
Towards Multi-policy Support for IaaS Clouds to
Secure Data Sharing

Ying Fairweather
Computer Science Department

New Mexico Institute of Mining and Technology
Socorro, NM USA
ywa01@nmt.edu

Dongwan Shin
Computer Science Department

New Mexico Institute of Mining and Technology
Socorro, NM USA
doshin@nmt.edu

Abstract—Infrastructure as a service (IaaS) is a cloud service
model that provides storage and computation services for users at
a low price. A recent report from Gartner indicates that IaaS will
be the fastest growing area among all of the cloud service models
in the near future, and thus it is strongly envisioned that multiple
companies will use IaaS clouds to share information among them.
However, the current access control mechanisms in IaaS
platforms do not have the ability to enable flexible data sharing
among companies while addressing security problems such as
information and privacy leaking. In this paper, we propose two
IaaS cloud reference architectures that enforce cloud-level
Chinese Wall security (CWS) policy to prevent information
leaking among companies. The new architectures are also able to
support customized domain level access control policies such as
role-based access control (RBAC), privacy-preserving
information retrieval, and single sign on (SSO). The reference
architectures were implemented using Eucalyptus and its data
storage service called Walrus; therefore, our approach can also
be applied to commercial clouds like Amazon S3. The result of
performance analysis has shown that our architectures are
feasible, scalable, and efficient.

Keywords-Infrastructure as a service (IaaS); Access Control;
Chinese Wall Security Policy; Identity Management; Secure
Information Retrieval

I. INTRODUCTION
Cloud computing promotes the availability of computing

resources, which can be rapidly provisioned and released with
minimal management effort or service provider interaction [1].
Infrastructure as a Service (IaaS) is a service model of cloud
computing that provides users with infrastructure services such
as computation and data storage. In 2010, a research report
from Cisco forcasted that the service revenues from IaaS would
be $15.6 billion in 2013, out of $35.4 billion from all types of
cloud services [2]. A recent report from Gartner confirmed the
growing interest and importance of IaaS with a confidence that
IaaS would be the fastest growing cloud service model in 3
years [3].

IaaS is an ideal solution for small and medium sized
businesses and companies, considering that the cost of cloud
storage is much lower compared to the cost of purchasing
physical storage. Hence, those companies have shown keen
interest in storing their resources in clouds and it is strongly
envisioned that they will use IaaS clouds to share information

among them as well. When multiple companies are involved in
sharing data for collaboration, simple access control
mechanisms like Access Control Lists (ACLs) are not
sufficient. Various issues like conflict of interest (COI) among
companies and the user privacy and identity control in a cross-
domain environment should also be taken into consideration
when access control services are designed for IaaS clouds.
However, popular IaaS providers like Amazon and Microsoft
currently fail to provide such mechanisms [4][5][6]. Therefore,
there is an urgent need for a more sophisticated IaaS
authorization model that allows for secure information sharing
among companies.

In this paper, we propose two IaaS cloud reference
architectures that aim at a higher security level in the cloud. We
propose to employ the concept of domain and Chinese Wall
Security Policy (CWSP) to the architectures and a popular
open-source IaaS cloud platform, Eucalyptus [7], is extended to
implement those two architectures. Our main goals include
flexible and secure information sharing between companies,
protecting users' privacy, and reducing cloud/database
administrator’ privilege to mitigate admin-based insider
attacks.

A. Motivation Examples
To demonstrate that our approach is applicable to real-

world problems, we will start by describing two scenarios.

Scenario 1: Alice is the owner of a financial consulting
company, BestFinance. In BestFinance there are 1000
consultants working for 10000 companies. Each company has
an individual physical machine that stores a tremendous
amount of data, some of which are top secrets. Due to CWSP,
one consultant cannot work for two companies that have a
conflict of interest (COI). To enforce this policy, a system
administrator is hired to manage the access rights of
consultants. Customer companies' COI properties and a track of
consultants' access history are stored in the database.

When a consultant requests information of a customer
company, the system administrator retrieves the company's
COI property and the consultant's access history from the
database. He will grant access to the consultant if there is no
violation of CWSP. The system administrator will also update
the consultant's access history in the database immediately.

