Supporting Adaptable Granularity of Changes for
Massive-scale Collaborative Editing

Luc André, Stéphane Martin and Gérald Oster

Université de Lorraine, F-54000
CNRS, F-54500
Inria, F-54600

Email: {luc.andre,stephane.martin,gerald.oster} @loria.fr

Abstract—Since the Web 2.0 era, the Internet is a huge content
editing place in which users contribute to the content they browse.
Users do not just edit the content but they collaborate on this
content. Such shared content can be edited by thousands of
people. However, current consistency maintenance algorithms
seem not to be adapted to massive collaborative updating. Shared
data is usually fragmented into smaller atomic elements that
can only be added or removed. Coarse-grained data leads to
the possibility of conflicting updates while fine-grained data
requires more metadata. In this paper we offer a solution for
handling an adaptable granularity for shared data that overcomes
the limitations of fixed-grained data approaches. Our approach
defines data at a coarse granularity when it is created and refines
its granularity only for facing possible conflicting updates on this
data. We exhibit three implementations of our algorithm and
compare their performances with other algorithms in various
scenarios.

Keywords—Collaborative editing, consistency maintenance,
optimistic replication, Computer-supported collaborative work

I. INTRODUCTION

Mass collaboration involves hundreds to thousands of
people working towards a common goal. Wikipedia is one
of the most emblematic figure of mass collaboration. When
breaking news happens, it is common that hundreds of
people contribute to the same related Wikipedia pages in a
very short amount of time. In such a situation a real-time
collaborative editor would improve the collaboration as it
allows contributors to edit simultaneously the content. It would
avoid the recurring concurrent edits problems that arise when
several users edit the same page at the same time: the first
contribution is saved while others have to be manually merged
by their contributors with the new content; afterwards the
merged content is resubmitted again; this process is recursively
repeated until no contribution is saved in the meantime. In
real-time collaboration changes of one user are automatically
integrated into the shared data and immediately pushed to the
other users.

Unfortunately current real-time collaborative editing
technology is not ready to support that scale of collaboration
— large amount of contributors, high velocity of changes. —
This is partly due to the underlying replication mechanism
which has to merge the concurrent changes in a single content
and replicate it in real-time amongst the contributors. Existing
replication mechanisms for collaborative editing consider that
the shared content is made of a sequence of elements whose

Claudia-Lavinia Ignat
Inria, F-54600
Université de Lorraine, F-54000
CNRS, F-54500
Email: claudia.ignat@inria.fr

granularity is fixed. For instance a text content is generally
seen as a sequence of characters or a sequence of lines. A
coarse granularity of changes allows to keep low the overhead
generated by additional structural metadata that maintains
ordering between elements. But when the content of such an
element is updated, this element has to be deleted and a new
one is inserted. This can lead to duplicated content when two
concurrent updates are done on the same element. In this case
additional user actions are required to merge this duplication.
On the other hand, a finer granularity of changes allows to
compute finer merging of concurrent changes but implies a
higher overhead. Additionally, the more elements the document
is made of, the more computation is needed to apply and merge
user changes.

In this paper we propose a new replication mechanism for
merging content made of elements with variable granularity.
It avoids the case where content is automatically duplicated
during merging of concurrent modifications since it allows to
insert an element within an existing element. As the content is
generally made of coarser elements than in other approaches,
our proposed approach performs better and has a smaller
memory footprint than existing approaches.

This paper is organized as follows. Section II gives
a comprehensive view of existing replication mechanisms
suitable for real-time collaborative editing and points out their
limitations. Section III presents the model and the algorithms
used by our approach. Section IV discusses the correctness
of our approach. Section V exposes performance of our
approach by means of simulations. Finally, Section VI contains
concluding remarks.

II. BACKGROUND AND RELATED WORK

In order to enable high availability and performance in
collaborative editing data is replicated. Each user possesses
a copy of the edited document. Rather than using traditional
pessimistic mechanisms relying on locking or priority-
based policies, collaborative editing employs optimistic
replication [1] mechanisms. Users can freely edit the document
copies at any moment. When a user edits her own copy,
she first modifies it locally and then the related changes
are propagated to the copies of other users. These changes
are integrated when received at remote copies. Optimistic
replication lets copies diverge temporarily while operations are
still transiting the network but eventually, when all changes are

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254123

integrated, it ensures copies convergence. Two main families
of optimistic replication algorithms have been proposed:
operational transformation and conflict-free replicated data
types. In this section we present the main features of these
families of algorithms by highlighting their advantages and
limitations.

A. Operational Transformation

Operational transformation approach [2] is a family of
operation-based optimistic replication mechanisms. It has been
proposed in the context of real-time collaborative editing and
has been widely studied in the literature [3]-[5]. In this
approach local operations are executed immediately on the
document copy after they have been generated and remote
operations are transformed against concurrent operations upon
their reception at other copies. The transformations should be
performed in such a manner that the intentions [4] of the users
are preserved and the copies of the document converge in the
end.

site 1 site 2
4‘abc’, ‘ﬂabc”
op1 = ins(3,x) op2 = del(2)

/

T(op1,0p2) = ins(2, x)

arc axrc

Figure 1: Operational transformation - copies convergence by
transforming.

Operational transformation approaches ensure the causality
property among the operations. The causal relation between
two operations was defined based on the ‘“happen-before”
relation [6]: an operation O, is said to causally precede
operation Oy if the site that generated O, executed O, before
the generation of O,. The causality property ensures that if a
site executed operation O, before it generated Oy, then all the
other sites should execute O, before Oy.

The main issue of the operational transformation approach
is scalability. The transformation of a remote operation is
computed regarding all concurrent operations, i.e. operations
that changed the state of the document between the remote
generation and the local reception. Fig. 1 illustrates an example
of two concurrent operations. The insertion is generated at
site 1 when the document text is “abc”, but when received
at site 2 the text is “ac”. The state of the document is not
the same at the generation at site 1 and the reception at site
2, so the received operation needs to be transformed with
every operation responsible of this change. Moreover, when
an operation is transformed regarding another operation the
two operations have to be defined on the same document state.
In order to satisfy this condition for transformation additional
computations need to be performed. Several algorithms define
an exclusion transformation that excludes an operation from
the context of another operation [4] or a transposition function
that changes the execution order of two operations and

transforms them such that the same effect is obtained as if
the operations were executed in their initial order and initial
form [5].

