
Autonomic Swarms for Regenerative
and Collaborative Networking

Rui-ping Lua and Wee Keong Ng
School of Computer Engineering

Nanyang Technological University, Singapore
Email: rplua1@e.ntu.edu.sg, awkng@ntu.edu.sg

Abstract—The exponential growth of web services have ne-
cessitate the evolution of network infrastructures to meet this
challenge. We envision the myriad of Internet connected devices
coming together to provide a robust and reliable service net-
work. We propose an Autonomous Swarm Network to provide
autonomic capabilities to achieve our service quality goals while
coping with complex and changing requirements of today’s web
services particularly cost-effectiveness versus service assurance.
To create a high-resilient network, we incorporated features of
self-management, self-configuration, self-optimization and self-
healing strategies. Using a combination of fast-flux service
networks, autonomic management and swarm algorithms, it
becomes possible to build cost effective assurance for existing web
services. We demonstrate the feasibility of our solution using the
Nanyang Analytics Supercomputer with more than 20,000 agents
against varying loads. We’ve also simulated algorithms and re-
configuration strategies. We subsequently developed a prototype
swarm network of up to 500 machines.

Index Terms—Autonomic Computing, Collaborative Network-
ing, Self-Configuration, Self-Optimization, Swarm Networks,
Overlay Networks, Fast Flux Service Networks

I. INTRODUCTION

Mission critical services includes web search, on line bank-
ing and content delivery services depend on their service
availability for their continued business. Any disruptions to
their service would result in substantial and financial loss.

Threats towards service availability includes (1) Distributed
Denial of Service Attacks (DDoS) and (2) flash crowds. In
DDoS attacks, an attacker attempts to prevent legitimate users
from accessing services by overwhelming the victim with an
abnormally large volume of traffic. It overloads the victim and
severely degrades its serviceability. A massive attack launched
against Spamhaus Project (March 2013) has caused rippling
slowing effects around the globe. VeriSign reports Botnets
for hire at a low cost of $67.20 (per day). Combined with
easy access to popular DDoS programs such as Low Orbit
Ion Cannon the threat of DDoS is on an exponential rise.

Studies have shown that many organizations have chosen
to over provision their bandwidth to account for potential
flash crowds and DDoSs. However, bandwidth over provi-
sioning is far from economical or effective. Recent attacks
are on the order of millions of attack packets per second.
This tremendous amount of attack can overwhelm even well-
provisioned (Tier 1,2) networks. For example, when Michael
Jackson passed away (2009), news of his death immediately

results in a flash crowds that brought Google, Wikipedia, BBC,
CNN, Twitter and TMZ’s servers to a crawl. None of the
service providers would have been able to predict this traffic
outburst. This phenomenon continues to surface in a much
lesser degree, but on a daily basis [1]. When such incidents
occur, massive amounts of traffic shifts in the Internet. Some
links becomes overloaded, and others underutilized. These
traffic requirements are complex and varies greatly. Advances
in Quality of Service [2], buffering [3] and Service Overlays
[4] may provide respite to traffic sensitive applications. We
believe that we can provide an alternative strategy to combat
the above problems.

We propose the use of an autonomic network made of up
collaborating network agents to maintain a reliable overlay
service in spite of flash floods and attacks.

II. OUR CONTRIBUTIONS

Our Autonomic Swarm Networks (ASN) follows the
paradigm of Autonomic computing [5]. Autonomic computing
focuses on designing a system capable of managing and
administrating itself. In designing our autonomic computing
system, we consider the following behaviors. [6].

1) Self-management - Node recruitment, retirement and
promotions.

2) Self-configuration - Dissemination of service and
swarm directives

3) Self-optimization and Healing - Adjusting neighbor
size, update intervals and service level.

We designed a Water-Flow Algorithm, a swarm routing
algorithm suitable for a tightly collaborative network. These
algorithms are used for neighbor selection and packet forward-
ing. We then implement it using fast flux service networks on a
swarm overlay infrastructure and demonstrate its effectiveness
against flash crowds.

Our paper is organized as following. Section 3 provides a
design overview and construction of our Autonomous Swarm
Network. Section 4 details autonomic capabilities developed.
Section 5 describes the network mechanics of swarm network-
ing and how it performs packet delivery. Section 6 presents
our simulation and experimental findings. Section 7 presents
discussions raised during this study. Section 8 lists related
work and Section 9 is our conclusions.