This work was partially supported at the Secure Computing Laboratory at
New Mexico Tech by the grant from the National Science Foundation (NSF-
IIS-0916875).

 COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254127

As the number of customers increases, the maintenance of
the machines is becoming more costly. Alice also heard about
admin-based insider attacks, when administrators take
advantage of their privileges and leak data to competitor
companies. Some customers suggested having their own policy
in which they can further control consultants’ access of their
files. So Alice is looking for a solution that provides lower
cost, mandatory access control based on COI, flexible
company-based policies, as well as higher security against
insider attacks.

Scenario 2: Bob is a cloud service provider for millions of
companies from all over the world. It is unavoidable to store
several companies' files on the same physical machine. He has
a good size of cloud administrators doing periodic
maintenance, which involves accessing files of each customer
company. To avoid possible information leaking caused by
administrators, he assigns each administrator some companies
that do not have a conflict of interest, and gives them access to
the specific companies' data.

At the same time, some companies want to share
information with users' from partner companies, but they do
not want to create a user account for each company. He is
looking for a solution that automatically prevents information
leaking caused by cloud administrators and supports flexible
information sharing between companies in the cloud.

We believe that what Alice and Bob need is a cloud service
model which protects users from admin-based insider attacks
and supports flexible information sharing between
companies/users while maintaining the necessary security level
by applying cloud and company level access control policies.

B. Contributions and Organizations
In this paper, we propose two feasible IaaS cloud reference

architectures, one with centralized identity management and the
other with decentralized identity management. The CWSP is
enforced on both architectures to support secure information
sharing at a company-to-company level. The new architectures
feature company domains in the cloud, flexible company-
defined access control on the domain level, privacy-preserving
information retrieval, Single Sign On (SSO), user-friendly web
interfaces, and protection against admin-based insider attacks.

Our contributions in this paper are as follows: first, we
combined cloud level CWSP and company level policies like
RBAC. This provides a fine-grained access control mechanism
that is more applicable for information sharing among multiple
companies. To the best of our knowledge it is the first attempt
to combine these two types of policies in an IaaS model.
Second, by managing the user identities with SSO and using a
privacy-preserving component, we protect the user’s sensitive
information from leaking to untrusted parties and database
admins. Fourth, by having CWSP based access control and the
privacy-preserving component, we reduced admins' privileges
thus mitigating the risk of an admin-based insider attacks.

The rest of the paper is organized as follows. Section 2
discusses background and related work. Section 3 describes the
features and design of our approach, including the architectures
of two models and their workflow. Section 4 presents the

implementation of the two reference architectures using
Eucalyptus and analyzes the performance of the implemented
architectures. Section 5 concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Eucalyptus and Access Control in IaaS
Eucalyptus is a cloud platform that is equivalent to

Amazon's commercial cloud services such as Elastic Compute
Cloud (EC2) and Simple Storage Service (S3) [7].

In this paper we used an open-source version of Eucalyptus
for a proof-of-concept implementation and extended for our
purposes. There are five major components in Eucalyptus:

• Cloud Controller (CLC): The entry-point of the
Eucalyptus cloud. It handles user request from an
Amazon EC2 compatible command line tool, as well as
a web interface. The original web interface is mostly
meant for administration purposes. Our modification is
mostly made on this component.

• Walrus: The component where user data are
persistently stored. In this paper we are interested in
the data stored in Walrus, other than computation
resources like Virtual Machines (VMs). This
component is equivalent to Amazon S3.

• Cluster Controller (CC): Responsible for computing
nodes scheduling and network control within the
cluster.

• Storage Controller (SC): Controls blocked-based
storage, equivalent to Amazon ESB.

• Node Controller (NC): Controls VM related activities.

Role-based access control (RBAC) is one of the most
popular access control policies for computer systems. Shin et
al. discussed how to inject RBAC supports into IaaS clouds and
used Eucalyptus as a proof-of-concept implementation example
for their approach called dCloud. The dCloud supports the
concept of domains, enabling the easy establishment of private
IaaS clouds within a public cloud such as Amazon EC2 [8]. In
dClound, each of the domains is able to manage its own
security policy including RBAC. Our approach is based on and
extends dCloud. Tsai also proposed to apply RBAC in the
cloud platforms but with emphasis on how to efficiently build
the role hierarchy [9].