The more active users are typing, the more concurrent
operations are present and the more time is needed to handle
each operation. Additionally, in decentralized versions of
operational transformation approaches, it is hard to reduce the
history size by a garbage collection mechanism. In literature,
the fully decentralized algorithms require to satisfy two
correctness properties that are not friendly to ensure [7]. For
instance, the majority of operational transformation algorithms
make use of the position of the character for text editing. In
this context, one way to ensure these properties is to keep
traces of the deleted elements in the document as in [8],
which is quite simple to achieve but constraining in memory.
In a more general case, a vector clock [9] usually needs to
be sent together with each operation to be able to detect
concurrency and causality. This vector contains one entry per
user session which can be costly if a large amount of users
are collaborating.

B. Conflict-free Replicated Data Types

More recently, a new approach called Conflict-free'
Replicated Data Type (CRDT) has been proposed [10]-[12].
The purpose of such family of algorithms is to define abstract
data types providing a commutative set of operations to update
the data. Hence, transformations are not required anymore
to integrate concurrent changes since concurrent operations
commute - they can be applied in any order. Several algorithms
have been proposed; however, in what follows we restrict our
discussions to the most representative ones.

Woot [10] is the first created CDRT algorithm. Its
underlying principle is that in a text document, every character
is located between two others, so to build a document one
just needs to know the neighbours of each character. These
neighbours are called Previous and Nezt. To insert a new
element B between two existing elements A and D, element
B is created, with Previous(B) = A and Nexzt(B) = D.
Then to insert C' between B and D, Previous(C)= B
and Nexzt(C) = D. Even if now the element next to B
is C, Next(B) remains unchanged. This is not an issue,
B and D just need to be ordered before C is. Problems
arise when concurrent edits of the document happen. If two
users insert a string of characters between the same elements
at the same time, the deterministic algorithm sorting all
these new characters is quite complex and time-consuming.
This is emphasized by the fact that, as each element
is characterized by other elements, one cannot completely
remove elements from the document - they are turned invisible
and said becoming tombstones. So even inserting between
two apparently contiguous elements might trigger the sorting
algorithm. The tombstone concept is also a problem itself as
the length of the document can only grow over time. It is
worth to note that optimized versions (named WOOTH and
Woo0TO) of this algorithm have been proposed [13], [14]. The
causality property is replaced by preconditions: the necessity
of existence of neighbours in the case of an insertion and of
the element itself in the case of a deletion. As a result the

IThis approach is also referred as Commutative Replicated Data Types

“happen-before” relation between operations can be violated
in some cases.

Based on the idea that a text document is a set of ordered
characters, another algorithm named LOGOOT [12] has been
proposed. LOGOOT associates each character with a unique
identifier, the set of identifiers being densely ordered by a
specific relation?. To insert a new character at a precise position
in the document the character is inserted with a new suitable
identifier created on purpose. To remove an existing character
the corresponding character identified has to be located and
then the related character is removed with its associated
identifier. In this algorithm, each identifier is a list of triples
of integers. The first integer is a priority number, the second
one references the user who generated the element — called the
unique site identifier —, and the third one is equal to the value
of the user’s logical clock when this element was created — the
clock is incremented each time an operation is generated —. The
priority number is used to sort the characters, the site identifier
to break ties if two users generated both an element with
the same priority, and the clock value, together with the site
identifier, ensures that triples are unique. If it is not possible to
create a new triple between two others (for instance to insert a
character between two existing characters), the new identifier
will contain additional triples. This is similar to entries in a
dictionary where one can find the word “busy” between the
word “bus” and the word “but” even if the letter ‘t’ comes
straight after the letter ‘s’ in the alphabet. The main issue of
LoGoOoT is that a huge amount of insertions in the same part
of the document might lead to identifiers formed by very large
lists of triples that are memory costly [14].

TREEDOC [11] offers an alternative solution to compute
identifiers by modeling the document as a binary tree. Each
node contains a character, and the path from the root of the
tree to the node is the identifier of the character. The left child
of a node was inserted just before the node, and the right
child after it. This leads to a more compact representation
of identifiers and to a natural dichotomous search, but paths
tend to grow fast when the tree is unbalanced. For instance,
the tree becomes unbalanced when insertions are performed
at the end of the text. Such a case occurs quite frequently as
users naturally write continuously from left to right. Moreover,
some tombstones are needed as it is not possible to remove
one node from the document if this node still has children.
However, once a node does not have any children anymore, it
can be safely removed. In the case of a concurrent insertion
in a node’s child subtree during its deletion, it is sufficient
to reintroduce the needed nodes as tombstones — as they are
known from the identifier which is the path — when receiving
the insertion operation.

LoGooT and TREEDOC do not propose any solution for
ensuring causality. They assume that the proposed algorithm
can be combined with any mechanism for ensuring causality.

All CRDT algorithms from the literature suffer from the
problem of the granularity: a fine granularity (i.e. characters)
can lead to more memory consumption and interlaced edits,
while a coarse one (lines or paragraphs) is less costly in term
of memory but can create duplicated content as an element

2In mathematics, a partial order < on a set X is said to be dense if, for all
z and y in X for which z < y, there is a z in X such that z < z < y.

cannot be updated. Indeed, an update is usually turned into
the deletion of the former element followed by the insertion
of the updated one. Hence, several concurrent updates of the
same element duplicate this element.

