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ABSTRACT—The use of insecure cookies as a means to 
authenticate web transactions in collaborative and social 
media websites presents a hazard to users’ privacy. In this 
paper, we propose and evaluate a novel protocol for 
protecting transmitted cookies using two dimensional one-way 
hash chains. In the first dimension, there is a hash chain that 
computes secret values used in the second dimension hash 
function. Multiple hash chains use the secret values created by 
the first dimension to authenticate session cookies in the 
second dimension. For improved security, the hashing 
operations in the second dimension use a concatenation of the 
secret values and the position index of the hash function 
within the hash chain. The performance of the scheme is 
evaluated using a detailed simulation testbed and an analytical 
model. The optimal lengths of the chains are derived when the 
number of transactions in the session is known. The protocol 
is extended to efficiently handle the case when the number of 
transactions is not known. The evaluation of the proposed 
scheme reveals that it achieves tremendous improvement over 
straightforwardly configured one-way hash chain schemes. 
Also, by adopting the position-indexed hashing protocol, 
energy consumption is reduced significantly especially with 
longer sessions making our protocol ideal for battery operated 
devices. 
 

Keywords: One-way hash chains, HTTPS, 
Session cookies.   

I. INTRODUCTION 

Many collaborative websites and social media 
networks utilize session cookies as a cheaper alternative to 
the wide utilization of the secure HTTPS protocol. The 
unprotected nature of cookies can compromise the 
collaborative environment. Evidently, the availability of 
social networks and collaboration websites where access to 
the website is extended to long durations has made this 
issue even more pressing. Although using a secure protocol 
(e.g. HTTPS) to connect to the web provides higher levels 
of security, it is not always applied by many web servers 
and is replaced by cookie protection. The nature of cookies 

as plain text stored at the client’s side makes it not too 
complicated for an adversary to hack these cookies and 
steal the Internet session leading to a compromise in the 
users’ overall Internet experience.   
 

To avoid this shortcoming of Internet cookies, 
researchers such as [2, 5] suggest using one-way hash 
chains to secure the transmission of cookies. The idea of 
one-way hash chains is based on Lamport’s one-way chains 
for one-time passwords authentication [7], which was later 
formulated by Haller to the S/Key standard [6]. The main 
advantage of one-way hash chains is that once the 
authentication credentials are used, they are recycled and 
never used again. This minimizes the chances of cookies 
being sniffed out and abused for unlawful utilization by 
entities other than the respective parties.   

A. Contribution 

Despite the capability of one-way hash chains in 
transmitting Internet cookies securely if appropriate 
cryptographic hash functions are adopted, their high 
computational overhead makes them far from optimal. In 
this paper, we address this particular shortcoming and 
propose a scheme to deal with the computational overhead 
of one-way hash chains for a faster cookie transmission. 
Our scheme utilizes the idea of layered one-way hash 
chains in which hashing is conducted using the concept of 
position-indexing.  

The remainder of this paper is organized as follows. In 
section 2, we survey the related literature. In section 3, we 
introduce the protocol. In section 4, we provide a 
discussion of how the protocol functions when the number 
of transactions is known. We also overview the testbed 
used and the analytical model and present the simulation 
results. In section 5, we address the case when the number 
of transactions is not known and present the evaluation 
results. We conclude the paper with section 6.  
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II. PREVIOUS WORK 

The issue of session hijacking or ‘sidejacking’ due to 
sniffing out of Internet cookies is one of the important 
Internet security concerns. Session hijacking results from 
unlawful control over cookies during an ongoing internet 
session in an unprotected network where plaintext traffic is 
unencrypted. Illustrations such as [9] and [1] show how 
cookies are vulnerable to attacks, which makes their current 
deployment questionable and warrants a search for more 
reliable and secure techniques. Several researchers have 
tried to solve the vulnerability of cookies. For example, the 
use of an external proxy where authentication and sensitive 
information management is carried out completely at the 
proxy or some other external device (e.g. a user’s cell 
phone) is a possible alternative proposed by [10] and [14]; 
however, this solution’s implementation can pose 
difficulties as it might not be optimal in all situations. 
Specifically, if a user does not have access to the proxy for 
any reason or in case the external device is not available at 
the time when the service is desired (e.g. cellphone battery 
dead, no coverage…etc.), he will not be able to use the 
service.  

