
Robust and Fast Authentication of
Session Cookies in Collaborative and
Social Media Using Position-Indexed

Hashing
Amerah Alabrah

Department of Electrical Engineering and
Computer Science

University of Central Florida, Orlando, Florida
College of Computer and Information Sciences

King Saud University, Riyadh, Saudi Arabia
amerah@knights.ucf.edu

Mostafa Bassiouni
Department of Electrical Engineering and

Computer Science
University of Central Florida, Orlando, Florida

USA
bassi@cs.ucf.edu	

	

ABSTRACT—The use of insecure cookies as a means to
authenticate web transactions in collaborative and social
media websites presents a hazard to users’ privacy. In this
paper, we propose and evaluate a novel protocol for
protecting transmitted cookies using two dimensional one-way
hash chains. In the first dimension, there is a hash chain that
computes secret values used in the second dimension hash
function. Multiple hash chains use the secret values created by
the first dimension to authenticate session cookies in the
second dimension. For improved security, the hashing
operations in the second dimension use a concatenation of the
secret values and the position index of the hash function
within the hash chain. The performance of the scheme is
evaluated using a detailed simulation testbed and an analytical
model. The optimal lengths of the chains are derived when the
number of transactions in the session is known. The protocol
is extended to efficiently handle the case when the number of
transactions is not known. The evaluation of the proposed
scheme reveals that it achieves tremendous improvement over
straightforwardly configured one-way hash chain schemes.
Also, by adopting the position-indexed hashing protocol,
energy consumption is reduced significantly especially with
longer sessions making our protocol ideal for battery operated
devices.

Keywords: One-way hash chains, HTTPS,
Session cookies.

I. INTRODUCTION

Many collaborative websites and social media
networks utilize session cookies as a cheaper alternative to
the wide utilization of the secure HTTPS protocol. The
unprotected nature of cookies can compromise the
collaborative environment. Evidently, the availability of
social networks and collaboration websites where access to
the website is extended to long durations has made this
issue even more pressing. Although using a secure protocol
(e.g. HTTPS) to connect to the web provides higher levels
of security, it is not always applied by many web servers
and is replaced by cookie protection. The nature of cookies

as plain text stored at the client’s side makes it not too
complicated for an adversary to hack these cookies and
steal the Internet session leading to a compromise in the
users’ overall Internet experience.

To avoid this shortcoming of Internet cookies,
researchers such as [2, 5] suggest using one-way hash
chains to secure the transmission of cookies. The idea of
one-way hash chains is based on Lamport’s one-way chains
for one-time passwords authentication [7], which was later
formulated by Haller to the S/Key standard [6]. The main
advantage of one-way hash chains is that once the
authentication credentials are used, they are recycled and
never used again. This minimizes the chances of cookies
being sniffed out and abused for unlawful utilization by
entities other than the respective parties.

A. Contribution

Despite the capability of one-way hash chains in
transmitting Internet cookies securely if appropriate
cryptographic hash functions are adopted, their high
computational overhead makes them far from optimal. In
this paper, we address this particular shortcoming and
propose a scheme to deal with the computational overhead
of one-way hash chains for a faster cookie transmission.
Our scheme utilizes the idea of layered one-way hash
chains in which hashing is conducted using the concept of
position-indexing.

The remainder of this paper is organized as follows. In
section 2, we survey the related literature. In section 3, we
introduce the protocol. In section 4, we provide a
discussion of how the protocol functions when the number
of transactions is known. We also overview the testbed
used and the analytical model and present the simulation
results. In section 5, we address the case when the number
of transactions is not known and present the evaluation
results. We conclude the paper with section 6.

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254126

II. PREVIOUS WORK

The issue of session hijacking or ‘sidejacking’ due to
sniffing out of Internet cookies is one of the important
Internet security concerns. Session hijacking results from
unlawful control over cookies during an ongoing internet
session in an unprotected network where plaintext traffic is
unencrypted. Illustrations such as [9] and [1] show how
cookies are vulnerable to attacks, which makes their current
deployment questionable and warrants a search for more
reliable and secure techniques. Several researchers have
tried to solve the vulnerability of cookies. For example, the
use of an external proxy where authentication and sensitive
information management is carried out completely at the
proxy or some other external device (e.g. a user’s cell
phone) is a possible alternative proposed by [10] and [14];
however, this solution’s implementation can pose
difficulties as it might not be optimal in all situations.
Specifically, if a user does not have access to the proxy for
any reason or in case the external device is not available at
the time when the service is desired (e.g. cellphone battery
dead, no coverage…etc.), he will not be able to use the
service.

