SmartMart: IoT-based In-store Mapping for Mobile
Devices

Dylan Hicks
Columbia University
dth2115@columbia.edu

Kevin Mannix
Boston University
kmannix @bu.edu

Abstract—Quite often, when shopping in a supermarket (e.g.
Walmart), shoppers are frustrated at locating the items on the
shopping list and no assistance is available. On the other hand,
retailers also lose a large volume of sales as a result. In this paper,
we present a feasibility study that leverages the Internet of Things
(IoT) technology to make store items “smart” so that they can
automatically register and update their location information in an
information retrieval system, allowing shoppers to search, locate,
and map them on the store floor plan using mobile devices. A
free-accessible Android-based mobile app SmartMart has been
developed to demonstrate the promise of this preliminary work.
Continuous development of this research could lead to a complete
change in our day-to-day shopping experience.

Keywords—Internet of things, in-store mapping, information
retrieval, mobile devices.

I. INTRODUCTION

Supermarkets are self-serving in nature, where customers
use shopping carts in the store, search for the items they
want to buy, place them into the carts and then proceed to
the checkout counters. With little to none assistance, locating
the shopping items in a big, sometimes mazelike, store can
be very time-consuming, physically exhaustive and mentally
frustrating. On the other hand, retailers lose about 20% of
sales as a result [14]. Recent technological advances in mobile
devices, indoor positioning and information retrieval have
enabled various opportunities of turning this loss-loss situa-
tion to win-win. In this SmartMart project, we investigate
the feasibility of seamlessly integrating these technologies
to facilitate friendly and effective personal in-store shopping
assistance. We have implemented and deployed a complete
system including a free-accessible Android-based mobile app
for demonstration purposes. Continuous development of this
research could lead to a complete change in our day-to-day
shopping experience.

Fig. 1 shows the main principled architecture for such
mobile-based in-store mapping services. The Indoor Position-
ing System functions to “automatically”’ locate dynamic store
items and send updated location information to the server
for indexing. The Information Retrieval System maintains an
inverted index and a database for store items containing catalog
as well as location information. It functions as a server to
receive query requests from clients (mobile devices) over the
Internet, process them, and send ranked query results back

This research was supported by the Research Experiences for Undergrad-
uates (REU) program from the National Science Foundation (NSF) under
grant No. OCI-1062439. Dylan Hicks, Kevin Mannix, and Hannah M. Bowles
participated in the 2013 REUIR summer program at Texas State University.

Hannah M. Bowles
Texas State University

Byron J. Gao
Texas State University

hmb42 @txstate.edu bgao @txstate.edu
Indoor
) Positioning | coordinates
store items —>| System Information
L Retrieval
localization S
ystem
(server)
Mot_nle queries query
customers De,V 1ces processing
< (clients)
results
mapping
Fig. 1. Main architecture

to the clients. Customers interact with their smart mobile
devices. With a mobile app (e.g., SmartMart) installed, such
mobile devices function as clients, sending queries to the
server and receiving query results through a friendly keyword
search interface. The mobile app also provides a floor mapping
interface that maps (selected) query results on the store floor
plan. Additional useful features include in-store navigation,
computing shortest paths for a list of items, incorporating
advanced search capacities such as faceted search [13], [12]
that provides progressive query refinement and personalized
search [8], [10], [4] that provides search personalization. A
third party mobile app can also possibly provide cross-store
services if proven to be useful.

Store items are typically not statically located. They are
placed on/off the shelves and moved around based on availabil-
ity, popularity, and seasonal promotions. Manual registration
of dynamic locations for hundreds of thousands of items can
be very labor-intensive and error-prone. A carefully designed
and deployed indoor positioning system (IPS) has the potential
to greatly reduce this burden, enabling cost-effective in-store
mapping services. An IPS is a network of devices used to
wirelessly locate objects in real-time inside a building. It can
be used alone, or in combination with manual registration as
a hybrid approach for our application. Currently there is no
de facto standard for IPS design, and any wireless technology
can be used for locating based on cost, accuracy and reliability
factors [5], [1]. Note that the popular global navigation satellite
systems (GPS) are generally not suitable to establish indoor
locations, since microwaves will be attenuated and scattered
by roofs, walls and other objects.