Several proposals have tried to address the problem of 
session cookies’ exploitation by adopting schemes which 
rely on Lamport’s one-way passwords. For instance, [8] 
proposed a solution that targets the read-only property of 
the session cookies in the website’s databases. They 
achieve their protection by leveraging the read property so 
that it becomes hard for an attacker to correctly guess the 
cookie value. Conceptually, they suggest including an 
iterated hashed value of the user’s password and its pre-
image in the session cookies. These two values are 
compared each time a communication between the server 
and client is desired. To strengthen the cookies, they add a 
salt value which they claim makes it even harder for an 
adversary to detect the users’ private information. 

In a recent paper, Dacosta et al [5] proposed using a 
modified hash construction to generate disposable 
credentials (One-time cookies; OTC) in lieu of cookies to be 
used only once during a session. While their solution 
achieves session cookies integrity, it suffers from an 
unjustified computational overhead. The overhead is a result 
of the need to establish a certain number of transactions 
between the server and client expected to be handled during 
the lifetime of the session. If this number is underestimated, 
the session will be terminated prematurely and the user will 
be required to initiate a new session. When the opposite 
happens (i.e. the session is overestimated), the connection 
will suffer from an unjustified overhead due to the high cost 
of the early transactions.  

In an attempt to lower this computational overhead, the 
authors of [3] proposed a protocol which essentially imitates 
the rolling code technology used to protect garage codes 
from being detected and compromised. The Rolling Code 
protocol replaces the hash chain performed by the OTC in 

each transaction by two hash operations: one to update and 
randomize the value of a variable d = hash(d), and the other 
to produce a one-time authentication token by applying a 
hash function on the Exclusive-OR of a secret seed and the 
new value of d. The Rolling code protocol is less robust 
than the one-way hash chain approach (e.g., the OTC 
protocol), but is lightweight and more suitable for mobile 
phones and PDA’s. 

The SCRHC scheme proposed in [2] improves the 
performance of one-way hash chains by utilizing a flexible 
caching component in which the hash values at certain 
points in the chain are stored for use in future iterations. The 
basic step executed in the Repeat_Chain routine of the 
SCRHC scheme updates the secret s by computing the 
concatenation of the secret s with itself, s := hash (s || s). 
This is considered a security weakness that reduces 
randomness and makes the scheme vulnerable to certain 
types of attack.  The two dimensional scheme proposed in 
this paper eliminates this weakness because it updates the 
secret s using a second dimension of one way hash chains 
and employing a position indexing technique as explained in 
section 3. 

In designing our protocol, we took into consideration 
different cryptographic approaches. While one of our main 
objectives is reducing the computational overhead of one-
way hash chains based cookies, we wanted our protocol to 
benefit from the features of current cryptographic 
approaches especially their strength and resistance to replay 
attacks, collision attacks, pre-image attacks and second pre-
image attacks. Hence, our protocol is designed with the 
state-of-the art cryptographic approaches in mind.  

A. One-way Hash Cookie (OHC) Protection 

Since we are using the one-way hash cookie protection 
scheme as the backbone for our solution, it is worth 
illuminating its main aspects and how its hashing operation 
is carried out to protect cookies. In the OHC scheme, a one-
way hash chain of length N is used to protect a stream of N 
transactions of a web session. During the initial HTTPS 
login step, the server and the client exchange a shared 
secret value S0, and a value N which refers to the chain 
length or number of transactions expected to be handled 
during a session. The OHC protects the jth transaction by 
computing an authentication token Vj=HN-j+1(S0), where the 
notation Hm(x) implies applying the hash function m times, 
for example, H2(x)= H(H(x)). For instance, if N=100, then 
the authentication tokens for the 1st, 2nd, and 3rd transactions 
are V1=H100(S0), V2=H99(S0), V3=H98(S0), respectively. 
Figure 1 illustrates how the one-way hash chains are 
configured. The straight arrow going from the left to the 
right corresponds to the length of the chain. In this specific 
figure, the length is 5 transactions. The small arrows going 
from the right to the left represent the points where 
authentication tokens are generated and checked. At each 
point in the hash chain, the server and client must be able to 
derive the same value of the authentication token. 



Otherwise, a red flag is raised and the whole session might 
have been compromised. Therefore, the user needs to be 
asked for login information again.   
 
 One-way hash chain 
    
V1                   V2                  V3                   V4                    V5 

 
Figure 1:	
  One-way hash chains 

The main drawback of the OHC approach is its high 
computational overhead described above (i.e. 
overestimation or underestimation of the number of 
transactions in a session.) In this paper, we propose a 
scheme to significantly reduce the overhead of OHC 
without deploying cache memory to store the authentication 
tokens.  