An attempt to solve this problem was proposed in [15].
The granularity used is a string of characters. This work
additionally introduces offsets as a way to differentiate the
parts of a string and to insert a new element into it. In
this model, strings have one identifier and one integer called
offset, representing the position of the left end of the string
in the initial insertion. Strings indeed can be split. In this
case several elements with the same identifier are in the
document, but their offsets differ. An appropriate property of
this technique is that a split of a string does not depend on the
user who performed it. If two users concurrently split the same
string at the same position, only one new element is created
during the split. Consequently, content is not duplicated. This
work uses a WOOT-like way to sort elements, using two left
and right references to others elements. It theoretically has
the same performance problems as WOOT, namely complex
integration mechanism and the need to keep tombstones in
the document. Besides, this approach is not suitable for real-
time editing. Indeed, when users are typing in, characters are
usually generated one by one giving the other users a kind of
feedback that some edits are in progress. But, in this approach,
all characters are buffered locally in order that only one single
block of characters is sent to other users. There is no possible
way to append characters to an existing string afterwards —
without generating additional metadata/identifiers —

C. Summary

Operational transformation approaches do not scale well
and nearly all CRDT have issues with the granularity of edits.
The sole known algorithm that handles multiple granularities
has the same limitations as the algorithm on which it is based
on.

Our aim is to propose an algorithm suitable for real-
time editing that deals with strings of characters without
requiring tombstones. This algorithm should offer support for
aggregation of edits at the end or at the beginning of an existing
string, allowing small edits to be sent as soon as they are typed
in. This feature of real-time collaborative editing should be
supported by a non costly solution that does not need additional
identifiers, i.e. by creating only one large string once all edits
have been sent and received. In what follows we describe our
proposed solution.

III. PROPOSITION
A. Overview

The basic idea of our algorithm is to associate one sequence
of data (i.e character) with only one identifier, and to generate
identifiers that stand into a sequence. As in LOGOOT and
TREEDOC algorithms, the set of identifiers must be ordered
and dense. A common way to achieve this property is to use
sorted lists of elements that can be lexicographically compared.
For the sake of comprehension, in this section these elements
are assimilated to the alphabet from ‘a’ to ‘z’, and the lists of
elements — the identifiers — to words. In practice, any finite and
large enough ordered set can fit, but different users shall not

be able to produce the same identifiers. This can be achieved
for instance by reserving for each user one specific element to
be appended at a precise position in the list.

In our approach, an identifier of a character is of the
form base : offset where base represents the first elements
except the last one, offset is the last element, and : is the
concatenation operator. An identifier of a string is of the
form base[o;.0,] and it represents all characters identified by
base : 0;,base : 0g,...,base : 0,. The character (m + 1) of the
string is identified by base : (0; + 1). The interval [0;.0,] can
be internally represented by the starting offset and the size of
the interval.

For instance, the newly inserted string “HEY” can be
represented in LOGOOT [12] as the following sequence of
three characters : <daa,H><dab,E><dac,Y>. LOGOOT uses
the same character representation as in our approach. But in
our approach this string will be represented using the following
single element: <da[a.c],HEY>. This further allows to insert
new characters at the end of the string in order to obtain the
new string “HEYWO” without creating an additional identifier,
as illustrated with the sequence: <da[a.e],HEYWO>.

The newly generated identifiers are ‘dad’ and ‘dae’ and
they are appended to the group ‘dafa.c]’ to create ‘dafa.e]’.
It is worth noting that the new identifier is unique. In order
to ensure that two different users do not generate the same
identifier, only the initial creator of the string can modify it.
This is in practice not constraining, as it is very frequent that a
single user is typing a whole sentence character by character.
In this case the creator is the one that updates the string each
time a character is added.

The proposed document model can be updated using the
two following local functions:

e insert(pos, str) inserts a string str at position pos in
document.

e remove(from, to) deletes the part of the text between the
two positions from and to (both characters located at
from and to are included in the deleted portion).

To insert, we basically need to create a new identifier
between two other (uncompressed) identifiers, or in other
words to generate a word that lies between two others. It is
always possible to find such a word assuming a word never
ends by a blank °.’. It is obvious in some trivial cases such
as finding a word between ‘abc’ and ‘def’ — at least anything
that starts with ‘b’ or ‘¢’ can fit. In some complex cases, the
blank character ‘.’ is used. We can easily add ‘aa’ between ‘a’
and ‘b’. However, an element inserted between ‘a’ and ‘aa’,
would be identified by ‘a.a’. This allows us to have an ordered
and dense set of identifiers as needed. Once the new identifier
is created, it is sent together with the inserted string to the
other users. Inserting into an existing compressed identifier
will lead to three elements: the former compressed one is now
split into two identifiers — similar to the former one but with
the corresponding split interval —, plus a third identifier that
lies in the middle of these two.

To delete a part of the document, we simply need to find
the (uncompressed) identifiers that stand between the given
positions, to store them for an immediate broadcast to the
other users, and to delete these identifiers and the associated

characters from the document. This can also lead to one
split. In our example, if we delete character Y’ we need
to delete the identifier ‘dac’. The data structure becomes:
<dala.b],HE><da[d.e],WO>

The two preceding functions insert and remove generate
respectively the two following operations that will be broadcast
to other users’ copies in order to apply the changes on them:

e add(id, str) adds the string str with identifier id to the
data model.
e del(id) deletes an interval of text whose identifier is id.

In order to add a new identifier to the data model, we need
to find its position among the other (uncompressed) identifiers.
This can be easily achieved using dichotomic search, and then
the new identifier can be added. The same search procedure is
applied in order to find the characters that must be removed
in the case of a deletion.

These two operations are executed remotely when received
at the other users’ copies. On these copies, the initial real
locations of the characters in the document might have changed
— since the document may have been updated locally in
parallel —. But, unique identifiers determine the right place
to insert or remove a string.

An identifier of a character that is deleted cannot be
re-used. In order to avoid reusing of the same identifier
the data structure maintaining the base part of an identifier
keeps information about the minimum and maximum offset
generated.

Similar to other CRDTs such as LOGOOT and TREEDOC
our approach does not propose any solution for ensuring
causality. However, causality is not needed and our approach
works well without it. If for some reason causality becomes
mandatory, our algorithms can be used together with any
mechanism that ensures causal delivery of operations such as
causal barriers [16].

B. Algorithms

Before describing our algorithms for executing local and
remote insertions and deletions, we present some functions
used by these algorithms.