In this preliminary study, we adapt existing RFID (radio-
frequency identification) indoor positioning technology [11],
[6], [3], [7] to the store setting to automatically read, compute,

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254116

0]

-
I8! SmartMart

; XbO)d Search Store

Minecraft (Xbox...

Fun with blocks! Deselect
Logitech 915-000...
Awesome another remote! Select
Portal 2 (Xbox 3...
Fun with portals! Deselect
Skyrim Legendary...
Have super awesome fun ti... Select
Battlefield 3 (X...
Life is a battlefield. Deselect
NCAA Football 14...
YaFB: yet another footbal... Select
Call of Duty: BI...

Select

Newest Call of Duty

(a) Search screen

Fig. 2. Screenshots of SmartMart

and update item locations. RFID tags will be attached to
items or price tags of items. RFID readers will be (optimally)
configured to capture ID signals of RFID tags and locate them
based on signal strength readings using localization algorithms.

RFID is a prerequisite and main enabler for the Internet
of Things (IoT). IoT represents a fascinating vision for the
next generation of Internet, where everyday physical objects
are attached with sensors and seamlessly integrated with the
Internet [2], [9]. IoT brings endless opportunities and will
impact every corner of our planet. With IoT, we can build smart
cities where parking space, urban noise, traffic congestion,
street lighting, irrigation, and waste can be monitored in real
time and managed more effectively. We can build smart homes
that are safe, energy-efficient and convenient. We can build
smart environments that automatically monitor air and water
pollution and enable early detection of earthquake, forest
fire and many other devastating disasters. Other applications
include smart agriculture, smart animal farming, smart health
and so on. This SmartMart project will be an interesting
addition to the exciting family of smart IoT applications.
To our best knowledge, SmartMart is the first system and
mobile app of this kind. Existing shopping apps (e.g. Walmart
Mobile App) do not provide location-based services. It is also
quite different from Google Indoor Maps that only displays
indoor floor plans and does not support searching and mapping
of dynamic store items.

o] [
-
I

| SmartMart

Store:

Walmart Close Clear All

1) Minecraft (Xbox 360)... Delete
Fun with blocks!

2) Portal 2 (Xbox 360)... Delete
Fun with portals!

3) Battlefield 3 (Xbox... Delete

Life is a battlefield.

o [—=!

(b) Map screen

II. SMARTMART DESIGN AND IMPLEMENTATION

In this section, we explain the design and implementation
details for the three components of SmartMart: the client
module, the server module and the indoor positioning module.
In this preliminary study, we focus on building a complete
functioning prototype that seamlessly integrates the three com-
ponents. We leave sophisticated optimization of the individual
components for future development.

A. The Client Module

Overview. The client side of SmartMart is in the form of an
Android application, coded in Java, for any mobile device that
runs the Android OS. The mobile app features two screens:
a search screen and a map screen, as shown in Fig. 2. The
search screen allows the user to type in keyword queries (e.g.,
xbox, grape), view ranked search results returned by the server,
and identify/select the results of interest. The map screen maps
the selected results on the corresponding store floor plan. To
move between the two screens, simply swipe right or left on
the mobile device.

Currently in SmartMart, a store floor plan is stored as
an XML file containing geometric descriptions of physical
features of the floor, also including detailers of fixtures such
as entrances, hallways, and shelves. The XML file will be
rendered smoothly at any desired display size on mobile

devices. An item location is specified as (z,y) coordinates,
which can be easily mapped to the rendered floor plan image.
Since a store can have multiple floors, each item is associated
with the ID of a particular floor. SmartMart is designed
to provide a universal store mapping service for arbitrary
number of stores. The stores only need to upload the following
information to the server: store item database, floor plan
XML files in a pre-defined (straightforward) format, and item
locations. The localization module and the server will work
together to automatically update item locations. On the client
side, the user can easily choose any registered store to begin
the search.