III. THE PROPOSED PROTOCOL 

A. Conceptualization  

Conceptually, the one way hash chains in our protocol 
are arranged in two dimensions (Figure 2). In the first 
dimension (i.e. horizontal axis), there is a single hash chain 
that computes the seeds for the second dimension chains 
(i.e. vertical axis). In the second dimension, multiple hash 
chains use these seeds to generate authentication tokens. 
The authentication tokens are derived by hashing the seeds 
and  the position of the hashing functions in the hash chains 
(e.g. via a concatenation process ||). Given the cryptographic 
hash function used is resistant to attacks (e.g. SHA-1, SHA-
2 or SHA-3), a slight change in the argument to be hashed is 
expected to result in a significantly different output. Figure 
2 provides a conceptual view of how our protocol functions.  

 
 

Figure 2: Position-indexed hashing for 12 transactions TChain_Len= 3,  
SChain_Len= 4 

The proposed protocol is composed of three main 
stages: the Initialization stage, Authenticate_Token stage 
and Next_Seed stage. The notations we use in our scheme 
are summarized in Table 1.  

 

 

1) Initialization stage 

During the initialization stage, which is done using an 
HTTPS protocol, information about the session length (i.e., 
number of transactions N), an initial secret S0 and 
TChain_Len is exchanged between the server and the client. 
Once this information is exchanged, the SChain_Len is 
determined by dividing N by TChain_Len. The result of this 
division will give us the number of seeds that will be needed 
during an internet session. Our definition of a session refers 
to the communication activities between the web application 
and the client during the login time (i.e. between log-in and 
log-out). A transaction on the other hand is a set of request 
and response between the web application and the client. 
The session is composed of N transactions. Information 
about the session length, TChains are predetermined and 
exchanged during this stage.  

TABLE I.  NOTATIONS USED IN THE PROPOSED SCHEME 

Notations Description 

N Number of transactions to be handled during an internet 
session. 

SChain The chain where seeds are generated.  

TChain  The chain where authentication tokens are generated.  

S0 The initial seed used by the SChain 

SChain_Len Length of the SChain.  

TChain_Len Length of the TChain.  

H  Hash function used to generate seeds or authentication 
tokens. 

V Authentication token. 

 

2) Authenticate_Token stage  

The next stage Authenticate_Token, is where the 
authentication tokens are actually produced. The 
authentication tokens are denoted Vi,j where the variable i  
represents the current  TChain and j represents the current 
transaction number within the TChain. The tokens are 
created by hashing the seed concatenated || with a variable 
indicating the position of the hash function in the TChain.  
This position indexing technique is a well-known technique 
for boosting security because Birthday Attacks can be 
avoided if all hash functions used are indexed by their 
position in the chain [15]. As will be explained in the 
Next_Seed stage, we also update the seed several times 
during the session. The number of times the seed is updated 
depends on the number of transactions and the value of 
TChain_Len. This number is used to indicate how many 
TChains we will have during the session. In other words, 
each updated seed is only used by the transactions of one 
TChain and then discarded and never used again.  

3) Next_Seed stage  

The third component of the protocol is the Next_Seed 
routine. This routine is responsible for updating the seeds 



used in the TChains to generate authentication tokens. It 
should be noted that each TChain has its own seed. This 
routine is invoked once the authentication tokens of the first 
TChain are created and transmitted. Based on the number of 
transactions and TChain_Len exchanged in the initialization 
stage, we know the number of times the seed is expected to 
be updated. The length of the seed chain, SChain_Len, is a 
result of dividing the number of transactions N by the value 
TChain_Len. Once the authentication tokens have all used a 
seed once (i.e. TChain_Len is exhausted), the Next_Seed 
routine is invoked to produce an updated seed for the next 
authentication token chain; TChain. We illustrate in the 
following section how our protocol works with a pseudo 
code and detailed examples. The performance evaluation 
results of the proposed scheme are presented in sections 4 
and 5.  

B. Selecting a Cryptographic Hash Function  

A cryptographic hash function is an algorithm which 
changes a certain set of data into a string of a fixed size, 
called the block size. Examples of cryptographic hash 
functions include MD4, MD5, SHA-1 and SHA-2. It was 
proven that the MD5 hash function is prone to collision 
attacks [11] , [4] as well as pre-image attacks [12], and 
therefore, we did not consider it in our scheme. While SHA-
1 is resistant to pre-image attacks, it was proven by [13] that 
it is theoretically prone to collision attacks. However, since 
it is not practically susceptible to collision attacks, we have 
used it in our protocol for the purpose of illustration. 