Discretionary access control policies are also proposed for
cloud platforms, and they require the data owner to either
attach an ACL for each file [10] or define an access structure
for each user [11]. Most of the popular IaaS providers like
Amazon, Google, and Microsoft use ACLs. Google also
supports a signed URL, which provides “valet-key” type access
for anonymous users. Amazon and Microsoft allow users to
control the access right based on groups, but none of them
provides a finer-grained access control mechanism that takes
COI into consideration. In addition, all the existing
implementations apply a single access control mechanism at a
cloud level or a domain level, but not both.

B. Chinese Wall Security Polices
The Chinese Wall Security Policy was first introduced in

1989 [12]. The mathematical foundation and an enforcement
mechanism were proposed for this well-known commercial
security model that has attracted a lot of interest from computer
security communities thereafter. Later, Lin argued that the
notion of COI classes by Brewer and Nash is only applicable to
the very specific circumstance (for instance, when A has a
conflict of interest with both B and C, B and C must have a
conflict of interest), claiming it to be conservative when it
comes to generalized applications [13]. Therefore, he proposed
an aggressive CWSP model that can be applied to general
applications, where the COI relationship is not transitive
among entities. Subsequently, Sandhu proposed that one object
should be able to be associated with different datasets within
different COI classes [14][15]. The generalization of the
original Brewer-Nash model was also discussed in [16].

In recent years, the interest of the CWSP has been drawn to
the cloud computing environments. A centralized control
mechanism based on the CWSP was proposed to eliminate
inter-VM attacks in [17]. In their approach, they used the
CWSP and graph theory to achieve the physical isolation of
VMs owned by companies that have a conflict of interest.
Similarly, [18] enforced the CWSP on IaaS to ensure that a
user cannot run two VMs that are in different COI classes. The
CWSP has also been applied to software as a service (SaaS)
and platform as a service (PaaS) cloud models in [19] and [20].
None of the above targeted the data storage in IaaS, which we
believe is more interesting to attackers.

C. Secure Information Retrieval
Users’ sensitive data such as credentials and access history

must be protected. This type of information is usually stored in
a database as plaintext. CryptDB is a database proxy developed
by MIT CSAIL [21]. It takes plain SQL queries from users and
uses several encryption algorithms to encrypt data and store
them in the database. When CryptDB receives a SQL query, it
retrieves the encrypted data and sends back the decrypted data.
In this way, a database administrator cannot get any useful data
by looking at the tables.

In our approach we do not need complex SQL queries, so a
simplified secure information retrieval module is used. Since
the information retrieval is also done in the user’s trusted party,
an untrusted third party can never obtain the sensitive
information. The encryption of data in the cloud was also
discussed in [22] and [23], but since we already have an access
control mechanism on the data, the encryption is trivial.

D. Insider Attacks
An insider attack happens when users with privileges in the

system decide to exploit the privileges and perform malicious
tasks. Among all types of insider attacks, admin-based insider
attacks are considered the worst since they exploit the
administrative privileges. Several methods were proposed to
detect an insider attack [24] [25], but reducing the probability
of such an attack is more effective. Bleikertz el al. introduced a
solution to prevent admin-based insider attacks during

maintenance by assigning them different levels of privileges
and using separation-of-duty [26].

In our approach, we address this type of attack using a
CWSP that controls administrator’s access activity and a secure
information retrieval module that reduces administrator’s
privileges on the database. In reality there could be many
different types of admin-based attacks. Hence, we limit our
solution for a specific type, which is caused by exploiting the
administrative privileges to access data in the cloud storage.

III. OUR APPROACH
In order to support secure data sharing in clouds, we

propose two IaaS cloud reference architectures, centralized and
decentralized ones, in this section.