Implementation. At the implementation level, the application
is divided into two separate main Activities: the Search Ac-
tivity and the Map Activity. One might imagine an Activity
as a single screen in a mobile application. For example, a
log-in screen may be one Activity while a settings page may
be another within the same application. These Activities are
essentially Java classes that extend the super class Activity,
which has been created by Android developers. Android can
also employ Java classes that are not Activities, such as
object classes or helper classes. Each Activity must have
an associated layout, which is defined through an Android
XML Document and called on the creation of each Activity.
Android developers have special XML tags that apply to
Android Applications to more easily help create an Activity’s
layout, including tags such as Relative Layout (where each
object in the layout is defined in relation to the others) and
Linear Layout (where each object is defined chronologically
and placed in the order in which they are defined). There are
more tags to accommodate almost any type of layout desired,
but only Relative and Linear Layouts are used in this project.
The objects within the layouts are mostly children of the View
class, created by Android developers. These include objects
such as Text, Buttons, Images and Lists among many other
more specific yet useful objects Android has defined for use
in their applications.

Search Activity. The Search Activity provides a search inter-
face allowing the user to issue queries. When the user enters
text and submits the query by pressing the Search button, a
query is sent to the server. An XML file is returned from the
server with up to 15 results. Upon receiving this XML file, it
undergoes parsing to separate each item into a separate custom
object, with fields to contain its location (in x and y locations),
description, title, and other numerous identification fields such
as its UPC number. These objects are then stored in a List
View (essentially an Android-defined layout object that creates
a scrollable list) with a custom Adapter (Search Adapter). This
Adapter is simply the way in which each row of the list will be
presented. Android comes equipped with pre-made adapters,
but more often than not it is appropriate to use a custom
adaptor to easily adjust each row to the desired constraints.
The Search Adapter requires every row to have two rows of
text, each positioned to the left of the screen, with the bolded
title of the item on top and a snippet of description below this
title. To the right margin of the screen is the Select button.
On default, this button will be labeled Select, but switches to
Deselect when the button is pressed. This item will then be
added to the selected list. The selected list is stored in a SQLite
Database for easy access in each Activity.

Besides the Search button, there is a Store button that
allows the user to choose one from the many available stores.
The layout simply consists of a List View with a custom
adapter. When this function is started, Android’s asset manager
is used to get an array of the paths to each XML file in the
assets/map folder (each XML file is simply a map defined
in XML). Each XML file found in that location is partially
parsed until all the information is found. This information is its
name and location (street, city, state, zip code) and each piece
of information is defined by unique tags and usually placed
near the top of the file. Each file becomes its own Map Items
object and is placed in a global Array List. After all files in
the specified map folder have been parsed, the custom adapter
is given the Array List of Map Items and configures each row
to present the proper information for each map (bolded store
name on the left side and the address on the right side). On a
Long Press (defined by Android as holding a finger down on a
row for 2 or more seconds), the List View item pressed down
on will be chosen as the map to be displayed, and a Toast
(an Android-defined dialog-box of sorts) will be displayed to
confirm that the map has been added correctly. When a map
is selected, an Extra is added to the intent that will eventually
start the Search Activity. This extra consists of a string with
the file path to the selected map, and is transferred from the
Search Activity to the Map Activity in the form of a string
Extra as well.

Map Activity. The Map Activity contains the bulk of the
workload done by the Android application. This Activity
creates a bird’s-eye-view map of a particular store through
the Android Draw class. This map can be zoomed both in and
out of and moved around with the touch of a finger. It also
populates a List View with items the user selected in the Search
Activity. For each item in the selected list, a red rectangular
marker has been placed on the location of that item on the
store map. Each item has a number associated with it, and
this number is displayed on the map marker. One item can
have multiple locations in the same store. The layout consists
of the generated map with a row on the bottom of the map,
consisting of the store name on the left of the row, an Open
button in the middle of the row, and a Clear List on the right
side on the row. On the click of the Open button, this row and
the List View underneath slide about halfway up the screen
of the Android device, displaying the items in the List View.
Each item (row) in the List view can be deleted, resulting its
marker being removed from the map. The List View is then
repopulated and the numbering is redone as to not have any
gaps in the number order. The Clear List button will remove
all items and their respective markers from the list and map,
respectively.