In our implementation, the original block size is 160-bit 
corresponding to SHA-1, but it can easily be expanded to 
accommodate stronger cryptographic techniques that require 
larger block sizes such as SHA-2 (in all its sizes) and SHA-
3 once it is released by NIST.  

IV. CASE OF KNOWN NUMBER OF 
TRANSACTIONS 

Accurate statistics about network traffic related to 
social networking sites can be helpful in identifying the 
length of the one-way hash chain. However, it is not always 
the case that these are readily available. Dacosta et al [5] 
conducted basic traffic analysis of the social networking site 
“Facebook” and concluded that a typical session requires 
hundreds of transactions, and thus they set their chain length 
at 1000. In our study, we have varied this chain length since 
different social networking sites might have different 
requirements.  Following are the steps of the protocol when 
the number of transactions is known.   

A. The proposed protocol’s steps 

The initialization stage takes place using an HTTPS 
connection. During the HTTPS authentication, the initial 
value of the secret key S0, the number of transactions N and 
the length of TChain (i.e. TChain_Len) are selected and 
exchanged between the server and the client. The following 
code is executed at both the client and the server sides. 

SChain_Len:= N ÷ TChain_Len  // length of the SChain  

 I:= SChain_Len                         //  I is the global index for the SChain 

  

J:= TChain_Len                      // J is the global index for the TChain  
                                 
Seed:= HI(S0)                        // Seed is now Seed1=seed for the first TChain  

 

The routine Authenticate_Token is executed once for 
each transaction to compute the authentication tokens that 
will be transmitted with the transaction cookie.  

 
Authenticate_Token(Seed, J) 
Begin 
V:= HJ(Seed||J )     // J is the global index for the TChain where || is a 

concatenation of the seed with the hash function 
position in the chain 

J:= J -1     
if (J==0) then              // TChain length is exhausted 
   Seed:= Call Next_Seed( )          // Seed has to be updated 
  J:= TChain_Len                  // TChain length is reset 
end-if            
Return (V) 
End 

Next_Seed( ) 
Begin 
I:= I-1                             // I  is the global index for the  SChain 
Seed:= HI(S0)                   // updating the Seed value 
Return (Seed) 
End;  

Let us now illustrate how the protocol works with an 
example. In case the number of transactions is known to be 
N =200, and the TChain_Len =4, the seed is going to be 
updated 50 times (i.e., SChain_Len = 50)  to carry out the 
hashing functions for 200 transactions.   

We have  I=50, J=4, Seed1= H50(S0) 

The first TChain of four transactions will create the 
following authentication tokens.  

V1,1= H4(Seed1||4)  

V1,2= H3(Seed1||3)  

V1,3= H2(Seed1||2)  

V1,4= H1(Seed1||1)  

Once these authentication tokens have been transmitted, 
the Seed has to be updated to Seed2= H49(S0) and J has to be 
reset to 4. 

The next step is to generate the second set of four 
transactions which will be: 

V2,1= H4(Seed2||4)  

…….. 

V2,4= H1(Seed2||1)  



The code continues to calculate the authentication 
tokens in each TChain until we reach the 50th TChain. The 
50th TChain will have the Seed50= H(S0)  and its 
authentication tokens will be:  

V50,1= H4(Seed50||4) 

…….. 

V50,4= H1(Seed50||1)  

B. Protocol Evaluation  

1) The Testbed 

In this section, we present the protocol evaluation 
results when the number of transactions in a session is 
known. We developed a detailed benchmark in Java which 
allowed us to test different session scenarios. An important 
metric used in our tests is SessionCost which is the total 
number of hash operations performed during the lifetime of 
the session. The metric SessionCost represents the overall 
execution overhead of the protocol including the overhead 
of the  Initialization stage and the overhead of the	
  
Authenticate_Token routine for all transactions as well as 
the overhead of the Next_Seed routine.  

Figure 3 shows the performance of the protocol for 
different values of the number of transactions N and the 
length of TChain. It is interesting to see that the value of 
SessionCost decreases as the value of TChain_Len  
increases until a certain point then starts to increase again. 
For each value of N, there is a certain value of TChain_Len 
that minimizes the value of SessionCost. We validate this 
behavior by an analytical model. 