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254108

Figure 1. Internet and ASN

III. AUTONOMOUS SWARM NETWORKS

A. Strategic positioning

We propose creating a network made up of nodes that are
deployed throughout the Internet. These nodes are made up
of (1) dedicated (2) client and (3) crowd-source hardware.
We defend our users by positioning their servers behind our
swarm network as shown in Fig. 11. Our system provides a
robust and reliable overlay network. Our autonomous nodes
mitigate flash crowds and malicious attacks by the use of
self-optimization and self-healing techniques. Our positioning
also allows us to cloak our user’s servers to avoid direct
bandwidth or application attacks. We only allow traffic flows
that correspond to our user’s expectations and type to be
forwarded to them. With sudden traffic increases, we recruit
nodes to compensate and maintain an agreed service level.
If the legitimate traffic exceeds the capacity of the user’s
server, we can provide waiting rooms, queues or distributed
content retrieval to mitigate outrages. Our network aims to
provide simultaneous protection for large number of varying
servers and services. We provide certain level of ’insurance’
by dynamically allocating overlay resources to compensate for
any short fall in performance.

B. Design Goals

We propose a network inspired by the homeostasis process.
The network maintains a predictable and reliable packet de-
livery under flash crowds or service attacks.

We set design goals as follows.
1) Autonomous management and configuration - Main-

taining a control loop to ensure that the system remains
within specified service level and take actions to achieve
and maintain it.

2) Functional re-composition (Group level) - An archi-
tectural design that enables formation of large-scale

1Image generated and modified from the opte project, 2013

networks in which multi-tiered communities are also
composed in a similar fashion. This allows flexibility in
reorganizing them in any fashion and levels we require.

3) Atomization (Individual level) - Nodes are to be as
simple as possible to allow for various mix of functions
to perform their roles and functions.

Swarm nodes coordinate and relay messages between clients
and servers. The network performs self-organization and uses
swarm algorithms to constantly improve its relay solutions.
We developed translators that allows the use of established
communication protocols (HTTP, FTP, etc). We use fast-
flux service networks [7] to manage how clients and servers
communicate with the swarm network. It allows us to direct
client’s request to any specific gateway node in the swarm.
We then design a swarm algorithm that can be implemented
in a distributed arrangement across all participating nodes.
These nodes forwards data, optimized by a shared objective
function. We make use of Water-flow algorithm as the basis of
our swarm algorithm. Each node in the swarm is functionally
indistinguishable to another node in the network. As more
nodes join the network, each node will configure itself to
serve the network. When the number of nodes has increased
beyond a certain threshold, some of it will split away to
form neighboring communities. When subsets of nodes are
disrupted, neighboring nodes will fill the operational gap. This
minimizes any possible disruption that the swarm network
would experience under a heavy load or malicious attack.

To demonstrate the feasibility of such an autonomic swarm
network, we subjected it to varying magnitudes of attacks and
report our findings.

IV. AUTONOMIC CAPABILITIES

A. Self-management

1) Recruitment and Retirement (Network elasticity): When
a node registers itself with its neighbors, they will respond
with its current network statistics. The node will determine if
it should take up any particular role (Seed/FDNS, Gateway
(Entry/Exit) and Relay roles). As the network experiences
heavier consumption or DDoS-like attacks, its load will in-
crease correspondingly. When the load exceeds a threshold,
it will contact its inactive peers and recruit them to join
the network. Similarly, when traffic load of the nodes drops
beneath the threshold, some of them will retire. Determi-
nation of this threshold is described later in Section IV-B
Aggressiveness of recruitment and retirement must also be
balanced among certain factors. These factors include (1)
apparent rate of load increase and (2) estimated performance
of the recruited and retiring nodes. The rate of load increase
can be broadly categorized into “expected” and sudden flash
floods. In ‘expected’ (1−10% load increase) events, we make
use of addictive increase / multiplicative decrease (AIMD)
to converge on the optimal number of nodes. When flash
floods occur (load increase of a factor of > 2), we use
multiplicative-increase to recruit as many nodes as possible
to withstand the flash flood. Special care must be taken in the

TABLE I
SERVICE DIRECTIVES

Parameter Content Type
Domain Name
(Used for a particular service)

e.g. asn.myserver.com

Server Location(s) IP Address(es)
Service Ports Ports and ranges
Service Types
(Protocols to be used, can be cus-
tomized further)

HTTP, FTP, etc.

Service Rates
(Thresholds and expected patterns)

Requests / sec

retirement process to prevent large portion of the network from
dropping out simultaneously, creating large gaps that disrupts
its serviceability (e.g. net splits). Hence, we retire nodes with
the least number of recently used links to avoid disruptions.

As we scale our system across various hardwares, we have
to factor in different performance and network characteristics
when we select which host to retire. In our implementation, we
favor higher performance systems as compared to lesser ma-
chines. We assume that generally higher performing machines
have more reliable and consistent network performance (e.g.
desktops, servers) then lesser devices (e.g. laptops, tablets, cell
phones). Hence, we make use of lesser performance machines
to address sudden increases and rarely to form the network
backbone. Mobile devices with an unreliable connection will
not maintain persistent connections with its neighbors, but
employ a store and forward mechanism instead. Software
routers are categorized separately and are never retired.