On the start of this Activity, Android’s Asset Manager
parses the XML file for a chosen map. This XML file can
contain an arbitrary number of tags. Each map is broken into
three distinct parts: the floor, the shelves, and the background.
The XML files contain the tags for each floor and shelf
rectangle (each specified by a unique tag), and within these
tags exist the left, top, right, and bottom locations of each
rectangle (also indicated by a unique tag for each location).
Multiple rectangles of the same type can be drawn to be placed
together or on top of one another to give the correct shape
for a floor layout. The background is drawn first and has its
dimensions calculated for the most extreme points of the floor,

with extra added on to give a buffer between the floor and the
edges of the drawn map. The floor is then drawn on top of the
background. The floor is divided into two parts, currently the
background and the foreground. The foreground is defined by
the coordinates given in the XML file, while the background
arises from the foreground’s dimensions, magnified by a small
amount and with a slightly darker color than the background.
This gives the floor a small border and overall a cleaner, more
focused look to the viewer. The shelves are then drawn on
top on the floor as defined by the coordinates parsed from
the XML document. The Canvas (an Android class) that the
shelves, floor, and background have been drawn on is then set
as the image background for the Image View defined as the
map in the layout XML file.

A Matrix (an Android class) is also set to be associated to
this Image View for zooming and scrolling purposes. Using the
Touch Listener provided by Android and placed on the map
Image View, the motion of the user’s finger is tracked and
checked at each movement, no matter how slight. This allows
the map to be adjusted, but not escape the bounds defined
by the Android device’s screen (for example, the map cannot
go too far to the left or right off the screen). The bounds to
which the map is confined is calculated through finding the
layout parameters of the View objects within the layout and
adjusting these for the screen density, as every Android device
will have different screen size specifications. This makes the
application dynamic and fitting for every device. The List View
is then set with a custom adapter with the selected list chosen
by the user in the Search Activity screen. Each row has the
item’s bolded name to the left with a short description in italics
beneath, and a Delete button near the right margin. The header
(the row with the store name, Open button, and Clear List
button) as mentioned above and the List View below it can be
considered as one large object. They move together and are
essentially attached. On the click of the Open/Close button,
an Object Animation occurs that slides the header and List
View up to approximately the middle of the page. As described
above, items can be deleted from the selected list. The item
is deleted from the SQLite Database containing all the items
in the current selected list and the adapter is reset. The header
and List View object is similar to the Android-defined Sliding
Drawer object, but as this type of object has been deprecated,
it has been decided to recreate the Sliding Drawer object with
more static View objects.

B. The Server Module

Overview. The server is the “engine” of SmartMart. It
connects to the localization and client modules, updating
location information of store items, processing queries sent
from clients, and providing location-based information re-
trieval services. It maintains a database of all active store items,
including their location information. To enhance portability,
the database is in the form of an XML file. Each item in
the database has a unique ID, along with as many additional
fields as the user desires, such as product name, description,
or Universal Product Code (UPC). Every item also has a
unique RFID code for each product location and its last known
position.

Implementation. The “server.php” file parses the XML data
file and allows some commands to be performed on the

database via TCP port 8000. The most important is invoked
by the lookup command, which allows keyword queries on the
databases. After a lookup command is issued, the client can
ask for different pages of the results using the page command.
The get command allows products to be found by ID (for
instance if you want more info, or you want to check if it
has been updated). Entries can be added to the database by
using the keyword “add”, then sending the product’s XML
description. The server will automatically assign the product
an unique ID in the database and rebuild the index. Same
with the delete command, simply specify the IDs to delete
and they will be removed from the database and the index. The
update locations command accepts an XML file of locations
and RFID tag numbers from the client. It then searches the
whole database and updates the correct entries.

The server constructs an inverted index for each searchable
field. The terms in the inverted index are found by apply-
ing linguistic preprocessing (tokenization, stop-word removal,
stemming, lemmatization) procedures. The server implements
a straightforward query processing algorithm under the vector
space model. This model takes the term frequency and inverse
document frequency and creates a vector representing each
document. Then, the query is represented as a vector as
well and the cosine similarity between the query and each
document is computed. Each field has its own weight so that
more important fields, such as product name, score better than
tertiary fields, like product description. Then the results are
sorted by relevance score and sent to the client side mobile
application.