 
Figure 3:  Protocol Evaluation (known number of transactions)	
  

2) Analytical Model 

As we described earlier our protocol is composed of 
two chains: i) the seed generating chain SChain represented 
by the horizontal axis in Figure  2, and ii) the authentication 
generating chain TChain represented by the vertical 
(slanted) axis in Figure 2. For simplicity, we assume that 
the cost of a single hash operation used in the SChain and 
TChain is the same because they both use the same hashing 
algorithm (i.e. SHA-1); we will examine this assumption 
later at the end of this section. The cost of a single session 
SessionCost= C is the sum of the hashing operations 

required to generate authentication tokens in the vertical 
chains, CV,  and the hashing operations required to update 
the seeds in the horizontal chain, CH. Here is how 
SessionCost is calculated. 

 
N= number of transactions 
M= SChain_Len 
K= TChain_Len  
 
Cost of one vertical chain = K(K+1)/2  
CV = MK(K+1)/2 =  N(K+1)/2 	
  	
  	
  	
  	
  	
   
CH = M(M+1)/2  
C  = CV + CH 
    = N(K+1)/2  + M(M+1)/2  

The next formula can be used to plot C as a function of N 
and K.  
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To find the optimal value of K which minimizes the cost C, 
we differentiate formula (1) and equate to 0 
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Equation 2 can be used to derive the optimal value of 
K which corresponds to TChain_Len. Table 2 gives the 
optimal value of TChain_Len obtained by solving the 
above cubic equation numerically. 

TABLE I: TChain_Len OPTIMAL VALUE 

Number of 
Transactions 

Optimal 
TChain_Len 

500 10.03 

1000 12.625 

1500 14.445 

2000 15.895 

Comparing Table 1 with Figure 3, we can see that the 
TChain optimal values which we obtained from the 
simulation are very close to the optimal values obtained 
from the analytical solution. 
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It should be mentioned that the above analytical 
solution was derived based on the assumption that the hash 
operation used in the SChain and TChain have the same 
cost because both use the same hash function SHA-1.  A 
more accurate model can be easily developed to account for 
the extra overhead of the concatenation operation used in 
the SChain. Since the cost of the concatenation operation is 
much smaller than the cost of  the hash operation, the slight 
increase due to concatenation  can be accurately modeled 
by multiplying the cost of CH by a factor r which is slightly 
larger than 1.  This will cause Equation 2 to be slightly 
modified as follows: the second and third terms will be 
multiplied by the factor r. Solving this modified equation 
gives optimal values very close to those given in Table 2. 

C. Protocol Comparison with OHC 

In order to validate the efficiency of our protocol, we 
compared its performance with the OHC protocol proposed 
in [5].  

 

	
  
Figure 4: Performance comparison between position-index hashing (PIH) 

and OHC  

In Figure 4, we demonstrate the performance 
comparison between our protocol and the OHC protocol. 
We compared the average cost of a single transaction in 
both protocols. In our protocol, we were able to lower the 
average cost of the transaction tremendously. For instance, 
for 500 transactions the average transaction cost of the 
OHC protocol is 250, whereas our protocol lowers this 
average to a little over 11. While this average tends to 
increase significantly with the increase in transaction 
numbers for the OHC protocol, our average stays relatively 
low even with N= 2500 transactions where the average cost 
is 13.65. 

In order to further gain insight in the benefits of 
adopting our protocol, we measured the performance 
improvement ratio when our protocol is chosen over the 
OHC. The performance improvement ratio is defined as the 
ratio SessionCost of OHC : SessionCost of our PIH 
protocol.  Figure 5 displays the significant improvement 
our protocol achieves over OHC.  

Figure 5:  Performance improvement ratio of OHC 

Looking at Figure 5, we can easily gain insight on how 
choosing our protocol is beneficial. Our protocol 
outperforms the OHC protocol by a little over 22 times 
when the number of transactions is 500. This improvement 
ratio is much higher with higher transaction numbers. 
When we have 2500 transactions to be handled in a session, 
our protocol outperforms the OHC by over 91 times. This 
is a relatively wide margin and makes our protocol 
plausible. The ratio is expected to be higher for longer 
sessions with higher transaction numbers. 

V. UNKNOWN NUMBER OF TRANSACTIONS 

A. Certainty versus Uncertainty in Transaction Number 

In designing the protocol, we took into consideration 
the possibility of certain versus uncertain number of 
transactions. More often than not, it is very hard to estimate 
the exact number of transactions to be handled in a single 
session in a social networking site. As we have seen above 
in our discussion of Facebook session length statistics 
introduced in [5], the length can range from a few hundred 
transactions to several hundreds. This has led us to devise 
two different versions of the position-indexed hashing 
protocol to accommodate the two scenarios: known number 
of transactions and unknown number of transactions.  