A. Domains and Identity Management
Our new architectures adopt the concept of domain from

dCloud [8]. Each company in the cloud has its own domain.
Every domain has an interface to provide access to the data that
belong to the domain and also a database to store the
information about the resources and policies of the domain. For
the ease of database management, the database should be
hosted by each company directly and is accessible by the
domain’s interface.

In the rest of the paper, we will use the following
definitions:

• Home domain: the domain to which the user belongs.

• Identity provider: the domain/cloud where the user’s
identity is stored. In a centralized architecture, this is
the cloud, and in a decentralized architecture, this is the
same as the user’s home domain.

• Service provider domain: a domain from which the
user wants to access data.

• Collaboration domain: a domain with which the
service provider domain wishes to share information.

When a user of domain A wants to access data located at
the service provider domain B, the domain B will have to
verify the user’s identity first. It is by no means necessary or
safe for the user to reveal his/her credentials to a third party.
Alternatively, the user can register a new account with all of
the service provider domains. This solution works well when
the number of service provider domains in the cloud is small,
but will cause many management and security issues when the
number of service provider domains rapidly grows. In order to
address this concern, we adopted a SSO solution based on the
existing trust relationships in the cloud:

• The users trust the cloud. Their credentials and access
history are stored in the cloud. This is a common trust
relationship for cloud platforms such as Amazon or
Google.

• The users trust their home domains. Their credentials
and access history are stored in the home domain.

Figure 1. Circle of trust

• The service provider domains trust the cloud. They are
storing their confidential data in the cloud. This is also
a common trust relationship witnessed often in the
federated identity management (FIM) solutions.

• The service provider domain trusts the collaboration
domains. They are sharing their confidential data with
the collaboration domains.

Based on the four trust relationships above, we can infer
that a user is willing to appeal their credentials to the cloud and
home domain, and a service provider domain trusts the
authentication and access control decisions made by the cloud
or a collaboration domain. The user’s home domain, and all the
service provider domains that treat this home domain as a
collaboration domain form a circle of trust.

Fig. 1 shows the circles of trust in an IaaS service cloud.
The expanded circle on top shows the centralized architecture.
The cloud is trusted by all the domains inside the cloud. We
designed a COI module as the CWSP enforcement mechanism
and an openID module for authentication. The bottom circle is
in the decentralized architecture. The user’s home domain,
which takes care of both the CWSP enforcement and
authentication, is trusted by the service provider domains.

In our approach, users only need to authenticate themselves
to the cloud or their home domain. After the authentication and
CWSP related access control, a token will be issued for the user
and sent to the service provider domain. The token contains
essential information about the request, and is signed by the
sender to guarantee its integrity and non-repudiation. Upon
successful verification of the token, the service provider
domain will display available resources to the user.

Besides credentials, there are also other sensitive
information that a user may not want to share, i.e., the user’s
access history. The cloud COI module and the home domain’s
web UI also work as a privacy-preserving component that
supports secure information retrieval. All the information
related to users will be encrypted and stored in the database.
The component only displays the decisions made based on that
information, rather than exposing it directly to a third party. In
this case, no admins or third parties can have access to the
actual information, thus the users’ privacy is protected.

B. Access Control and Security
On a normal IaaS platform, the data owner defines the

access control policies on the data and grants the access to
individuals and groups. This traditional access control
mechanism is suitable for the one-to-one and one-to-N type
information sharing, but is not scalable.

As the scale of information sharing grows, a potential
problem arises when some datasets conflict with each other in
interest. For instance, data owner A may be sharing data with
consultant B, without knowing that her competitor C is also
sharing data with B. When B has access to data from both
sides, a conflict of interest happens. Since the traditional IaaS
model lacks protection of such situations, users have to be
worried about possible information leaking.

In our new architectures, companies are still allowed to have
controls on their own data. But to protect against information
leaking, we need to add an upper lever access control
mechanism that monitors the access activities in the whole
cloud. This finer-grained access control mechanism leverages
the CWSP model proposed by Brewer and Nash [12].

By adopting the domain concept, the users and data in the
cloud are already grouped into domains based on the company
they belong to. To apply the CWSP, we need to further
categorize these domains into COI classes based on the
company’s functionality. Companies that make profits in the
same area will fall into the same COI class, like Bank of
America and Wells Fargo.