The function GenerateBase(idLow, idHigh) is used to
generate a new base between the two existing identifiers idLow
and idHigh.

function GenerateBase(idLow, idHigh)

low=infinitelterator (idLow, MIN_VALUE)
high=infinitelterator (idHigh, MAX_VALUE)
new|D=[]
|=low.next()
h=high.next()
while (h—1 < 2) do

newlD.append(l)

| =low.next()

h=high.next()
end while
// generate a random number between | and h values and append it
newlD.append(RandomNumber(l, h))
newlD.append(SEPARATOR)
newlD.append(replicaNumber)
newlD.append(SEPARATOR)

new|D.append(localClock++)
return newlD
end function

An element of an identifier can take any value between
MIN_VALUE and MAX_VALUE.

We defined a special iterator that returns element by
element the values of the lists and completes that list with
an infinite number of MIN_VALUE for the lower identifier (or
an infinite number of MAX_VALUE for the higher identifier)
when all the values contained in the list have been enumerated.
At each step, the two values returned are compared and the
lower one is appended to a new list as long as the distance
between the two values is smaller than two, i.e as long as we
cannot insert a new value between the two values returned
by the iterators. When the distance is greater or equal to two
(this case will always occurs, since we will eventually compare
MIN_VALUE and MAX_VALUE), a new value between the two
values is randomly created and appended to the new list. The
site number is then added, plus the value of the local clock.
This part of the identifier forms the base. A string identifier is
created by adding an interval to this base.

SEPARATOR is a special value used to separate the
generated id and the replica number or clock, to ensure the
uniqueness of identifier if the last element needs various
sites to be represented. For example, the separator avoids the
following ambiguous problem: the concatenation of site 12
with clock 1 and site 1 with clock 21 give both 121 without
any separator.

The function NumberOfinsertableCharacters computes the
number of characters that can be inserted between an identifier
and the next identifier in the model. This helps to decide if we
need to split a block or not: when we want to insert one large
string, the interval of the associated identifier is large, too,
i.e lots of uncompressed identifiers compose it. We need to
check if these uncompressed identifiers can be compressed into
another, or if the next element stands between two of them. In
this last case we need to create several compressed identifiers.
This function takes as arguments idinsert the identifier of
string to be inserted, idNext the identifier of next element in
the data structure and length the size of string associated to
the identifier that will be inserted. The returned value is the
length if there is enough room, otherwise it is the maximum
number of characters that can be inserted. There are two cases
to consider. The first one is when the base part of idInsert
is not a prefix of idNext. In this case length can safely be
returned since it means that any identifier which has this base
as a prefix — and it is the case for every uncompressed identifier
represented in idInsert — is smaller than idNext. On the other
case, when the base of idinsert is a prefix of idNext, it is
necessary to check if the end of the interval is smaller than
the value in idNext that stands after the base. If it is smaller it
can return length.

function NumberOfinsertableCharacters(idinsert, idNext, length)

if idInsert.length < idNext.length then
for i from 0 to idInsert.length—1 do
if idInsert[i] # idNext[i] then
return length
end if
end for
return idNext[i]—idInsert[i]+1

else
return length
end if
end function

In what follows we present the local and remote insertion
and deletion procedures.

When a user types in some text in her document the local
insertion procedure insert(pos, str) is called which performs
the following actions:

1) Search for the identifiers of the characters ¢; and co at
positions pos and pos+1 respectively, i.e. idp,s = base; :
o1 and idp,s4+1 = basey : 03.

2) Check if c¢; was generated at this site and the sum of offset
01 plus size of str is less than MAX_VALUE and c; is at
the end of a block. In this case, str is appended to the
character ¢; and the operation add(base; : (o5 + 1), str)
is broadcast to the other user copies.

3) Similarly to the previous step check if c; was generated
at this site, if it is located at the beginning of a block
and if str can be inserted before it inside the block. The
corresponding remote add operation is broadcast to the
other user copies.

4) Otherwise, check if ¢y is inside a block, split the block
in two blocks in this case. In both cases, generate a
new identifier between id,,s and idy,,s41 by calling the
function GenerateBase. And, generate the corresponding
add operation with this new identifier.

5) Return the generated operation.

The local insertion procedure always generates an add
operation, that is broadcast to other users’ copies in order to
apply the changes on these copies.

The remote operation add(id, str), where id is of the form
id = base : offset, performs the following actions:

1) Search the element with the largest identifier smaller
than id (id; = base; : 0;) and the element with the
smallest identifier larger than id (ide = bases : 02). If
base = base; and o; + 1 = offset, append str to the
block with the base base. Otherwise if base = bases and
offset + 1 = o0y, add str at the beginning of the block
with the base base. Otherwise create a new element.

2) Check if the string needs to be split with a call to
n =NumberOfinsertableCharacters(id,idz,str.length).

3) Eliminate the first n characters from str and assign
the remaining characters to newString. If newString is
not empty, compute newld = base : (offset + n) and call
recursively add(newld, newString).

When a user removes some text in her document, the local
deletion procedure remove(from, to) is called which performs
the following actions:

1) Search the identifiers between position from and to.

2) Generate the delete operations with found identifiers.

3) Delete elements between from and to. If position from
or to is in the middle of a block, split this block.

4) Return the corresponding del operation.

The local deletion procedure always generates a del
operation that is broadcast to other users’ copies in order to
apply the deletion of these copies.

The remote operation del(ids) searches elements identified
by ¢ds and deletes them.

C. Data Structure

In this section, we present three data structures that can be
used to implement our data model: a naive version, a string-
based version and a tree-based version. Each of these data
structures has its own benefits and drawbacks.

Each data structure contains a base-block composed of: the
base of the identifier and the minimum and maximum offsets
for this base. In Fig. 2 and Fig. 3 these extrema are indicated
by means of letters placed at the right-hand side of the base-
block.

1) Naive Implementation (LOGOOTSPLITNAIVE): In the
naive data structure, the algorithm stores the blocks sorted by
identifiers in a list such as presented in section III. Each block
contains a string and its identifier. When a user deletes or
inserts an element inside a block, the algorithm must split the
block. It returns two new blocks with different intervals — but
with the same base part of the identifier — and the related
portion of the initial string. Concretely, the data model of this
version is an array containing blocks. A dichotomic search can
be used to find an element based on its identifier.