We have already accounted for the case of known 
number of transactions in the previous section, and this 
section is devoted to explicating the case of unknown 
number of transactions. When the number of transactions is 
unknown, there is no way to calculate the SChain_Len and 
hence the number of TChains in a session. Therefore, we 
needed to change the code slightly to account for this 
discrepancy. During the Initialization stage instead of 
exchanging the number of transactions N and the 
TChain_Len, the client and server exchange the 
TChain_Len and another value representing the 
SChain_Len. The importance of SChain_Len specification 
comes from the need to update the seed during the session 
multiple times. Since the transaction number is unknown, 
we have no way of determining how many times the seed is 
going to be updated. Given this scenario, we are faced with 
another problem. If the specified SChain_Len is not long 
enough (i.e., the actual number of times we will have to 
update the seed is more than the value of SChain_Len), we 
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will need to repeat using one or more seeds, which could 
compromise the security of the session. To solve this 
problem, we utilize the number of TChains in a session as 
an index to be attached to the updated seed via a 
concatenation process ||. The index for TChain number can 
be derived from the TChain_Len and the Next_Seed 
routine. The first TChain in a session is the one that uses 
the first seed and once the Next_Seed routine is invoked, 
the TChain index is incremented and the new value is 
attached to the hashed seed.      

B. The Modified Protocol 

Here, we introduce how we modified the protocol to 
account for the case of unknown number of transactions. 
We still have the three stages we had in the unknown 
number of transactions case.  

1) Initialization 

The initialization stage takes place using an HTTPS 
connection. During the HTTPS authentication, the initial 
value of the secret key S0, the length of the authenticate-
token chain TChain_Len and the length of the next-seed 
chain SChain_Len are selected and exchanged between the 
server and the client. The following code is executed at both 
the client and the server sides. 
I:= SChain_Len        // I is the global index for the SChain  

  
J:= TChain_Len      //J is the global index for the TChain 

              
index:= 1                //a global variable indicating TChain 

              number where 1 refers to first TChain  
Seed:= HI(S0||index)     // Seed is now Seed1=seed for the first 
                                        TChain 

	
  
Authenticate_Token(Seed, J) 
Begin    
V:= HJ(Seed||J )                           // J is the global index for the TChain  
J:= J -1 
if (J==0) then                             // TChain_Len length is exhausted  
    index:= index + 1                   // index incremented for the next TChain 
    Seed:= Call Next_Seed( )      // Seed has to be updated 
    J:= TChain_Len                   // TChain length is reset 
end-if      
Return (V) 
End 

Next_Seed( ) 
Begin 
I:= I-1  
if (I==0) then                    // SChain length is exhausted 
   I:= SChain_Len             // I is reset to SChain_Len  
end-if   
Seed:= HI(S0||index);  
Return (Seed) 
End  

Here is an example to help illustrate how the protocol 
handles the transmission of authentication tokens when the 
number of transactions is unknown. During initialization, 
the values of TChain_Len=4 and SChain_Len=10 will be 
selected and exchanged between the server and client. 

We have I=10, J=4, index=1. We assign an index 
which represents the first TChain, and therefore the first 
seed will be: 

Seed1= H10(S0|| 1)  

The first TChain will use Seed1 in the hashing function to 
derive the first set of authentication tokens as follows… 

V1,1= H4(Seed1||4) 

V1,2= H3(Seed1||3) 

V1,3= H2(Seed1||2) 

V1,4= H1(Seed1||1) 

Now index becomes 2 which represents the second TChain, 
I =9, Seed has to be updated to Seed2= H9(S0||2) and J has to 
be reset to 4.The second TChain will have the following 
authentication tokens: 

V2,1= H4(Seed2||4) 
…….. 

V2,4= H1(Seed2||1) 

After finishing ten TChains (i.e. 40 transactions) index 
becomes 11 which represents the 11th TChain,  I has to be 
reset to 10, Seed has to be updated to Seed11= H10(S0||11) 
and J has to be also reset to 4. If we did not use the TChain 
number as a value attached to S0 , we would have been 
forced to recycle Seed1 as Seed11=Seed1=H10(S0). This could 
potentially compromise our protocol as it becomes easier to 
detect the initial seed. By indexing the TChain number and 
using its value in the hashing function, we are able to solve 
this problem.    

Therefore, the 11th TChain (11th set of four transactions) 
will have authentication tokens which will be:  

V11,1= H4(Seed11||4) 

…….. 