Several proposals have tried to address the problem of
session cookies’ exploitation by adopting schemes which
rely on Lamport’s one-way passwords. For instance, [8]
proposed a solution that targets the read-only property of
the session cookies in the website’s databases. They
achieve their protection by leveraging the read property so
that it becomes hard for an attacker to correctly guess the
cookie value. Conceptually, they suggest including an
iterated hashed value of the user’s password and its pre-
image in the session cookies. These two values are
compared each time a communication between the server
and client is desired. To strengthen the cookies, they add a
salt value which they claim makes it even harder for an
adversary to detect the users’ private information.

In a recent paper, Dacosta et al [5] proposed using a
modified hash construction to generate disposable
credentials (One-time cookies; OTC) in lieu of cookies to be
used only once during a session. While their solution
achieves session cookies integrity, it suffers from an
unjustified computational overhead. The overhead is a result
of the need to establish a certain number of transactions
between the server and client expected to be handled during
the lifetime of the session. If this number is underestimated,
the session will be terminated prematurely and the user will
be required to initiate a new session. When the opposite
happens (i.e. the session is overestimated), the connection
will suffer from an unjustified overhead due to the high cost
of the early transactions.

In an attempt to lower this computational overhead, the
authors of [3] proposed a protocol which essentially imitates
the rolling code technology used to protect garage codes
from being detected and compromised. The Rolling Code
protocol replaces the hash chain performed by the OTC in

each transaction by two hash operations: one to update and
randomize the value of a variable d = hash(d), and the other
to produce a one-time authentication token by applying a
hash function on the Exclusive-OR of a secret seed and the
new value of d. The Rolling code protocol is less robust
than the one-way hash chain approach (e.g., the OTC
protocol), but is lightweight and more suitable for mobile
phones and PDA’s.

The SCRHC scheme proposed in [2] improves the
performance of one-way hash chains by utilizing a flexible
caching component in which the hash values at certain
points in the chain are stored for use in future iterations. The
basic step executed in the Repeat_Chain routine of the
SCRHC scheme updates the secret s by computing the
concatenation of the secret s with itself, s := hash (s || s).
This is considered a security weakness that reduces
randomness and makes the scheme vulnerable to certain
types of attack. The two dimensional scheme proposed in
this paper eliminates this weakness because it updates the
secret s using a second dimension of one way hash chains
and employing a position indexing technique as explained in
section 3.

In designing our protocol, we took into consideration
different cryptographic approaches. While one of our main
objectives is reducing the computational overhead of one-
way hash chains based cookies, we wanted our protocol to
benefit from the features of current cryptographic
approaches especially their strength and resistance to replay
attacks, collision attacks, pre-image attacks and second pre-
image attacks. Hence, our protocol is designed with the
state-of-the art cryptographic approaches in mind.

A. One-way Hash Cookie (OHC) Protection

Since we are using the one-way hash cookie protection
scheme as the backbone for our solution, it is worth
illuminating its main aspects and how its hashing operation
is carried out to protect cookies. In the OHC scheme, a one-
way hash chain of length N is used to protect a stream of N
transactions of a web session. During the initial HTTPS
login step, the server and the client exchange a shared
secret value S0, and a value N which refers to the chain
length or number of transactions expected to be handled
during a session. The OHC protects the jth transaction by
computing an authentication token Vj=HN-j+1(S0), where the
notation Hm(x) implies applying the hash function m times,
for example, H2(x)= H(H(x)). For instance, if N=100, then
the authentication tokens for the 1st, 2nd, and 3rd transactions
are V1=H100(S0), V2=H99(S0), V3=H98(S0), respectively.
Figure 1 illustrates how the one-way hash chains are
configured. The straight arrow going from the left to the
right corresponds to the length of the chain. In this specific
figure, the length is 5 transactions. The small arrows going
from the right to the left represent the points where
authentication tokens are generated and checked. At each
point in the hash chain, the server and client must be able to
derive the same value of the authentication token.

Otherwise, a red flag is raised and the whole session might
have been compromised. Therefore, the user needs to be
asked for login information again.

 One-way hash chain

V1 V2 V3 V4 V5

Figure 1:	
 One-way hash chains

The main drawback of the OHC approach is its high
computational overhead described above (i.e.
overestimation or underestimation of the number of
transactions in a session.) In this paper, we propose a
scheme to significantly reduce the overhead of OHC
without deploying cache memory to store the authentication
tokens.