The “index.php” file provides a management interface. The
user may easily add/remove/update entries. This page uses all
the lookup/add/delete keywords as described earlier, but they
are hidden from the user.

C. The Indoor Positioning Module

Overview. Indoor positioning alone is a developing technology
and currently there is no de facto standard. While any wireless
technology can be used for localization, we feel that RFID
(radio-frequency identification) technology is promising due
to its decreasing cost and increasing precision. RFID indoor
positioning research has received increasing attention in recent
years [11], [6], [3], [7]. In this preliminary study, for a proof
of concept, we adopt simple localization approaches. For the
same reason, we use an active RFID solution in our system,
which may not be cost-effective in practice.

RFID devices continuously scan the area for tags, and use
the Received Signal Strength (RSS) to calculate the distance.
Many algorithms have been explored using multiple readers
to maximize accuracy in two dimensions. Methods include
basic triangulation, dynamically updating calibration with ref-
erence tags, probability algorithms, and K-nearest-neighbor
algorithms. The most successful systems must also take into
account reader and reference tag placement. Fluctuating signal
strengths and interference in a dynamic environment must
be compensated for. Fig. 3 shows the raw data taken from
our reader. The fluctuations are due to interference such as
doorways catching the signal, metal in the building, and
people walking by. In a store environment, we estimate that
the margin of error that would allow for our app to retain

Signal Strengths - Middle of Back Hallway
140
120
100
80

60

RSS Value

40

20

0 10 20 30 40 50 60 70
Distance from reader (ft)

Fig. 3. Localization

functionality is 1-2 meters. We are confident that with multiple
readers and careful choice of localization algorithms this can
be accomplished.

Implementation. Our system uses a RFID Development Kit
containing Wavetrend RX202 long range RFID readers along
with active tags, as shown in Fig. 4. The readers work with
the tags to capture the presence, identification and location of
assets, people, vehicles and alarm triggered events. The readers
communicate with a computer via a serial RS-232 or RS-485
protocol for custom software solutions. They are also able to
operate on any new or existing Ethernet LAN/WAN network,
with optional serial to ethernet converters. Range is adjustable
through software. Antennas can be discretely hidden in walls,
ceilings, and doorways to identify and track tag activity. A
reader can simultaneously read multiple RFID tags at ranges up
to 450 feet, and can also register and report the disappearance
or unauthorized movement of individual RFID tags.

The readers send structured data packets to a computer via
a serial port. They do not have the capability to request data
from a specific tag, so they are set to automatically poll the area
for tags and randomly sample all tags that are in the area. To
request the information, the readers send out a data packet with
the appropriate auto poll encoding, and receive back a response
packet containing, among other data, the tag ID number and
the RSS value. Each tag ID would be associated with a certain
store item.

We take incoming RSS values from the reference tags along
with a maximum RSS value, and find linear fits. Incoming
tag data is then fit to one of those lines to determine its
location in one dimension. We believe this piecewise approach
maximizes the accuracy we can achieve with one reader. With
multiple readers location can be determined in two or even
three dimensions.

III. DEMONSTRATION

We have implemented and deployed a complete prototype
system. Interested readers may test the system, mainly as a
user (customer) on the client side, using any Android mobile
device. The SmartMart mobile app is downloadable at the
Google Play store !. The following is a simple manual for the

2-14" x4-1/8" x 1"

(a) RFID reader

Fig. 4. RFID development kit

(b) Active tag

mobile app.

e On the opening screen one should see a text field,
where keywords to be searched can be entered. Press
the “search” button to submit a query. When the results
display, press the “Select” button to add it to your
selected list, or if it has already been selected, press
the “Deselect” button to remove it.

e To choose the store you wish to locate click the
“Store” button. Choose a store from the list that
appears and click the “Ok” button to confirm this store
as the map.

e To advance to the Map Screen, swipe your finger to
the left to move to the right. On the map screen, you
may use one finger to move around the map if it is
bigger than your device’s screen.

e On the Map Screen, hit the “Open” button to display
your selected list. You may delete items off this list
by hitting the “Delete” next to the item you wish to
delete. To remove all the items from the list, simply
hit “Clear All.” To go back to the main screen, simply
open up the selected list and swipe to the right to go
to the left page.