V11,4= H1(Seed11||1) 

The protocol goes on according to this routine until the user 
or the server terminates the session.   

C. Protocol Evaluation (unknown number of transactions) 

In this section, we present the evaluation of our 
protocol when the number of transactions is unknown. 
Figure 6 illustrates the results when the SChain_Len is fixed 
at 5, while Figure 7 demonstrates the protocol’s 
performance when the SChain_Len is fixed at 20. Our main 
goal from this is to determine the best value of TChain_Len 
where the protocol performs relatively well.  

In both Figure 6 and Figure 7, regardless of the 
SChain_Len, the protocol seems to perform well when the 
TChain_Len is set at 3. Unlike the case of known number of 



transactions where we noticed some kind of correlation 
between TChain_Len and performance, in the case of 
unknown number of transactions it is better to set 
TChain_Len at a relatively low value.  

 

Figure 6: Protocol Evaluation (Unknown number of transactions) 
SChain_Len= 5 all the time 

	
  

Figure 7: Protocol Evaluation (Unknown number of transactions) 
SChain_Len= 20 all the time	
  

Our next task was to see what the best value of 
SChain_Len is when the TChain_Len is fixed at 3. The next 
graph (Figure 8) represents the session cost of different 
number of transactions with TChain_Len= 3 and different 
SChain_Len values. 

Figure 8: Protocol performance comparison when TChain_Len=3 and 
different SChain_Len	
  

Figure 8 indicates that there is a steady and direct 
relationship between SChain_Len and performance 
measured in SessionCost. The lower the value SChain_Len, 

the better performance we can achieve when we do not 
know the number of transactions during a session. In other 
words, we need to start with relatively short chains in both 
the authenticate-token chain TChain and the next-seed chain 
SChain.   

D. Protocol Evaluation (Energy consumption) 

When designing any authentication protocol, equally 
important to efficient computational overhead is how much 
energy is expended. According to [16], there are at least 
three approaches to preserving battery life in mobile 
devices: efficient hardware, accurate knowledge of energy 
consumption of different cryptographic approaches and light 
weight security mechanisms.  

Energy consumption is largely influenced by the 
cryptographic hash function used in the authentication 
scheme as different hash functions have different energy 
consumption levels. The authors of [17] conducted an 
extensive analysis of energy characteristics of various 
cryptographic approaches and found that energy varies 
according to the cryptographic approach utilized. For SHA, 
SHA1 and HMAC, the energy required to conduct a single 
operation is 0.75, 0.76 and 1.16 microjoule/byte, 
respectively (for a complete list of energy consumption 
characteristics of different cryptographic approaches we 
refer the reader to [17]).  

Since the cost of the session is what determines the 
amount of hashing operations required to implement 
authentication, energy consumption is correlated with the 
session cost described in section 4.2. In our evaluation, we 
demonstrate the energy consumption of our position-
indexed hashing protocol and compare it with the OHC in 
the unknown number of transactions case.  

It should be noted though that the initialization phase is 
not included in this comparison because it is conducted 
using an HTTPS.  As [17] indicates the energy 
consumption in the SSL protocols is influenced by the 
transaction size which is not the scope of the current paper. 

Figure 9 demonstrates the energy consumption 
comparison between our position-indexed hashing protocol 
and the straight forwardly configured one-way hash chains. 
While the two protocols are comparable in the lower 
number of transactions, our PIH protocol clearly wins in 
the longer sessions as can be seen when the number of 
transactions is high. This results in a better battery 
conservation as the OHC drains energy resources much 
faster.   
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Figure 9: Energy consumption comparison between the OHC and PIH in 
the unknown number of transactions case	
  

VI. CONCLUSION 

One-way hash chains can be efficiently used in 
collaborative and social media networks to overcome the 
problem of session hijacking in Internet sessions caused by 
stealing cookies. Due to the computation overhead caused 
by overestimating the length of internet sessions, they have 
not been widely utilized. In this paper, we proposed a one-
way hash chain protocol to address the problem of 
overestimating the number of transactions during a session 
in the straightforwardly configured one-way hash chains. 
Our solution achieves its goal by utilizing two one-way 
hash chains; one is responsible for updating the secret and 
the other for creating the authentication tokens attached to 
the cookies using the secrets produced by the first chain. 
We also employ the position of the hashing function in the 
chain in order to strengthen our protocol against attacks 
such as Birthday attacks.   