III. THE PROPOSED PROTOCOL

A. Conceptualization

Conceptually, the one way hash chains in our protocol
are arranged in two dimensions (Figure 2). In the first
dimension (i.e. horizontal axis), there is a single hash chain
that computes the seeds for the second dimension chains
(i.e. vertical axis). In the second dimension, multiple hash
chains use these seeds to generate authentication tokens.
The authentication tokens are derived by hashing the seeds
and the position of the hashing functions in the hash chains
(e.g. via a concatenation process ||). Given the cryptographic
hash function used is resistant to attacks (e.g. SHA-1, SHA-
2 or SHA-3), a slight change in the argument to be hashed is
expected to result in a significantly different output. Figure
2 provides a conceptual view of how our protocol functions.

Figure 2: Position-indexed hashing for 12 transactions TChain_Len= 3,
SChain_Len= 4

The proposed protocol is composed of three main
stages: the Initialization stage, Authenticate_Token stage
and Next_Seed stage. The notations we use in our scheme
are summarized in Table 1.

1) Initialization stage

During the initialization stage, which is done using an
HTTPS protocol, information about the session length (i.e.,
number of transactions N), an initial secret S0 and
TChain_Len is exchanged between the server and the client.
Once this information is exchanged, the SChain_Len is
determined by dividing N by TChain_Len. The result of this
division will give us the number of seeds that will be needed
during an internet session. Our definition of a session refers
to the communication activities between the web application
and the client during the login time (i.e. between log-in and
log-out). A transaction on the other hand is a set of request
and response between the web application and the client.
The session is composed of N transactions. Information
about the session length, TChains are predetermined and
exchanged during this stage.

TABLE I. NOTATIONS USED IN THE PROPOSED SCHEME

Notations Description

N Number of transactions to be handled during an internet
session.

SChain The chain where seeds are generated.

TChain The chain where authentication tokens are generated.

S0 The initial seed used by the SChain

SChain_Len Length of the SChain.

TChain_Len Length of the TChain.

H Hash function used to generate seeds or authentication
tokens.

V Authentication token.

2) Authenticate_Token stage

The next stage Authenticate_Token, is where the
authentication tokens are actually produced. The
authentication tokens are denoted Vi,j where the variable i
represents the current TChain and j represents the current
transaction number within the TChain. The tokens are
created by hashing the seed concatenated || with a variable
indicating the position of the hash function in the TChain.
This position indexing technique is a well-known technique
for boosting security because Birthday Attacks can be
avoided if all hash functions used are indexed by their
position in the chain [15]. As will be explained in the
Next_Seed stage, we also update the seed several times
during the session. The number of times the seed is updated
depends on the number of transactions and the value of
TChain_Len. This number is used to indicate how many
TChains we will have during the session. In other words,
each updated seed is only used by the transactions of one
TChain and then discarded and never used again.

3) Next_Seed stage

The third component of the protocol is the Next_Seed
routine. This routine is responsible for updating the seeds

used in the TChains to generate authentication tokens. It
should be noted that each TChain has its own seed. This
routine is invoked once the authentication tokens of the first
TChain are created and transmitted. Based on the number of
transactions and TChain_Len exchanged in the initialization
stage, we know the number of times the seed is expected to
be updated. The length of the seed chain, SChain_Len, is a
result of dividing the number of transactions N by the value
TChain_Len. Once the authentication tokens have all used a
seed once (i.e. TChain_Len is exhausted), the Next_Seed
routine is invoked to produce an updated seed for the next
authentication token chain; TChain. We illustrate in the
following section how our protocol works with a pseudo
code and detailed examples. The performance evaluation
results of the proposed scheme are presented in sections 4
and 5.

B. Selecting a Cryptographic Hash Function

A cryptographic hash function is an algorithm which
changes a certain set of data into a string of a fixed size,
called the block size. Examples of cryptographic hash
functions include MD4, MD5, SHA-1 and SHA-2. It was
proven that the MD5 hash function is prone to collision
attacks [11] , [4] as well as pre-image attacks [12], and
therefore, we did not consider it in our scheme. While SHA-
1 is resistant to pre-image attacks, it was proven by [13] that
it is theoretically prone to collision attacks. However, since
it is not practically susceptible to collision attacks, we have
used it in our protocol for the purpose of illustration.

In our implementation, the original block size is 160-bit
corresponding to SHA-1, but it can easily be expanded to
accommodate stronger cryptographic techniques that require
larger block sizes such as SHA-2 (in all its sizes) and SHA-
3 once it is released by NIST.