The drawbacks of this implementation is the cost of the
lookup to find the ¢th element for local operations. Indeed,
it is necessary to count (and sum up) the size of each block
from the beginning of the list to find the right position. This
is clearly a costly procedure, especially if the position that the
algorithm is looking for is at the end of the document.

2) String-based Implementation (LOGOOTSPLITSTRING)
In the string-based data structure, two arrays are used: one to
represent the final string and a second one to store the offset
of the character and a link to the base part of the identifier.

Fig. 2 illustrates the state of the data model with this string-
based implementation after few insertions — the same example
was previously presented in section III —. First the string
“LLO.” is inserted between “E” and “W” whose identifiers are
respectively ‘dab’ and ‘dad’. The string “ARLD” is inserted at
the end of the content and then the first character “A” is deleted.

This structure consumes more memory, but it offers a direct
access to block identifiers. It is easy to manage insertions
and deletions. Unfortunately, the complexity of an insertion
is equal to the size of the array. But as observed during the
experimentations, this cost remains low in practice.

H|E|L|L|O W O|R|L|D
I I | | | | I I I I |
albla|blc|d|d|e|bl|c]|d
i O N U | | H H H
D) e i N B B
\ARA/ *\)\\\«\« Yy vV v

da ¢ dab ¢ z 4

Figure 2: String-based implementation data structures

3) Tree-based Implementation (LOGOOTSPLITAVL): This
data structure is derived from Ropes [17], a data structure for
storing and manipulating strings. The key idea is to make a
self-balanced tree with subsequences of the document stored
in its nodes. The main difference with the original Ropes
approach is that in our context no empty nodes exist. The
tree is a self-balancing binary search tree implemented using
an AVL [18]. This data structure behaves similarly to the naive
implementation but each block is now organized in an AVL
tree rather than an array.

Each node of the data structure contains:

e a subsequence of the document. It has the same content
as the block in naive implementation.

o the offset of the subsequence: The offset of first element
of the subsequence.

e a link to the base-block containing the base part of the
identifier.

e two children nodes, before and after.

e the size of the string contained by this subtree. The size
of the left child represents the position of the subsequence
in the text.

e the height of the subtree, used to balance the tree.

An element can be searched either based on its absolute
position or on its identifier. When the absolute position is
provided the tree is traversed based on the sum field of the left
child node. When the identifier is provided the tree is traversed
by using the base part and the offset field of the node. For both
searches three possibilities exist: the element is located before,
inside or after a node. If the searched element is located before
a node we compare it again with the left child of the node and
if it is located after the node we compare it again with the
right child. If the left or respectively right child of the node
does not exist we create a new node and connect it in the case
of an insertion, or return an error in the case of a deletion. If
the searched element is located inside the node, we split the
node in two nodes. The second node becomes the right child
of the first one and the searched element is created as the left
child of the second node if the operation is an insertion. If
the operation is a deletion, the searched element is deleted. A
node with empty string is deleted.

On each search for an insertion or a deletion, the target
path is kept in order to apply the tree rebalancing procedure.

‘6WO’?
d--""""TTTTTTTTT h:3, s:11
4

/ ~ ™~

“RLD”
h:1, s:3

¢

o
QO
[SHqY

Figure 3: Tree-based implementation data structures

This procedure traverses the tree from the end of the path and
performs the following actions until no more nodes exist in
the path:

e while |leftChild.height — rightChild.height| > 2 the
tree will be balanced as described in [18]. On each
rotation the new father is added to the path for consistency
maintenance. This operation needs to be repeated several
times since a split during an insertion could create more
than one node at a time — contrary to basic AVL.

e update the length of the string contained in the subtree.

e update the height of the subtree with the max of children
height plus one.

e pop node from path.

Fig. 3 illustrates the tree-based data structure for the
example presented in section III at a site that received first
the operation of addition of the string “ARLD” at the end of
the string “HEWQO?”, then the deletion of character “A” and
then the insertion of the string “LLO.” between “E” and “W”.

IV. CORRECTNESS

Our proposal ensures two correctness criteria: Convergence
and Intention preservation.

Definition 1. Convergence property: When no new updates are
generated and all messages (operations) have been delivered
to all users’ sites, user document copies have the same state.

Identifiers are unique, the base component of an identifier
being composed of a unique site identifier and the number
of operations generated at that site. Moreover, identifiers are
totally ordered. Therefore, when all operations are received by
all sites, the document copies are identical being composed by
the same sequence of elements ordered by their corresponding
identifiers.

Definition 2. Intention preservation property:

1) Each character inserted between two other characters in
the document viewed by a user, needs to keep its relative
position between its neighbors during the editing process.

2) Two concurrent string insertions at the same position
lead to one string followed by another — same order on
document copies —, not to a random interleaving of both
strings.

An identifier is uniquely constructed between two neighbor
identifiers. Identifiers are sorted in a total order and are never
modified during the editing process. Therefore the first point
of intention preservation property is ensured.

The second point is ensured since the GenerateBase
algorithm first creates a base, then an interval. So two
concurrent insertions at the same place have different bases,
and so if the base of the first string is smaller than the one
of the second, any character of the first string has a smaller
identifier than any character of the second, hence the characters
are not mixed up.

V. EVALUATION
A. Average-case Time Complexity Analysis

We denote by n the size of document, [the number of
blocks, d the number of deleted elements and s the string
added or deleted. We denote by f the number of times a
block was split. We denote by ¢ the size of an identifier. An
identifier grows when a block is split or when offset reaches
MAX_VALUE. In the worst case the number of blocks [is
equal to the size of document n. This case happens when users
created a document by inserting the text content character by
character. We denote a variable x by z* if it was implemented
in a constant amortized time. The generation of a new identifier
id has a cost of O(7). Copying a string in a new block costs s*.
During insertion or deletion, the cost of finding a base-block
in the hash table is [*.