Our extensive evaluation of the protocol and 
comparison with other protocols yielded encouraging 
results. We have been able to improve the performance of 
one-way hash chains significantly while keeping the same 
levels of security. By adopting the position-indexed 
hashing protocol, energy consumption is reduced 
significantly especially with longer sessions making our 
protocol ideal for battery operated media.      

References  
[1]  E. Butler. FireSheep: Cookie Snatching Made Simple. ToorCon   

Conference, San Diego, CA, October 22-24, 2010. Software 
available at http://codebutler.com/firesheep 

[2] J. Cashion, and M. Bassiouni. Protocol for mitigating the risk of 
hijacking social networking sites. Proceedings of the 7th IEEE 
International Conference on Collaborative Computing: Networking, 
Applications and Worksharing (CollaborateCom’11), Orlando, FL, 
October 15-18, 2011.  

[3]  J. Cashion, M. Bassiouni. Robust and Low-Cost Solution for 
Preventing Sidejacking Attacks in Wireless Networks using a 
Rolling Code. In: Proceedings of the 7th ACM International 
Symposium on QoS and Security of Wireless and Mobile Networks 
(Q2SWinet’11), Miami Beach, Florida, pp. 21-26 (2011) 

[4]  S. Chen, and C. Jin. An Improved Collision Attack on MD5 
Algorithm. Lecture Notes In Computer Science, pages 343–357, 
2007. 

[5]  I. Dacosta, S. Chakradeo, M. Ahamad, P. Traynor. One-Time 
Cookies: Preventing Session Hijacking Attacks with Disposable 
Credentials. Technical Report, Georgia Institute of Technology, 
April 2011. Available at: 
http://smartech.gatech.edu/bitstream/handle/1853/37000/GT-CS-11-
04.pdf 

[6]  N. Haller. The S/KEY one-time  password system. RFC 1760, 
February 1995. 

[7]  L. Lamport. Password authentication with insecure communication. 
Communication of the ACM, Vol. 24, No. 11, 1981, pp. 770-772. 

[8]  S. Murdoch. Security Protocols XVI Hardened Stateless Session 
Cookies. Lecture notes in computer science. 2011;6615:93-101. 

[9]  B. Ponurkiewicz. FaceNiff- A new Android download application. 
Available at http://faceniff.ponury.net/.  

[10]  G. Pujolle, A. Serhrouchni, I. Ayadi. Secure session management 
with cookies. Information, Communications and Signal Processing, 
2009. ICICS 2009. 7th International Conference on, vol., no., pp.1-6, 
8-10 Dec. 2009 

[11] M. Stevens. Fast collision attack on MD5, (2006) 
http://eprint.iacr.org/2006/104.pdf. 

[12] X. Wang, X. Lai, D. Feng, H. Chen, X. Yu. Cryptanalysis of the 
Hash Functions MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) 
EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer, 
Heidelberg. 

[13] X. Wang, Y. L. Yin, & H. Yu. Finding collisions in the full SHA-1, 
in V. Shoup, ed., 'CRYPTO', Vol. 3621 of Lecture Notes in 
Computer Science, Springer, pp. 17--36. 2005 

[14] M. Wu, S. Garfinkel, R. Miller. Secure web authentication with 
mobile phones. In: DIMACS Workshop on Usable Privacy and 
Security Systems, July 2004 

[15] Hu, Yih-Chun, Markus Jakobsson, and Adrian Perrig. "Efficient 
constructions for one-way hash chains." In Applied Cryptography 
and Network Security, pp. 423-441. Springer Berlin Heidelberg, 
2005 

[16] Chandramouli, R., Bapatla, S., Subbalakshmi, K., & Uma, R.: battery 
power-aware encryption. ACM Transactions on Information and 
System Security (TISSEC), 9(2), 162-180. 2006 

[17] Potlapally, Nachiketh R., Srivaths Ravi, Anand Raghunathan, and 
Niraj K. Jha. "Analyzing the energy consumption of security 
protocols." In Proceedings of the 2003 international symposium on 
Low power electronics and design, pp. 30-35. ACM, 2003. 

 
  

0.00E+00	
  

1.00E+07	
  

2.00E+07	
  

3.00E+07	
  

4.00E+07	
  

5.00E+07	
  

6.00E+07	
  

7.00E+07	
  

8.00E+07	
  

100	
   500	
   1000	
   1500	
   3000	
  

En
er
gy
	
  C
on
su
m
pt
io
n	
  
in
	
  µ
J/

by
te
	
  

Number	
  of	
  Transactions	
  

PIH	
  

OHC	
  