A user in the cloud can be represented as a tuple U = [O, C,
H, R], and a data resource can be represented as D = [O, C, T]
where:

• O is the home domain of the user/data.

• C is the COI attribute of the user/data. This attribute is
inherited from O.

• H = {O1, C1, O2, …} is the access history of U. It’s a
finite set of Os and Cs.

• R = {R1, R2, …} is a finite set of roles that are assigned
to U, where each Ri is a set of permissions associated
with the role: {P1, P2, P3, …}. To simplify the concept,
we will treat R as a N x M matrix that represents the
user’s access right on a finite set of data.

• T = {O1, O2, … } is a finite set of trusted domains for
D.

• U → D would mean that U could access D.

Since we use two levels of access control, the cloud level
CWSP mechanism can only make decisions about whether the
user should be able to connect to the service provider domain’s
interface with a generated token. The service provider domain
will not recognize any token that came from a domain not
included in the collaboration domain set, or a token that was
tampered with.

DEFINITION 1 (Circle of Trust): To access the data, the
user has to belong to a domain that is trusted by the data
resource’s home domain.

 OU ∈ TD (1)

Brewer and Nash’s rule claims that this access is only
granted if [12]:

• The data requested is in the same company dataset as
another data object that has been accessed by the user
before.

Or

• The data requested belongs to a COI class in which
none of the domains has been accessed by the user
before.

DEFINITION 2 (Chinese Wall Security Policy): To access
the data, the user’s access history must satisfy Brewer and
Nash’s rule.

 OD ∈ HU || CD ∉ HU (2)

After the user passes the CWSP access control mechanism,
they will be able to access the data if they have the access
permission. The domain level access control policies are
managed by the home domain of the data. We use one of the
popular access control policies, RBAC, as the domain level
policy.

DEFINITION 3 (RBAC): To access the data, the user has
to obtain the access permission on the data first. We can denote
the user’s access permission on the data D, which is an entry in
a matrix that contains all data resources, as: RU × D.

 RU × D = 1 (3)

In conclusion, a user U can access a data resource D if and
only if all the three formulas above are satisfied.

U → D iff (OU ∈ TD) & (OD ∈ HU || CD ∉ HU) & (RU × D = 1)
 (4)

In the centralized architecture, the COI information of each
company is managed by cloud admins. While in the
decentralized architecture, such information is managed by
domain admins from each domain that serves as an Identity
Provider. The classification of companies into COI classes is
based on what area a company makes profits in and what
companies it has a conflict of interest with, and should be
agreed among all the companies in the cloud. The domain level
access control policies are managed by domain admins from
each domain that serves as a Service Provider.

In addition, cloud admins are also grouped into the default
“cloud” domain. It is not a domain that is associated with a
company, but just a virtual domain that does not conflict with
any companies in the cloud. We also gain the benefit of
tracking and controlling admins’ access activities.

By employing the CWSP and the secure information
retrieval component, the admins’ privileges are reduced, so is
the risk of an admin-based insider attack.

C. System Architecture and Work Flow
Fig. 2 shows the system architecture. Both architectures

have a database that stores the user’s access history, an
authentication module to verify the user’s identity, and a COI
module to check the user’s access history and generate COI
tokens for the user. The only difference is, in the centralized
architecture, the cloud is the only party that can work as an
identity provider (only one circle of trust); in the decentralized
architecture, every home domain is an identity provider
(multiple circles of trust).

We also modified the authentication module in the
centralized architecture to an openID-supported module within
the cloud. This module can be easily replaced with popular
openID providers such as Google and Microsoft. The database
where the user credentials are stored and the modules inside the
service provider domain are not shown in the figure.

Here we take Alice’s consulting company as an example,
the typical workflow described in Fig. 2 is:

Figure 2. Architecture of the two IaaS cloud reference architectures (left: centralized, right: decentralized). The centralized architecture also shows the work flow
when a user tries to access data from gasA domain.