IV. CASE OF KNOWN NUMBER OF
TRANSACTIONS

Accurate statistics about network traffic related to
social networking sites can be helpful in identifying the
length of the one-way hash chain. However, it is not always
the case that these are readily available. Dacosta et al [5]
conducted basic traffic analysis of the social networking site
“Facebook” and concluded that a typical session requires
hundreds of transactions, and thus they set their chain length
at 1000. In our study, we have varied this chain length since
different social networking sites might have different
requirements. Following are the steps of the protocol when
the number of transactions is known.

A. The proposed protocol’s steps

The initialization stage takes place using an HTTPS
connection. During the HTTPS authentication, the initial
value of the secret key S0, the number of transactions N and
the length of TChain (i.e. TChain_Len) are selected and
exchanged between the server and the client. The following
code is executed at both the client and the server sides.

SChain_Len:= N ÷ TChain_Len // length of the SChain

 I:= SChain_Len // I is the global index for the SChain

J:= TChain_Len // J is the global index for the TChain

Seed:= HI(S0) // Seed is now Seed1=seed for the first TChain

The routine Authenticate_Token is executed once for
each transaction to compute the authentication tokens that
will be transmitted with the transaction cookie.

Authenticate_Token(Seed, J)
Begin
V:= HJ(Seed||J) // J is the global index for the TChain where || is a

concatenation of the seed with the hash function
position in the chain

J:= J -1
if (J==0) then // TChain length is exhausted
 Seed:= Call Next_Seed() // Seed has to be updated
 J:= TChain_Len // TChain length is reset
end-if
Return (V)
End

Next_Seed()
Begin
I:= I-1 // I is the global index for the SChain
Seed:= HI(S0) // updating the Seed value
Return (Seed)
End;

Let us now illustrate how the protocol works with an
example. In case the number of transactions is known to be
N =200, and the TChain_Len =4, the seed is going to be
updated 50 times (i.e., SChain_Len = 50) to carry out the
hashing functions for 200 transactions.

We have I=50, J=4, Seed1= H50(S0)

The first TChain of four transactions will create the
following authentication tokens.

V1,1= H4(Seed1||4)

V1,2= H3(Seed1||3)

V1,3= H2(Seed1||2)

V1,4= H1(Seed1||1)

Once these authentication tokens have been transmitted,
the Seed has to be updated to Seed2= H49(S0) and J has to be
reset to 4.

The next step is to generate the second set of four
transactions which will be:

V2,1= H4(Seed2||4)

……..

V2,4= H1(Seed2||1)

The code continues to calculate the authentication
tokens in each TChain until we reach the 50th TChain. The
50th TChain will have the Seed50= H(S0) and its
authentication tokens will be:

V50,1= H4(Seed50||4)

……..

V50,4= H1(Seed50||1)

B. Protocol Evaluation

1) The Testbed

In this section, we present the protocol evaluation
results when the number of transactions in a session is
known. We developed a detailed benchmark in Java which
allowed us to test different session scenarios. An important
metric used in our tests is SessionCost which is the total
number of hash operations performed during the lifetime of
the session. The metric SessionCost represents the overall
execution overhead of the protocol including the overhead
of the Initialization stage and the overhead of the	

Authenticate_Token routine for all transactions as well as
the overhead of the Next_Seed routine.

Figure 3 shows the performance of the protocol for
different values of the number of transactions N and the
length of TChain. It is interesting to see that the value of
SessionCost decreases as the value of TChain_Len
increases until a certain point then starts to increase again.
For each value of N, there is a certain value of TChain_Len
that minimizes the value of SessionCost. We validate this
behavior by an analytical model.

Figure 3: Protocol Evaluation (known number of transactions)	

2) Analytical Model

As we described earlier our protocol is composed of
two chains: i) the seed generating chain SChain represented
by the horizontal axis in Figure 2, and ii) the authentication
generating chain TChain represented by the vertical
(slanted) axis in Figure 2. For simplicity, we assume that
the cost of a single hash operation used in the SChain and
TChain is the same because they both use the same hashing
algorithm (i.e. SHA-1); we will examine this assumption
later at the end of this section. The cost of a single session
SessionCost= C is the sum of the hashing operations

required to generate authentication tokens in the vertical
chains, CV, and the hashing operations required to update
the seeds in the horizontal chain, CH. Here is how
SessionCost is calculated.

N= number of transactions
M= SChain_Len
K= TChain_Len

Cost of one vertical chain = K(K+1)/2
CV = MK(K+1)/2 = N(K+1)/2 	
 	
 	
 	
 	
 	

CH = M(M+1)/2
C = CV + CH
 = N(K+1)/2 + M(M+1)/2

The next formula can be used to plot C as a function of N
and K.

