach we have described in
previous sections.

Fig. 4 shows a representation of a model configuration
depicting our case study. The set of access control entities
includes the set of users of the DMS (actors), as well as all
the documents that are uploaded into the system (targets). The
operations include the ones described earlier and the set of
permissions is specified by relating the operations with the set
of documents uploaded to the DMS. Attributes can be grouped
into the following families: userID, jobCategory and deptID,
which are related to the set of users, and docID, ownerID
and sharingModes, which are related to documents. Families
of security tokens include userID, docID, deptID, jobCategory,
doclD, docID, ownerID and ownerDeptID, which are obtained
from processing the corresponding attributes by means of the
TP-Functions f1, fa, f3, f4, f5 and f7 respectively. In addition,
the families of security tokens shared-Owner, shared-Dept-
Manager, shared-CEO and shared represent the set of security
states in the DMS where permissions can be safely granted,
and are produced by functions f¢, fs, f9 and f1g9, which
derive the access control constraints for our case study. As
an example, the TP-Function identified by fg compares the
security tokens userID and ownerID then returns the shared-
Owner if their value components match. Otherwise, an empty
security token is returned. If the shared-Owner is provisioned

fam-a fam-t fam-t
(jobCategory) (jobCategory) (sharedCEO)

fam-a fam-t fam-t fam-t
(deptiD) (deptiD) (shared-Dept-Manager) ~ (ownerDeptiD)

f7 fmt fam-a
(ownerlD) (ownerlD)

fam-a
(userlD)

fam-a
(docID)

fam-t
(docID)

fam-t
(shared)

fam-a
(sharingModes)

Fig. 4.
study.

A TP-Graph created from the TP-Functions depicted in our case

by a requesting actor, the associated permission parr, which
allows complete access to a document within the DMS, is
granted as a result. A similar convention is applied in the
definition of all other TP-Functions within our case study.

B. Comparison with Existing Approaches

This section describes a brief comparison of our approach
with existing approaches in the literature. We first articulate
a comparison criteria based on the characteristics of ABAC:
first, as we aim to provide a definition of the main ABAC
component attributes, we check how this important component
has been defined and considered in other existing approaches.
Next, we explore the support offered by existing approaches
in specifying access control constraints based on the concept
of attributes, which we have described in Sections III-A and
III-D. Following with the same idea, we also compare our
approach with existing ones with respect to the definition
of the overall access control model. Next, we explore the
support for the notion of security state (Sections III-A and
II-C) offered by the literature, in such a way a relationship
between attributes and access rights are properly identified.
Finally, as our approach is intended to be independent in terms
of the supporting methodology, as described in Section III-A,
we determine whether such a feature has been provided by
other approaches. Using this comparison criteria, we examine
existing approaches in the literature: one of the initial attempts
in defining ABAC was proposed by Wang et al. [1], who
explored the use of logic programming and computable set
theory for modeling the main features of ABAC, taking into
account a web-based context. Our work depicts a similar
approach by proposing the evaluation of attributes through
functions, but does not depend on any particular supporting
methodology for its implementation. Another approach was
presented by Yuan et al. [2], who explored the use of ABAC
for the specification of access control policies for web services.
Their approach, while providing no formal definition of ABAC,
depicts useful use cases that have influenced the ones described
in Section II. Moreover, Priebe et al. [7] presented an approach
leveraging the concepts of ontologies and the semantic web
in order to formalize the notion of ABAC. Another approach
leveraging the concept of the semantic web for ABAC include
the one of Cirio et al. [8], who provide a model definition
including attribute-based constraints. The work of Zhu and



TABLE 1. A COMPARISON WITH EXISTING APPROACHES FOR ABAC.

Paper | Attributes Constraints Model Def. Sec. State Independence
[ Y N v x x
[2] X X X X
[13] v x N N v
[11] v X X X X
[7] X X 4 X X
[8] X Vv Vv X X
[10] IV Vv X X X
[9] 4 X X X X
3] vV Vv X X X
[14] x x x W x
[15] X X 4 X X
[12] N x V] x W
Ours v v v v v

Smari [9] [3] has provided a definition of both attributes
and attribute-based access control constraints tailored for sup-
porting collaborative software systems. In the context of grid
computing, the approach presented by Lang et al. [10] also
provided an ABAC model mostly focused on the definition
of attributes and the access control constraints. An approach
close to ours was introduced by Covington and Sastry [11],
who presented contextual attribute access control (CABAC)
model which was realized in mobile applications. However,
our approach takes a step further by describing the way
such attributes are mapped to access rights (permissions) by
means of TP-Functions and TP-Graphs. Recently, a noticeable
approach was proposed by Jin et al. [12], whose approach is
intended to formalize a series of ABAC model families. In ad-
dition, the relationship between ABAC and other well-known
access control models was explored. We have been influenced
by this paper with respect to the definition of attributes as
described in Section III-B. However, our approach introduces
a notion of security token and TP-Functions to capture the
mapping between attributes and corresponding access rights.
Finally, another interesting approach was presented by Zhang
et al.[13], who presented their attribute-based access control
matrix, which extends classical theory in the field of access
control to accommodate attributes as well as the notion of
security state. However, it provides no definition for attribute-
based constraints, which is considered in our approach by
means of the proposed TP-Functions and TP-Graphs. Table
I summarizes our findings and comparison results.