In the naive implementation, the data model is an ordered
array of blocks. The search function for the position of an
element needs to sum up the lengths of all blocks preceding
that position. The cost of this function is O(I), [being the
number of blocks. The search function for the identifier of an
element in the array has a cost of O(i x log(l)) where i is the
cost to compare two identifiers and log(l) is the complexity
of a dichotomic search. The complexity of local insertion is
O(l + s* +1) since [is the cost of identifier search, I* is the
cost of the base-block search (I subsumes [*), ¢ is the cost of
the new identifier generation and s* is the cost of copying
the string content. For remote insertion, the complexity is
O(i x log(l) +1* + s*) where i x log(l) represents the cost of
identifier search function, [* is the cost of the block insertion
in the array and s* is the cost of copying the string. However,
in non-causal delivery insertion in a block which was split
can be delivered before the operation that caused the split. We

TABLE I: SUMMARY OF ALGORITHMS’ TIME COMPLEXITY

Algorithm name Search Insertion Deletion

of a Position of an Identifier Local Remote Local Remote
LOGOOTSPLITNAIVE l i x log(1) I+ i x log(l) x f I+ f i x log(l) x f
LOGOOTSPLITSTRING 1 i x log(n) s+ ixlog(n) X f+s f i X log(n) x f
LOGOOTSPLITAVL log(l) © x log(1) log(l) +¢ ¢ xlog(l) x f f+log(l) ixlog(l)x f
LoGooT 1 i x log(n) s X1 i x log(n) X s s i x log(n) X s
TREEDOC i A s X4 s X4 P XS i XS
Woor n+d 1 n+d+s s n+d+s s

1: # of blocks, n: size of the document, i: the size of an identifier, d: # of deleted elements, s: size of the string to inserted/deleted,
f: # of times a block was split

use f to count the fragments of the block, i.e the number
of blocks in which it was split. This complexity becomes:
O((i x log(l) +1* 4+ s*) x f). Locally a deletion can only
delete contiguous blocks. Therefore the cost is O(I + f x i*)
where [is the cost of searching the position, [* the cost of
deleting blocks and f x ¢* the cost of copying the identifiers
to forge the operation. For remote deletion, the block can be
non-contiguous and thus each identifier of a fragment is sent
(one by character in the worst case). Therefore the complexity
is O((@ x log(l) +1*) x f). The first product is the cost of
search identifier and [* is the cost of the deletion of a block
in an array, and this process is performed f times.

In the string implementation, the search function for a
position has a constant complexity as the underlying data
structure is an array and each character is linked to its
block. The search function for an identifier has a cost of
O(i x log(n)), because we use dichotomy on each character
identifier. The complexity for local insertion is O(n* + s +)
since adding a new string and allocate its place costs n*,
generating the offset block and linking it to the new block costs
s and generating the new identifier costs ¢. The complexity
of remote insertion is O((¢ x log(n) + n*) X f +1* + s).
The first product is the cost of a searching the identifier and
n* is the cost of inserting using an array copy. Since the
string to be inserted can be fragmented, this processing is
performed f times. [* is the cost of searching the base-block
in the hash-table, and s is the cost of creating a new block
for each character and linking it to the base-block. The local
deletion is always made on contiguous blocks which could
have been fragmented, thus every fragment identifier must be
sent. Therefore the cost of local deletion is O(f x i* + n*)
where f x ¢* is cost of copying the identifier and n* is the
cost of deleting of contiguous characters using an array copy.
The remote deletion is the deletion of each fragment, it has
a cost of O(i x log(n) x f x n*) where the first product is
the cost of searching a fragment identifier and n* is the cost
of deleting in an array using array copy. These two operations
are performed for each fragment (f times). In the worst case
the algorithm could search every character with one block by
character.

TREEDOC
LOGOOTSPLITAVL

~
N)
&

~
N
e

WA

\
/ My /”f\ﬁwf/‘u'\'\‘nuﬂvﬂrfm

Time to generate operation jis

~
N}
<

Woor
LOGOOTSPLITNAIVE

/V\/WMMMW\W\\V'N\JWN\;M\M VJ

In the tree implementation, searching a block from its
position has a complexity of O(i x log(l)) since each node
stores the size of the sub-document at its left and since the
tree is self-balanced. The balancing procedure traverses a path
in log(l) and rotates the tree in a constant time as described
in AVL tree [18]. By definition, the balancing count is equals
to the number of added and deleted nodes. Two nodes can be
added by a single operation (split and new node) during an
insertion. During a deletion it could be more — until [— if
we delete the entire document. The cost of self-balancing is
hidden by the search complexity in add operation and this is
the contrary in delete operation. The update itself is efficient,
insertion is a copy of added string or append an element (s*).
The complexity of local add is O(log(l) +s* +1). log(l) is the
cost of search, s* is the cost of string copy and i is the cost
of generating a new identifier. For same fragmentation reason
the complexity of remote add is O((i x log(l) + s*) x f +1*).
1 x log(l) is the cost of identifier search, s* is the cost of
copying the string and [* is the cost of searching the base-
block in the hash-table. The complexity of local deletion is
O(f xi*+log(l)). i* is the cost of copying the identifier, log({)
is the cost of balancing the tree which is more expensive than
search since it executed more than one time (f times). The
remote deletion has a complexity of O(i x log(l) x f) where
1 x log(l) is the cost of searching identifier and balancing and
it is performed f times.

TREEDOC is not based on a self-balanced tree and therefore
identifiers grow on each insertion when insertions are always
performed at the right of the last insertion. As in our
proposition identifiers are never rewritten. Consequently, its
search function has a complexity of O(h) in the worst case.
TREEDOC is not optimized for strings. The insertion costs
s x 1 because one identifier is generated for each character.
An improvement is to generate the first identifier and make a
balanced tree. The complexity becomes s + i.

Table I presents a comparison of the time complexity of
the different algorithms. For the sake of simplicity, provided
complexities do not include amortized costs.