C =
N (K +1)

2
+
M (M +1)

2
=
NK
2

+
N
2
+
M 2

2
+
M
2
	

C = NK
2

+
N
2
+
N 2

2K 2 +
N
2K

=
N
2
(K +1+ N

K 2 +
1
K
)
	
 	
 	

To find the optimal value of K which minimizes the cost C,
we differentiate formula (1) and equate to 0
	

!C
!K

=
N
2
(1" 2N

K 3
"
1
K 2

) 	

1! 2N
K 3 !

1
K 2 = 0 	

K 3 !K ! 2N = 0 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Equation 2 can be used to derive the optimal value of
K which corresponds to TChain_Len. Table 2 gives the
optimal value of TChain_Len obtained by solving the
above cubic equation numerically.

TABLE I: TChain_Len OPTIMAL VALUE

Number of
Transactions

Optimal
TChain_Len

500 10.03

1000 12.625

1500 14.445

2000 15.895

Comparing Table 1 with Figure 3, we can see that the
TChain optimal values which we obtained from the
simulation are very close to the optimal values obtained
from the analytical solution.

0	

50000	

100000	

150000	

200000	

250000	

3	
 5	
 10	
 20	
 25	
 50	
 100	

Se
ss
io
nC
os
t	

TChain_Len	

N=500	

N=1000	

N=1500	

N=2000	

 (1)

(2)

It should be mentioned that the above analytical
solution was derived based on the assumption that the hash
operation used in the SChain and TChain have the same
cost because both use the same hash function SHA-1. A
more accurate model can be easily developed to account for
the extra overhead of the concatenation operation used in
the SChain. Since the cost of the concatenation operation is
much smaller than the cost of the hash operation, the slight
increase due to concatenation can be accurately modeled
by multiplying the cost of CH by a factor r which is slightly
larger than 1. This will cause Equation 2 to be slightly
modified as follows: the second and third terms will be
multiplied by the factor r. Solving this modified equation
gives optimal values very close to those given in Table 2.

C. Protocol Comparison with OHC

In order to validate the efficiency of our protocol, we
compared its performance with the OHC protocol proposed
in [5].

	

Figure 4: Performance comparison between position-index hashing (PIH)

and OHC

In Figure 4, we demonstrate the performance
comparison between our protocol and the OHC protocol.
We compared the average cost of a single transaction in
both protocols. In our protocol, we were able to lower the
average cost of the transaction tremendously. For instance,
for 500 transactions the average transaction cost of the
OHC protocol is 250, whereas our protocol lowers this
average to a little over 11. While this average tends to
increase significantly with the increase in transaction
numbers for the OHC protocol, our average stays relatively
low even with N= 2500 transactions where the average cost
is 13.65.

In order to further gain insight in the benefits of
adopting our protocol, we measured the performance
improvement ratio when our protocol is chosen over the
OHC. The performance improvement ratio is defined as the
ratio SessionCost of OHC : SessionCost of our PIH
protocol. Figure 5 displays the significant improvement
our protocol achieves over OHC.

Figure 5: Performance improvement ratio of OHC

Looking at Figure 5, we can easily gain insight on how
choosing our protocol is beneficial. Our protocol
outperforms the OHC protocol by a little over 22 times
when the number of transactions is 500. This improvement
ratio is much higher with higher transaction numbers.
When we have 2500 transactions to be handled in a session,
our protocol outperforms the OHC by over 91 times. This
is a relatively wide margin and makes our protocol
plausible. The ratio is expected to be higher for longer
sessions with higher transaction numbers.

V. UNKNOWN NUMBER OF TRANSACTIONS

A. Certainty versus Uncertainty in Transaction Number

In designing the protocol, we took into consideration
the possibility of certain versus uncertain number of
transactions. More often than not, it is very hard to estimate
the exact number of transactions to be handled in a single
session in a social networking site. As we have seen above
in our discussion of Facebook session length statistics
introduced in [5], the length can range from a few hundred
transactions to several hundreds. This has led us to devise
two different versions of the position-indexed hashing
protocol to accommodate the two scenarios: known number
of transactions and unknown number of transactions.