2) Role polymorphism: Each node has complete access to
all the functions required for any particular role. This allows it
to morph into any role as required. These roles are as follows
(but not limited to).

1) Fast-Flux Domain Name Servers (Session binders,
Network seeds)

2) Gateway nodes (Inter-swarm communications)
3) Relay nodes (Forwarding payloads through the network)
Each role has a target performance measure that is tuned

to provide optimal efficiency. Any shortfall experienced by
the network will encourage appropriate role recruitment and
change.

B. Self-configuration
1) Service and Swarm Directives: Different network ser-

vices have different QoS requirements. We introduce QoS
directives for multiple traffic requirements. This allows us
to multiplex our network to support multiple servers. We
craft a QoS directive with the following (but not limited to)
parameters shown in Table I

The swarm network itself uses the following (but not limited
to) parameters shown in Table II.

C. Policy Dissemination
Our network does not have a centralized command and

control architecture, we perform a peer-to-peer update mecha-
nism. The directives are sent to any node in the network (with

TABLE II
SWARM DIRECTIVES

Parameter Content Type
Target Utilization
(Based on sampled max
performance)

Percentage or score

Small-increase Recruitment rate or coefficient
Large increase (Larger) rate or coefficient
Update interval Timings, lower and upper bound.
Cluster size
(Max nodes in a cluster
per seed)

e.g. 8,16

Neighbor size
(Max neighbor nodes)

8,16

authentication). When a node receives a service directive, it
will spread it to the neighbors. In turn, each neighbor will
spread the service update recursively throughout the swarm.

D. Self-Optimization and Healing

Each node tries to maximize its contribution and forwarding
reliability to the network by following simple directives2.

1) Maintaining optimal number of neighbors: During the
lifetime of the swarm network, some nodes drop out un-
expectedly. Each node has to constantly maintain a mix of
its nearby and far neighbor list. This ensures that payloads
will not be trapped in localized clusters of nodes easily. We
facilitate this by defining a node horizon which determines the
number and type of neighboring nodes in each node’s contact
list. Maintaining a large neighbor list reduces the number
of hops required to traverse the network. However, with n
neighbors, n2 updates are required at each refresh interval,
rapidly increasing the network overhead. We determine the
optimal number of neighbors using a target utilization3.

2) Cooperative maintenance of service level: As load of
each node increases, it shares traffic statistics with nearby
nodes periodically. These directives allow the swarm to repair
the network and maintain its service level despite of dis-
ruptions from unexpected outrages or unreliable/undedicated
host machines. When the target utilization cannot be achieved,
more nodes are recruited to share the workload. Fig. 2 illus-
trates a portion of the swarm network. The square node in the
center represents the FDNS/Seed node. The colors indicate the
load experienced by the node normalized against its maximum
performance capability. The size of the circle indicates the
relative performance of the nodes. As observed as some of
the nodes turn red (darker) indicating heavy load, neighboring
nodes starts to share its workload. There is a bias for the
workload to be shared among higher performance nodes, thus
they get loaded first as shown.

E. Self-protection

When traffic pattern exceeds certain specified rates, it clas-
sifies the incoming traffic as suspicious. When the traffic is

2To prevent oscillations as the nodes try to achieve its target performance
characteristics, we designate a ±10% boundary.

3In this study, we use a neighbor size of 8 and 16.

Figure 2. Autonomous Reconfigurations

classified as suspicious, more gateway nodes will be recruited
in preparation for an incoming flood/attack. When suspicious
user traffic is detected on certain nodes, network puzzles
will be deployed to challenge some users before continuing
to forward their service requests. For the remaining users,
there will be no service disruption. As the traffic continues
to grow, the network classifies itself as under an attack. In
this scenario, larger numbers of nodes are recruited with
an increased deployment towards gateway roles. Some relay
nodes will morph into gateway nodes. Existing users are
challenged with a network puzzle. Upon solving the puzzles,
the gateway node will only forward their requests and drop all
other requests. This is similar to an immune response as the
system tries to distinguish between legitimate users and malice
external agents while increasing its capacity to deal with the
threat.

Classification of traffic patterns is performed by measuring
unique source-destination pairs. Global request/connections to
destination addresses are also used to determine if a flash flood
/ distributed attack is underway. Our network protects multiple
server assets simultaneously. In some cases, attackers are only
targeting a number of servers belonging to a specific group.
Our gateway nodes are able to filter and direct traffic flows in
a manner that minimizes the impact to non-targeted servers,
minimizing collateral harm across the entire swarm.

V. NETWORK MECHANICS

Autonomous Swarm Networks can be described function-
ally with the following types of interactions.

1) Inter-swarm - Fast Flux Domain Name Service
2) Intra-swarm - Routing through swarms, self-

organization and self-configuration for elastic
networking.