LoGoot
LOGOOTSPLITSTRING

20 4

S |

Size in MegaBytes
8

A «ym/wff\ AL AN A
\

/07

Number of operations
(a) Generation time

Number of operations
(b) Remote integration time

“, %, 2 7 “, %, A2

7
%

Number of operations
(c) Memory occupation

Figure 4: Experimentation results for random trace

B. Experimentation

1) Description: To evaluate performance of our proposed
approach, we implemented our algorithms in Java and
integrated them into the JBenchmarker project’. The
experimentations were executed on Oracle JVM 7 powered
by Ubuntu 11.04 on Xeon 5160 processor (4MB cache,
3GHz, 1333 FSB) workstation with 8GB of RAM. Our
implementation is not multi-threaded, therefore each algorithm
uses only one core. We measured the time of operation
generation (when a wuser modifies the document), the
integration time (when another user receives a modification)
and the memory occupation. The time is measured by
System.nanotime() and the memory occupation is measured
by means of a dedicated Java library*. We launched each
algorithm with the same sequence of local operations on a
text document. Such sequences are called traces. No traces of
real-time massive collaborative editing with a large number
of users that edit concurrently shared data are available.
For instance, Wikipedia traces are already serialized and do
not capture concurrency between user edits. We therefore
randomly generated different types of traces for evaluating the
performance of our algorithms.

Two main types of traces were generated. The traces
contain two types of local operations insert(pos, string) and
remove(from, to). In the first trace insert/remove operations
were generated at random positions with a random string of
50 characters. In the second trace insert operations of random
strings of 50 characters were generated contiguously at the
end of the document and remove operations of 50 characters
were generated randomly. For each experiment, 100 sites are
virtually generating operations.

Each trace is composed of 20 000 operations and split
in two parts: the 10 000 first operations are made of 80%
insertions and 20% deletions and these ratios are inverted in
the second part of the trace. So basically, the first half of each
trace builds the document with lots of insertions, while the
second half destroys the document with lots of deletions.

3https://github.com/score-team/replication-benchmarker
“https://github.com/dweiss/java-sizeof — Memory consumption estimator

TREEDOC
LOGOOTSPLITAVL

Woor
LOGOOTSPLITNAIVE

In our experiments we compared the performances of our
approach with the ones of main existing CRDT approaches.
The comparison between the performances of CRDT and
operational transformation approaches can be found in [14].

2) Results for traces with random insertion: We first
analyse the generation time (Fig. 4a) and we can see the benefit
of balanced trees. Indeed TREEDOC® and LOGOOTSPLITAVL
feature the best performances. However, the benefits of using
blocks are not noticeable as LOGOOT access is constant
(implementation based on an array) and it is optimized to
generate at once identifiers for all characters in the string to
be inserted, and their insertion in the data structure is made
at once. However, it generates many operations and features a
high integration time as described later on in this section. As
expected, the cost to find an element in naive data structure
is high. We can see that the tombstone strategy is costly as
elements are never deleted from the document model: during
the destruction part, the size of the model does not change, and
so does not the time to convert a position into an identifier.

Fig. 4b illustrates the remote integration time of
the studied algorithms. The graphic shows the cost of
integration of one character operation. We can notice the
advantage of string management with LOGOOTSPLITSTRING.
LOGOOTSPLITSTRING takes more time to integrate an
operation than to generate it : integration needs a dichotomic
search while generation requires a direct access. The naive
implementation uses dichotomic search on blocks and not
on characters as in LOGOOTSPLITSTRING or LOGOOT.
TREEDOC model in this case is a balanced tree as the trace has
random insertion positions and hence characters are equally
distributed in the tree. Hence the tree traversal to find the right
place to insert a character is quite fast. LOGOOTSPLITAVL
uses a self-balanced tree on blocks, contrary to TREEDOC
which uses characters. WOOT is fast because it uses a
hash table to find an element or its neighbors. However
we can notice some spikes in the WOOT representation as
the integration mechanism is quite complex in the case of

SIn this experiment, the internal tree structure of TREEDOC is balanced
since insertions are performed at random positions.

LoGoot
LOGOOTSPLITSTRING

4
WWW“’WNVWW) A
| 3 ™

@ 3
2, =03
s WWJ E i M’J o
E Sl : el I ¢
8 Wl & WV s,
& MY - Y %
15 W = N o
Q | < 9 o
= e 15} s 0
g s -
5 &b g
& L 2 g
8 = 7]

) Z
o = (Z8N

=

3y, % P ", ‘ 3y, 2, P 2 ‘ 3, P P 9%
% %, Jooo % %, %, %, %, % %, %,

Number of operations
(a) Generation time

Number of operations
(b) Remote integration time

Number of operations
(c) Memory occupation

Figure 5: Experimentation results for trace with right-hand insertions

https://github.com/score-team/replication-benchmarker
https://github.com/dweiss/java-sizeof

concurrent insertions at the same position.

Concerning memory occupation (Fig. 4c), the least
performant algorithms are LOGOOT as it uses one identifier
per character, and WOOT as it uses tombstones that grow
constantly. In TREEDOC adding a character is equivalent to
adding a node to the tree model which is less costly than
generating large LOGOOT identifiers. For all LOGOOTSPLIT
algorithms, the deletions in the second part of the trace
fragment the blocks. In this case the ratio <479<r decreases
and the required memory increases.

3) Results for traces with right-hand insertions: This
experiment shows the drawbacks of unbalanced tree in
TREEDOC. If every character is inserted at the right-hand of
the document, the tree behaves as a unoptimized list, and
the searching algorithm becomes linear. It also shows that
LoGOoOT identifiers grow continuously.

VI. CONCLUSIONS

In this paper we presented a novel commutative replicated
data type for sequences of text. Our proposed CRDT has
the particularity of assigning unique identifiers to substrings
of variable length contrary to existing CRDTs that assign
unique identifiers to fixed size elements of the text (i.e.
characters or lines). This offers the possibility to define coarse-
grained elements when they are created and refine them
when needed. This greatly reduces the memory consumption
since a smaller memory overhead is needed to store metadata
(identifiers). Moreover, we show that overall performances
of our algorithms are above the others in average using
simulations. On frequent collaborative editing scenarios, the
performance improvement is even better.