We have already accounted for the case of known
number of transactions in the previous section, and this
section is devoted to explicating the case of unknown
number of transactions. When the number of transactions is
unknown, there is no way to calculate the SChain_Len and
hence the number of TChains in a session. Therefore, we
needed to change the code slightly to account for this
discrepancy. During the Initialization stage instead of
exchanging the number of transactions N and the
TChain_Len, the client and server exchange the
TChain_Len and another value representing the
SChain_Len. The importance of SChain_Len specification
comes from the need to update the seed during the session
multiple times. Since the transaction number is unknown,
we have no way of determining how many times the seed is
going to be updated. Given this scenario, we are faced with
another problem. If the specified SChain_Len is not long
enough (i.e., the actual number of times we will have to
update the seed is more than the value of SChain_Len), we

0.00	

200.00	

400.00	

600.00	

800.00	

1000.00	

1200.00	

1400.00	

500	
 1000	
 1500	
 2000	
 2500	

Av
g	

Tr
an
sa
ct
io
n	

Co
st
	

Number	
 of	
 Transactions	

PIH	

OHC	

0.00	

10.00	

20.00	

30.00	

40.00	

50.00	

60.00	

70.00	

80.00	

90.00	

100.00	

500	
 1000	
 1500	
 2000	
 2500	

Pe
rf
or
m
an
ce
	
 R
at
io
	

Number	
 of	
 Transactions	

Performance	

Ratio	

will need to repeat using one or more seeds, which could
compromise the security of the session. To solve this
problem, we utilize the number of TChains in a session as
an index to be attached to the updated seed via a
concatenation process ||. The index for TChain number can
be derived from the TChain_Len and the Next_Seed
routine. The first TChain in a session is the one that uses
the first seed and once the Next_Seed routine is invoked,
the TChain index is incremented and the new value is
attached to the hashed seed.

B. The Modified Protocol

Here, we introduce how we modified the protocol to
account for the case of unknown number of transactions.
We still have the three stages we had in the unknown
number of transactions case.

1) Initialization

The initialization stage takes place using an HTTPS
connection. During the HTTPS authentication, the initial
value of the secret key S0, the length of the authenticate-
token chain TChain_Len and the length of the next-seed
chain SChain_Len are selected and exchanged between the
server and the client. The following code is executed at both
the client and the server sides.
I:= SChain_Len // I is the global index for the SChain

J:= TChain_Len //J is the global index for the TChain

index:= 1 //a global variable indicating TChain

 number where 1 refers to first TChain
Seed:= HI(S0||index) // Seed is now Seed1=seed for the first
 TChain

	

Authenticate_Token(Seed, J)
Begin
V:= HJ(Seed||J) // J is the global index for the TChain
J:= J -1
if (J==0) then // TChain_Len length is exhausted
 index:= index + 1 // index incremented for the next TChain
 Seed:= Call Next_Seed() // Seed has to be updated
 J:= TChain_Len // TChain length is reset
end-if
Return (V)
End

Next_Seed()
Begin
I:= I-1
if (I==0) then // SChain length is exhausted
 I:= SChain_Len // I is reset to SChain_Len
end-if
Seed:= HI(S0||index);
Return (Seed)
End

Here is an example to help illustrate how the protocol
handles the transmission of authentication tokens when the
number of transactions is unknown. During initialization,
the values of TChain_Len=4 and SChain_Len=10 will be
selected and exchanged between the server and client.

We have I=10, J=4, index=1. We assign an index
which represents the first TChain, and therefore the first
seed will be:

Seed1= H10(S0|| 1)

The first TChain will use Seed1 in the hashing function to
derive the first set of authentication tokens as follows…

V1,1= H4(Seed1||4)

V1,2= H3(Seed1||3)

V1,3= H2(Seed1||2)

V1,4= H1(Seed1||1)

Now index becomes 2 which represents the second TChain,
I =9, Seed has to be updated to Seed2= H9(S0||2) and J has to
be reset to 4.The second TChain will have the following
authentication tokens:

V2,1= H4(Seed2||4)
……..

V2,4= H1(Seed2||1)

After finishing ten TChains (i.e. 40 transactions) index
becomes 11 which represents the 11th TChain, I has to be
reset to 10, Seed has to be updated to Seed11= H10(S0||11)
and J has to be also reset to 4. If we did not use the TChain
number as a value attached to S0 , we would have been
forced to recycle Seed1 as Seed11=Seed1=H10(S0). This could
potentially compromise our protocol as it becomes easier to
detect the initial seed. By indexing the TChain number and
using its value in the hashing function, we are able to solve
this problem.

Therefore, the 11th TChain (11th set of four transactions)
will have authentication tokens which will be:

V11,1= H4(Seed11||4)

……..