1) The user connects to the cloud web UI.
2) The authentication is handled by the cloud openID

component.
3) The openID component sends back the result.
4) Upon successful authentication, the cloud UI consults

the cloud COI component about what domains this user should
have access permissions to.

5) The COI component queries the database.
6) The encrypted user data is sent back from the database.
7) Based on the access history, the COI component sends

back a list of domains that the user should have access
permissions to. These domains are displayed to the user.

8) The user browses the list and picks the domain they
want to access.

9) The cloud UI sends the information about the request to
the COI component.

10) The COI component generates a signed token for the
user and updates the user access history in the database. The
user is redirected to the service provider domain.

11) The service provider domain verifies the token that
came with the user. If the token is from a trusted domain, is
original, and hasn’t expired, the service provider domain UI
will display a list of the data resources in the domain.

12) The user browses the resource list and picks the data
resource they want to access.

13) The service provider domain UI checks the user’s
permissions. If the user has access permissions on the requested
data resource, it will be returned to the user.

In the decentralized architecture, the cloud UI is replaced
by the home domain UI, and a normal authentication
component takes the place of the openID module.

IV. SYSTEM IMPLEMENTATION AND PERFORMANCE
ANALYSIS

We implemented two IaaS cloud reference architectures
that have the functionalities described in the last section using
Eucalyptus and conducted performance analysis to check the
feasibility of the architectures. The analysis proved that our
approach is efficient, feasible, and scalable.

A. Implementation
We implemented our approach using Eucalyptus 1.6.2. In

our centralized architecture, all users belong to the cloud.
Therefore, they need to go through the Eucalyptus web UI to
access data from domains. The user information needed for
authentication and access control is also stored in the cloud.
We provide normal users and admins with different
functionality. The interface for normal users contains only the
basic information that a user needs. A user can browse the
service provider domains that are open to them and choose one
to access, as shown in Fig. 4. The admin interface enables more
complex tasks such as managing domains and users, as shown
in Fig. 3.

In the decentralized architecture, the users are assigned to
the domains they actually belong to. The domain web UI will
only take care of the users within the domain. There is no
modification to the original Eucalyptus cloud. The web UIs for
home domains are standalone web applications that were
written in Java. Due to the similarities of the two UIs, we are
not showing the UI for the home domain in this paper.

We also built Java based web UIs for the service provider
domains. Instead of the web UIs hosted directly in the cloud,
VM images were made for each UI. To enable the interface of
a service provider domain, we simply run a VM instance with
the specific VM image that has the required web UI. In this
way, the shut down and removal of a web UI becomes easy.

Figure 3. The modified Eucalyptus web UI in the centralized architecture. The logged in user is a cloud admin.

We used MySQL database to store some of the user
information and all of the domain level policies. The sensitive
user information is digested by SHA-256 algorithm. In the
centralized architecture, we modified the table structure in
Hibernate to store the user information. A COI token generated
by home domains contains the user’s username, the home
domain, the service provider domain, the user’s IP and the
expiration time. We used a 1024-bit RSA key pair. The
information contained by the token is digested using SHA-256
algorithm, signed by the home domain’s private key, and then
appended to the token.

The domain level access control we used is RBAC. Since
RBAC is not our focus in this project, we didn’t use
complicated role structures. Within each service provider
domain, a user has only one role, which has permissions on a
few data resources. When our architecture is applied to the real
world, it is totally the company’s freedom to choose whichever
access control policy benefits them the most.

The openID module in the centralized architecture is only a
demonstration about how openID protocol can be applied to
our architecture [33]. The openID component is currently a
module inside the cloud, it can also be replaced with the
openID services provided by industry players. In the
decentralized architecture, we only used a traditional
username/password authentication method.

B. Testbed Setup
For the testbed setup, we used 2 physical machines and 6

virtual machines. The two physical machines have the
following configurations: Intel Pentium 4 3 GHz, 76GB
storage, 4GB RAM and 100 Mbit Ethernet. One of them is

used to run the CLC (which includes the web UI), Walrus, SC,
CC components of Eucalyptus, the other is hosting the
decentralized home domain web UI for domain IdP1. The 6
virtual machines are managed by Virtual Box [34]. Each of the
virtual machines has the configuration of 50GB storage, 2GB
RAM and 100 Mbit Ethernet.