From a user point of view, our algorithm ensures that
contiguous edits of the same user are not interleaved with
any other concurrent edits. Other algorithms in the literature
do not have this property, and the ordering of concurrent
insertions is decided by means yet deterministic but still
uncertain. From a user point of view, this allows users
to contiguously type sentences without being disturbed by
overlapping changes of any other users, and reduces the
number of interventions needed to manually re-order the
characters afterwards. Furthermore, large blocks can also be
handled in one operation (during a copy-paste operation for
instance). Thus, the integration of such edit is nearly as fast
as a single character operation, and the user is not blocked a
long time until every character of the string is inserted.

While we focused on collaborative text editing in this
paper, the proposed CRDT deals with a linear sequence of
elements. Indeed, this CRDT is above all an algorithm for
optimistic replication on any dataset which can be linearizable
and therefore could be applied in many other application
contexts.

ACKNOWLEDGMENTS

This work is partially funded by the french national
research program STREAMS (ANR-10-SEGI-010).

(1]

(2]

(3]

(4]

(51

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

Y. Saito and M. Shapiro, “Optimistic Replication,” ACM Computing
Surveys, vol. 37, no. 1, pp. 42-81, 2005.

C. A. Ellis and S. J. Gibbs, “Concurrency Control in Groupware
Systems,” SIGMOD Record : Proceedings of the ACM SIGMOD
Conference on the Management of Data - SIGMOD ’89, vol. 18, no. 2,
pp. 399407, 1989.

D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping, “High-latency,
Low-bandwidth Windowing in the Jupiter Collaboration System,” in
Proceedings of the 8th Annual ACM Symposium on User interface and
Software Technology - UIST ’95, Pittsburgh, PA, USA, 1995, pp. 111-
120.

C. Sun and C. Ellis, “Operational Transformation in Real-Time Group
Editors: Issues, Algorithms and Achievements,” in Proceedings of the
ACM Conference on Computer-Supported Cooperative Work - CSCW
'98, Seattle, WA, USA, 1998, pp. 59-68.

M. Suleiman, M. Cart, and J. Ferrié, “Concurrent Operations in a
Distributed and Mobile Collaborative Environment,” in Proceedings of
the International Conference on Data Engineering - ICDE’98, Orlando,
FL, USA, 1998, pp. 36-45.

L. Lamport, “Times, Clocks, and the Ordering of Events in a Distributed
System,” Communications of the ACM, vol. 21, no. 7, pp. 558-565,
1978.

A. Imine, P. Molli, G. Oster, and M. Rusinowitch, “Proving Correctness
of Transformation Functions in Real-Time Groupware,” in Proceedings
of the European Conference on Computer-Supported Cooperative Work
- ECSCW 2003, Helsinki, Finland, 2003, pp. 277-293.

G. Oster, P. Molli, P. Urso, and A. Imine, “Tombstone Transformation
Functions for Ensuring Consistency in Collaborative
Editing Systems,” in Proceedings of the International Conference on
Collaborative Computing: Networking, Applications and Worksharing
- CollaborateCom 2006. Atlanta, GA, USA: IEEE Computer Society,
2006, pp. 1-10.

F. Mattern, “Virtual Time and Global States of Distributed Systems,” in
Proceedings of the International Workshop on Parallel and Distributed
Algorithms. Chateau de Bonas, France: Elsevier B.V., 1989, pp. 215—
226.

G. Oster, P. Urso, P. Molli, and A. Imine, “Data Consistency for
P2P Collaborative Editing,” in Proceedings of the ACM Conference
on Computer-Supported Cooperative Work - CSCW 2006, Banff, AB,
Canada, 2006, pp. 259-267.

N. Preguica, J. M. Marques, M. Shapiro, and M. Letia, “A Commutative
Replicated Data Type for Cooperative Editing,” in Proceedings of the
29th International Conference on Distributed Computing Systems -
ICDCS 2009, Montreal, QC, Canada, 2009, pp. 395-403.

S. Weiss, P. Urso, and P. Molli, “Logoot : A Scalable Optimistic
Replication Algorithm for Collaborative Editing on P2P Networks,”
in Proceedings of the 29th International Conference on Distributed
Computing Systems - ICDCS 2009, Montreal, QC, Canada, 2009, pp.
404-412.

, “Wooki: a P2P Wiki-based Collaborative Writing Tool,” in
Proceedings of the International Conference on Web Information
Systems Engineering - WISE 2007, Nancy, France, 2007, pp. 503-512.

M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh, and P. Urso,
“Evaluating CRDTs for Real-time Document Editing,” in Proceedings
of the 11th ACM Symposium on Document engineering - DocEng 2011,
Mountain View, CA, USA, 2011, pp. 103-112.

W. Yu, “A String-wise CRDT for Group Editing,” in Proceedings of
the 17th ACM International Conference on Supporting Group Work -
GROUP 2012, Sanibel Island, FL, USA, 2012, pp. 141-144.

R. Prakash, M. Raynal, and M. Singhal, “An adaptive causal ordering
algorithm suited to mobile computing environments,” Journal of
Parallel and Distributed Computing, vol. 41, pp. 190-204, 1997.

H.-J. Boehm, R. Atkinson, and M. Plass, “Ropes: An Alternative to
Strings,” Software: Practice and Experience, vol. 25, no. 12, pp. 1315—
1330, 1995.

G. M. Adelson-Velskii and E. M. Landis, “An Algorithm for the
Organization of Information,” Doklady Akademii Nauk SSSR, vol. 146,
pp. 263-266, 1962, (English translation in Soviet Mathematics Doklady,
vol 3, pp. 1259-1263).

	I Introduction
	II Background and Related Work
	II-A Operational Transformation
	II-B Conflict-free Replicated Data Types
	II-C Summary

	III Proposition
	III-A Overview
	III-B Algorithms
	III-C Data Structure
	III-C1 Naive Implementation (LogootSplitNaive)
	III-C2 String-based Implementation (LogootSplitString)
	III-C3 Tree-based Implementation (LogootSplitAVL)

	IV Correctness
	V Evaluation
	V-A Average-case Time Complexity Analysis
	V-B Experimentation
	V-B1 Description
	V-B2 Results for traces with random insertion
	V-B3 Results for traces with right-hand insertions

	VI Conclusions
	VII Acknowledgments
	References