V11,4= H1(Seed11||1)

The protocol goes on according to this routine until the user
or the server terminates the session.

C. Protocol Evaluation (unknown number of transactions)

In this section, we present the evaluation of our
protocol when the number of transactions is unknown.
Figure 6 illustrates the results when the SChain_Len is fixed
at 5, while Figure 7 demonstrates the protocol’s
performance when the SChain_Len is fixed at 20. Our main
goal from this is to determine the best value of TChain_Len
where the protocol performs relatively well.

In both Figure 6 and Figure 7, regardless of the
SChain_Len, the protocol seems to perform well when the
TChain_Len is set at 3. Unlike the case of known number of

transactions where we noticed some kind of correlation
between TChain_Len and performance, in the case of
unknown number of transactions it is better to set
TChain_Len at a relatively low value.

Figure 6: Protocol Evaluation (Unknown number of transactions)
SChain_Len= 5 all the time

	

Figure 7: Protocol Evaluation (Unknown number of transactions)
SChain_Len= 20 all the time	

Our next task was to see what the best value of
SChain_Len is when the TChain_Len is fixed at 3. The next
graph (Figure 8) represents the session cost of different
number of transactions with TChain_Len= 3 and different
SChain_Len values.

Figure 8: Protocol performance comparison when TChain_Len=3 and
different SChain_Len	

Figure 8 indicates that there is a steady and direct
relationship between SChain_Len and performance
measured in SessionCost. The lower the value SChain_Len,

the better performance we can achieve when we do not
know the number of transactions during a session. In other
words, we need to start with relatively short chains in both
the authenticate-token chain TChain and the next-seed chain
SChain.

D. Protocol Evaluation (Energy consumption)

When designing any authentication protocol, equally
important to efficient computational overhead is how much
energy is expended. According to [16], there are at least
three approaches to preserving battery life in mobile
devices: efficient hardware, accurate knowledge of energy
consumption of different cryptographic approaches and light
weight security mechanisms.

Energy consumption is largely influenced by the
cryptographic hash function used in the authentication
scheme as different hash functions have different energy
consumption levels. The authors of [17] conducted an
extensive analysis of energy characteristics of various
cryptographic approaches and found that energy varies
according to the cryptographic approach utilized. For SHA,
SHA1 and HMAC, the energy required to conduct a single
operation is 0.75, 0.76 and 1.16 microjoule/byte,
respectively (for a complete list of energy consumption
characteristics of different cryptographic approaches we
refer the reader to [17]).

Since the cost of the session is what determines the
amount of hashing operations required to implement
authentication, energy consumption is correlated with the
session cost described in section 4.2. In our evaluation, we
demonstrate the energy consumption of our position-
indexed hashing protocol and compare it with the OHC in
the unknown number of transactions case.

It should be noted though that the initialization phase is
not included in this comparison because it is conducted
using an HTTPS. As [17] indicates the energy
consumption in the SSL protocols is influenced by the
transaction size which is not the scope of the current paper.

Figure 9 demonstrates the energy consumption
comparison between our position-indexed hashing protocol
and the straight forwardly configured one-way hash chains.
While the two protocols are comparable in the lower
number of transactions, our PIH protocol clearly wins in
the longer sessions as can be seen when the number of
transactions is high. This results in a better battery
conservation as the OHC drains energy resources much
faster.

0	

20000	

40000	

60000	

80000	

100000	

120000	

3	
 5	
 10	
 20	
 25	
 50	
 100	

Se
ss
io
nC
os
t	

TChain_Len	

N=500	

N=1000	

N=1500	

N=2000	

0	

20000	

40000	

60000	

80000	

100000	

120000	

3	
 5	
 10	
 20	
 25	
 50	
 100	

Se
ss
io
nC
os
t	

TChain_Len	

N=500	

N=1000	

N=1500	

N=2000	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

500	
 1000	
 1500	
 2000	
 2500	

Se
ss
io
nC
os
t	

Number	
 of	
 Transactions	

SChain_Len=5	

SChain_Len=10	

SChain_Len=20	

Figure 9: Energy consumption comparison between the OHC and PIH in
the unknown number of transactions case	

VI. CONCLUSION

One-way hash chains can be efficiently used in
collaborative and social media networks to overcome the
problem of session hijacking in Internet sessions caused by
stealing cookies. Due to the computation overhead caused
by overestimating the length of internet sessions, they have
not been widely utilized. In this paper, we proposed a one-
way hash chain protocol to address the problem of
overestimating the number of transactions during a session
in the straightforwardly configured one-way hash chains.
Our solution achieves its goal by utilizing two one-way
hash chains; one is responsible for updating the secret and
the other for creating the authentication tokens attached to
the cookies using the secrets produced by the first chain.
We also employ the position of the hashing function in the
chain in order to strengthen our protocol against attacks
such as Birthday attacks.