To test the feasibility of our architectures, we created 6
service provider domains belonging to 3 COI classes: Bank Of
America domain and Wells Fargo domain in the BANK COI
class, Shell domain and Chevron domain in the GAS COI class,
and Smith’s domain and Walmart domain in the GROCERY
COI class. Each domain’s web UI is hosted on a separate VM.

We also created 6 users that each belongs to one of the
above domains. If the CWSP mechanism works correctly, a
new user should be able to see all the other domains that does
not conflict with his/her home domain in the “Available
Domains” tab; and whenever the user chooses to access a
domain that belongs to a COI class he/she never accessed
before, the available domains will be updated next time he goes
to the home domain web UI. We expect all the domains that
have a conflict of interest with the user’s home domain or the
domains in the user’s access history to disappear from the
“Available Domains” tab.

In the test, we assigned each of the users a different set of
domains that he/she would visit and observed the change of
their available domains. From Fig. 3, we can see that there are
six service provider domains in the cloud. In Fig. 4, the left
side shows when the user “test6” first accessed the Eucalyptus
web UI, the “Available Domains” tab displayed all the domains
expect for Chevron, which has a conflict of interest with the
user’s home domain, Shell. We then made this user access the

Figure 4. The left side is the modified Eucalyptus web UI in the centralized architecture when the logged in user is a normal cloud user; The right side is the
updated “Available Domains” tab after the user accessed the Walmart domain.

domain Walmart. When the user came back to the Eucalyptus
web UI, the domain Smith, which has a conflict of interest with
the domain Walmart, disappeared.

The results of the test showed that both of the architectures
behave correctly when making decisions based on the CWSP.

C. Efficiency and Scalability
To calculate the overhead introduced by the new CWSP

mechanism, we compared the times taken over three different
architectures (the original Eucalyptus terminal commands, the
centralized architecture, and the decentralized architecture)
when the number of user increases from 1 to 10 to 100 and to
1000. We also broke the total processing time taken by each
architecture into four important parts: authentication, COI
checking, COI token generation and token validation. In this
way, we are comparing the time spent on the server side of
each architecture only, without worrying about the time
difference introduced by users’ typing speed and response time.

One of the 6 VMs was used to host the web UI of a service
provider domain, and the rest were used to generate concurrent
user requests. We used a Java program and the developer’s tool
on Chrome to measure the time for the whole operation.

As the number of user increases, the overall time of all the
three modules did not show dramatic changes. In the
centralized architecture, the time taken for COI checking was
slightly longer, due to the busy traffic for the database. But the
overall operation time when there were 1000 users was only
about 300ms longer than when there was only one user. This
shows that both of our architectures are scalable.

Fig. 5 shows the time taken by each of the four parts in
three architectures. The original Eucalyptus only has the
authentication part, and the decentralized architecture combines
the authentication and COI checking in one step. We can see

from the chart that most of the time taken in the centralized
architecture was actually due to other operations like loading
images and components of the web page. Neither of our
architectures introduced a big overhead.

V. DISSCUSION
Due to the limitation of time and hardware, the largest

amount of concurrent requests we tested was 1000. In the
future we would like to increase the number of concurrent
requests to find out the bottleneck of the new architectures, and
optimize them based on the results.

VI. CONCLUSION
The increasing popularity of cloud computing has brought

new challenges to the existing IaaS models. While the current
models are ideal for a small scale of information sharing, they
fail to provide the finer-grained access control mechanism that
can take care of the issues brought by large-scale information
sharing among companies. Conflict of interest is one of the
issues that can cause this problem.

In this paper, we proposed two IaaS cloud reference
architectures that can address this issue by applying the
Chinese Wall Security Policy at the cloud level. The new
architectures also feature the notion of domains in the cloud,
flexible company-defined access control on the domain level,
privacy-preserving information retrieval, Single Sign On, and
protection against admin-based insider attacks. We built a
proof-of-concept implementation and conducted a small scale
performance testing. The testing results showed that our
approach is feasible, efficient and scalable.