For demo purposes, we have written a program that queries
the upcdatabase.com website and populates the server database
with sample data. It does this by using the random product
function of the web site and parsing the resulting html file.
However these entries are fairly low quality and only have the
“name” and “upc” field. We have written another program that
randomizes the product locations for testing purposes. We also
provide a management interface > allowing the user to easily
add/remove/update entries. To find entries the user enters a
keyword query. Once they are located they may be updated or
deleted.

IV. CONCLUSION

Many stores have an online presence indicating their type
and quantity of goods, but do not indicate an in-store location.
Currently the customer must rely on how the products are
grouped and employee assistance to locate an item. Imagine
if every customer was assigned an employee that knew ex-
actly where everything was, even if it was recently moved.
SmartMart leverages the Internet of Things ideology and in-
formation retrieval technology to turn the customer’s Android

Thttps://play.google.com/store/apps/details ?id=com.sm.smartmart

Zhttp://dmlab.cs.txstate.edu/smartmart/

device into a free personal shopping assistant. Our preliminary
study has demonstrated the feasibility and promise of the
proposed approach.

There are many interesting directions for future work. In-
store navigation and computing shortest paths for multiple
items are immediately useful features. We may also consider
facilitating advanced search capacities such as interactive ex-
ploratory search and personalized search. Various information
retrieval techniques can be incorporated to improve search
relevancy and result ranking. It is also necessary to design
sophisticated RFID-based localization techniques for improved
precision and robustness against interferences. We believe
continuous development in this line of research will eventually
lead to a revolutionary change in our day-to-day shopping
experience.

REFERENCES

[1] K. Al Nuaimi and H. Kamel. A survey of indoor positioning systems
and algorithms. In Innovations in Information Technology (IIT), 2011
International Conference on, pages 185-190, 2011.

[2] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A Survey.
Computer Networks, 54(15):2787-2805, 2010.

[3] M. Bouet and A. dos Santos. Rfid tags: Positioning principles and
localization techniques. In Wireless Days, 2008. WD ’08. Ist IFIP,
pages 1 -5, 2008.

[4] Z.Dou, R. Song, and J.-R. Wen. A large-scale evaluation and analysis of
personalized search strategies. In Proceedings of the 16th international
conference on World Wide Web, 2007.

[5] Y. Gu, A. Lo, and I. Niemegeers. A survey of indoor positioning systems
for wireless personal networks. Commun. Surveys Tuts., 11(1):13-32,
Jan. 2009.

[6] A.Lim and K. Zhang. A robust rfid-based method for precise indoor
positioning. In Proceedings of the 19th international conference on
Advances in Applied Artificial Intelligence: industrial, Engineering and
Other Applications of Applied Intelligent Systems, IEA/AIE’06, pages
1189-1199, 2006.

[71 H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor
positioning techniques and systems. Trans. Sys. Man Cyber Part C,
37(6):1067-1080, Nov. 2007.

[8] Z.Ma, G. Pant, and O. R. L. Sheng. Interest-based personalized search.
ACM Trans. Inf. Syst., 25(1), Feb. 2007.

[9] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Survey internet
of things: Vision, applications and research challenges. Ad Hoc Netw.,
10(7):1497-1516, 2012.

[10] J. Pitkow, H. Schiitze, T. Cass, R. Cooley, D. Turnbull, A. Edmonds,
E. Adar, and T. Breuel. Personalized search. Commun. ACM, 45(9):50—
55, Sept. 2002.

[11] S. S. Saad and Z. S. Nakad. A standalone rfid indoor positioning
system using passive tags. IEEE Transactions on Industrial Electronics,
58(5):1961-1970, 2011.

[12] G. M. Sacco and Y. Tzitzikas. Dynamic Taxonomies and Faceted
Search: Theory, Practice, and Experience. Springer Publishing Com-
pany, Incorporated, 1st edition, 2009.

[13] D. Tunkelang. Faceted Search. Morgan & Claypool Publishers, 2009.

[14] R. Yu. Retailers introduce indoor navigation in apps.
http://usatoday30.usatoday.com/tech/news/story/2012-08-27/big-
retailer-mobile-apps/57381210/1.