Our extensive evaluation of the protocol and
comparison with other protocols yielded encouraging
results. We have been able to improve the performance of
one-way hash chains significantly while keeping the same
levels of security. By adopting the position-indexed
hashing protocol, energy consumption is reduced
significantly especially with longer sessions making our
protocol ideal for battery operated media.

References
[1] E. Butler. FireSheep: Cookie Snatching Made Simple. ToorCon

Conference, San Diego, CA, October 22-24, 2010. Software
available at http://codebutler.com/firesheep

[2] J. Cashion, and M. Bassiouni. Protocol for mitigating the risk of
hijacking social networking sites. Proceedings of the 7th IEEE
International Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom’11), Orlando, FL,
October 15-18, 2011.

[3] J. Cashion, M. Bassiouni. Robust and Low-Cost Solution for
Preventing Sidejacking Attacks in Wireless Networks using a
Rolling Code. In: Proceedings of the 7th ACM International
Symposium on QoS and Security of Wireless and Mobile Networks
(Q2SWinet’11), Miami Beach, Florida, pp. 21-26 (2011)

[4] S. Chen, and C. Jin. An Improved Collision Attack on MD5
Algorithm. Lecture Notes In Computer Science, pages 343–357,
2007.

[5] I. Dacosta, S. Chakradeo, M. Ahamad, P. Traynor. One-Time
Cookies: Preventing Session Hijacking Attacks with Disposable
Credentials. Technical Report, Georgia Institute of Technology,
April 2011. Available at:
http://smartech.gatech.edu/bitstream/handle/1853/37000/GT-CS-11-
04.pdf

[6] N. Haller. The S/KEY one-time password system. RFC 1760,
February 1995.

[7] L. Lamport. Password authentication with insecure communication.
Communication of the ACM, Vol. 24, No. 11, 1981, pp. 770-772.

[8] S. Murdoch. Security Protocols XVI Hardened Stateless Session
Cookies. Lecture notes in computer science. 2011;6615:93-101.

[9] B. Ponurkiewicz. FaceNiff- A new Android download application.
Available at http://faceniff.ponury.net/.

[10] G. Pujolle, A. Serhrouchni, I. Ayadi. Secure session management
with cookies. Information, Communications and Signal Processing,
2009. ICICS 2009. 7th International Conference on, vol., no., pp.1-6,
8-10 Dec. 2009

[11] M. Stevens. Fast collision attack on MD5, (2006)
http://eprint.iacr.org/2006/104.pdf.

[12] X. Wang, X. Lai, D. Feng, H. Chen, X. Yu. Cryptanalysis of the
Hash Functions MD4 and RIPEMD. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer,
Heidelberg.

[13] X. Wang, Y. L. Yin, & H. Yu. Finding collisions in the full SHA-1,
in V. Shoup, ed., 'CRYPTO', Vol. 3621 of Lecture Notes in
Computer Science, Springer, pp. 17--36. 2005

[14] M. Wu, S. Garfinkel, R. Miller. Secure web authentication with
mobile phones. In: DIMACS Workshop on Usable Privacy and
Security Systems, July 2004

[15] Hu, Yih-Chun, Markus Jakobsson, and Adrian Perrig. "Efficient
constructions for one-way hash chains." In Applied Cryptography
and Network Security, pp. 423-441. Springer Berlin Heidelberg,
2005

[16] Chandramouli, R., Bapatla, S., Subbalakshmi, K., & Uma, R.: battery
power-aware encryption. ACM Transactions on Information and
System Security (TISSEC), 9(2), 162-180. 2006

[17] Potlapally, Nachiketh R., Srivaths Ravi, Anand Raghunathan, and
Niraj K. Jha. "Analyzing the energy consumption of security
protocols." In Proceedings of the 2003 international symposium on
Low power electronics and design, pp. 30-35. ACM, 2003.

0.00E+00	

1.00E+07	

2.00E+07	

3.00E+07	

4.00E+07	

5.00E+07	

6.00E+07	

7.00E+07	

8.00E+07	

100	
 500	
 1000	
 1500	
 3000	

En
er
gy
	
 C
on
su
m
pt
io
n	

in
	
 µ
J/

by
te
	

Number	
 of	
 Transactions	

PIH	

OHC	