Figure 5. The time taken by each major components in the original
Eucalyptus and both architectures that we implemented. The unit is

Millisecond.

REFERENCES

[1] NIST, “NIST working definition of cloud computing,” unpublished.
[2] Cisco, “Infrustracture as a Service: accelarating time to profitable new

revenue streams, ” unpublished.
[3] Gartner, “Forecast overview: public cloud services, worldwide, 2011-

2016, 4Q12 update,” unpublished.
[4] Amazon EC2 and S3. http://aws.amazon.com/
[5] Google Drive. http://drive.google.com
[6] Microsoft Skydrive. http://skydrive.live.com
[7] Eucalyptus Open Source. http://www.eucalyptus.com/
[8] D. Shin, H. Akkan and W. Claycomb, “Towards role-based provisioning

and access control for Infrastructure as a Service (IaaS),” In Proceeding
of TrustCol 2010, 2010.

[9] W. Tsai, “Role-based access-control using reference ontology in
clouds,” in Proceedings of ISADS '11, 2011.

[10] S. Sanka, C. Hota and M. Rajarajan, “Secure data access in cloud
computing,” In Proceedings of IMSAA’10, 2010.

[11] S. Yu, C. Wang, K. Ren and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” In Proceedings of
INFOCOM'10, 2010.

[12] D.F.C. Brewer and M.J. Nash, "The Chinese Wall security policy," in
Proceedings of 1989 IEEE Symposium on Security and Privacy, 1989,
pp. 206-214.

[13] T.Y. Lin, "Chinese wall security policy-an aggressive model," in
Computer Security Applications Conference, 1989, pp.282-289.

[14] R.S. Sandhu, “Lattice-based enforcement of chinese walls,” Computers
& Security, 1992, pp.753–763.

[15] R.S. Sandhu. A lattice interpretation of the chinese wall policy,” in
Proceedings of the 15th National Computer Security Conference,
NISSC, 1992, pp. 221–235.

[16] V. Kessler, Jr, “On the Chinese Wall model,” in the Second European
Symposium on Research in Computer Security (ESORICS 92), 1992.

[17] T. Tsai, Y. Chen, H. Huang, P. Huang and K. Chou, "A practical
Chinese wall security model in cloud computing," in Network
Operations and Management Symposium (APNOMS), 2011, pp. 21-23.

[18] R. Wu, G. Ahn, H. Hu and M. Singhal, "Information flow control in
cloud computing," in 6th International Conference on Collaborative
Computing: Networking, Applications and Worksharing
(CollaborateCom), 2010, pp. 9-12.

[19] V. Gupta, “Chinese Wall security policy,” M.S. Thesis, San Jose State
University, San Jose, CA, 2009.

[20] Y. Hsiao and G. Hwang, "Implementing the Chinese Wall security
model in workflow management systems," in 2010 International
Symposium on Parallel and Distributed Processing with Applications
(ISPA), 2010, pp. 574-581.

[21] R.A. Popa, C.M.S. Redfield, N. Zeldovich and H. Balakrishnan,
“CryptDB: protecting confidentiality with encrypted query processing,”
in Proceedings of SOSP '11, 2011.

[22] S. Sanka, C. Hota and M. Rajarajan, “Secure data access in cloud
computing,” in Proceedings of IMSAA’10, 2010.

[23] S. Yu, C. Wang, K. Ren and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in Proceedings of
INFOCOM'10, 2010.

[24] V.B. Velpula and D. Gudipudi, “Behavior-anomaly-based system for
detecting insider attacks and data mining,” in International Journal of
Recent Trends in Engineering, 2009.

[25] A.H. Phyo and S.M. Furnell, “A detection-oriented classification of
insider IT misuse,” in Proceedings of the Third Security Conference,
2004.

[26] S. Bleikertz, A. Kurmus, Z. Nagy and M. Schunter, “Secure cloud
maintenance- protecting workloads against insider attacks,” in
Proceedings of ASIACCS 2012, 2012.

[27] OpenID. http://www.openid.net
[28] Virtual Box. https://www.virtualbox.org/