V. CONCLUDING REMARKS

In this paper, we have presented a model for ABAC and
introduced a novel approach based on the concept of security
tokens for establishing an association between attributes and
access rights. Moreover, we have presented a case study
depicting a set of interesting access control features, as well as
an empirical comparison with existing approaches in the liter-
ature, which show our proposed model constitutes a promising
result and is suitable for supporting security properties of
collaborative systems and applications. Our future work will
focus on the following enhancements: first, we aim to provide
both a reference model and prototype testbed along with
more realistic experiments. Second, we plan to explore how
security tokens can be leveraged to model any security states
in software and systems. As an example, our TP-Graphs may

be used to model the set of states as a security automata as
depicted in [16]. Third, we plan to develop a suitable language
to specify access control policies based on our model.

VI. ACKNOWLEDGMENT

This work was partially supported by the grant from US
Department of Energy (DE-SC0004308) and by the graduate
fellowship from Mexico CONACYT (210775).

REFERENCES

[1] L. Wang, D. Wijesekera, and S. Jajodia, “A logic-based framework
for attribute based access control,” in Proceedings of the 2004 ACM
workshop on Formal methods in security engineering, ser. FMSE *04.
New York, NY, USA: ACM, 2004, pp. 45-55.

[2] E. Yuan and J. Tong, “Attributed based access control (abac) for web
services,” in Proceedings of the IEEE International Conference on Web
Services, ser. ICWS ’05.  Washington, DC, USA: IEEE Computer
Society, 2005, pp. 561-569.

[3] W. W. Smari, J. Zhu, and P. Clemente, “Trust and privacy in attribute
based access control for collaboration environments,” in Proceedings
of the 11th International Conference on Information Integration and
Web-based Applications & Services, ser. iiWAS ’09. New York, NY,
USA: ACM, 2009, pp. 49-55.

[4] G. Stoneburner, A. Y. Goguen, and A. Feringa, “Sp 800-30. risk
management guide for information technology systems,” Gaithersburg,
MD, United States, Tech. Rep., 2002.

[5] R.S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 3847, Feb.
1996.

[6] D. R. Kuhn, E. J. Coyne, and T. R. Weil, “Adding attributes to role-
based access control,” Computer, vol. 43, no. 6, pp. 79-81, Jun. 2010.

[7]1 T. Priebe, W. Dobmeier, and N. Kamprath, “Supporting attribute-based
access control with ontologies,” in Proceedings of the First International
Conference on Availability, Reliability and Security, ser. ARES ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 465-472.

[8] L. Cirio, I. F. Cruz, and R. Tamassia, “A role and attribute based access
control system using semantic web technologies,” in Proceedings of the
2007 OTM Confederated international conference on On the move to
meaningful internet systems - Volume Part II, ser. OTM’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 1256-1266.

[9] J. Zhu and W. Smari, “Attribute based access control and security for
collaboration environments,” in Aerospace and Electronics Conference,
2008. NAECON 2008. IEEE National, 2008, pp. 31-35.

[10] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman,
“A flexible attribute based access control method for grid computing,”
Journal of Grid Computing, vol. 7, no. 2, pp. 169-180, 2009.

[11] M. J. Covington and M. R. Sastry, “A contextual attribute-based access
control model,” in Proceedings of the 2006 international conference
on On the Move to Meaningful Internet Systems: AWeSOMe, CAMS,
COMINE, IS, KSinBIT, MIOS-CIAO, MONET - Volume Part I, ser.
OTM’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 1996-2006.

[12] X. Jin, R. Krishnan, and R. Sandhu, “A unified attribute-based access
control model covering dac, mac and rbac,” in Proceedings of the 26th
Annual IFIP WG 11.3 conference on Data and Applications Security
and Privacy, ser. DBSec’12. Berlin, Heidelberg: Springer-Verlag, 2012,
pp. 41-55.

[13] X.Zhang, Y. Li, and D. Nalla, “An attribute-based access matrix model,”
in Proceedings of the 2005 ACM symposium on Applied computing, ser.
SAC ’05. New York, NY, USA: ACM, 2005, pp. 359-363.

[14] H. Shen, “A semantic-aware attribute-based access control model for
web services,” in Proceedings of the 9th International Conference on
Algorithms and Architectures for Parallel Processing, ser. ICA3PP *09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 693-703.

[15] Y. Wei, C. Shi, and W. Shao, “An attribute and role based access control
model for service-oriented environment,” in Control and Decision
Conference (CCDC), 2010 Chinese, 2010, pp. 4451-4455.

[16] F. B. Schneider, “Enforceable security policies,” ACM Trans. Inf. Syst.
Secur., vol. 3, no. 1, pp. 30-50, Feb. 2000.