A. Fast Flux Domain Name Service

Fast Flux Service Network provides a mechanism to im-
plement a session binding system. Unlike conventional fast-
flux networks, we do not host the content in the network. We
manipulate return IP addresses from our fluxing name servers
to manage how clients connect to the swarm. This arrangement
does not require any modifications to existing web client and
servers.

B. Swarm Algorithms

1) Collaboration and Shared Objectives (System View):
We have learn from Wardrop Equilibria [8], that if traffic in a
network distributes itself according to the individual optimal
of each nodes, network flows as a whole is optimized. The
pattern of traffic resulting from these decisions behaves in the
same way as if a central intelligence was present to direct
them. The objective function is defined in the distributed
swarm parameters in Section IV-B. A popular example of
distributed flow control is TCP congestion avoidance. Our
approach optimizes the configuration of relay nodes (between
source and destination hosts), and provides multiple solutions
for packet delivery to achieve our service level.

We propose modeling consumption of individual link ca-
pacities so as to efficiently make use of available resources
at any given time. In a typical setup, network devices are
not explicitly collaborating with one another. In our swarm
network, we are able to control our devices more tightly.
Through sharing of each node’s network statistics, we are able
to sense/predict link congestion much earlier. By estimating
consumption of the links, we are able to fairly distribute traffic
flows to avoid congestion on any particular link. Consumption
is expressed by a “soil” parameter as described in the next
Section V-B2

2) Water-flow Algorithm (Node-to-Node routing): We stud-
ied swarm algorithms used for network routing like Ant-based
Control (ABC) [9] and AntNet, Ant Colony Optimization [10].
AntNet uses an agent to determine the best route. However,
we require a node (junction) based solution that is compatible
with our payloads requirements. We do not keep the entire path
history to prevent path-tracing. We formulate an alternative
routing strategy with our Water-flow Algorithm, which takes
its inspiration from a similar concept of Intelligent Water
Drops [11]. The movement of water in nature underpins the
inspiration for this algorithm. It is evident in the observation
of flowing water, that water always finds the path of least
resistance (less soil4). WFA is described as follows.

1) Graph of the local community is initialized in each node.
The quality of the global-best TBest solution is set to
an arbitrary large negative number. The number of water
drops is set to the number of nodes in the community.
Every node has a visited node list VC(WFA), which is
initially empty. The velocity of the WFA is set to an
initial value.

4Soil values are initially scored using (1) Latency (RTT) and (2) Utilization

2) As all the nodes are distributed into various commu-
nities, each will be a partial solution to the global
optimization problem. At each node i, it will choose the
next node j, within the constraints of the problem and
not in the visited node list with the following probability
model.
PWFA
i (j) =

PWFA
i (j) =

f(soil(i, j))∑
k∈Vc(WFA) f(soil(i, k))

(1)

Where,

f(soil(i, j)) =
1

εS + g(soil(i, j))
(2)

g(soil(i, j)) =


soil(i, j)if mink/∈Vc(WFA)

(soil(i, l)) ≤ 0

soil(i, j)−
mink/∈Vc(WFA)(soil(i, l))otherwise

(3)
3) For each WFA moving from one node to another, the

velocity is updated.

vWFA(t + 1) = vWFA +
av

bv + cvsoil2(i, j)
(4)

4) For every WFA that moves from one node to another,
the change in soil is described as follows.

∆soil(i, j) =
as

bs + cst2(i, j, vWFA(t + 1))
(5)

where bs, cs are arbitrary values to describe the velocity
and momentum of WFA.

time(i, j, vWFA(t + 1)) =
penalty function
vWFA(t + 1)

(6)

A penalty function is defined to achieve different desired
optimizations.

5) The soil parameter is then updated as follows.

soil(i, j) = (1 − pn · soil(i, j) − pn · ∆soil(i, j) (7)

6) The optimal path TBest is calculated by

TBest = max
∀T

WFA(TWFA
q(·)) (8)

where q(·) is the quality function that returns a measure
of the quality of the solution TBest is the global best
solution.

7) The soil on the path of the optimal solution is then
updated.

8) This algorithm is repeated as the system operates and
up-to-date optimal paths will be generated.

WFA also exhibits an advantage over other optimization
solutions by virtue that it does not require access to the
entire problem space to start optimization. WFA can perform
partial localized optimization without knowledge of the entire

network. Large changes in the network are captured in the soil
values between the links. WFA adapts to the changing soil
values quickly with little to no disruption. WFA can be easily
scaled to support large networks. The speed and available
bandwidth of nodes are used as features for WFA. The amount
of water in each flow is abstracted from the size of the packet
flows. Unlike the original IWD algorithms, WFA is designed
to be executed on a massively parallel and distributed system.

Using WFA’s soil parameter, we are able to model con-
sumption of links between refresh intervals. When a refresh
interval occurs, traffic statistics from neighboring nodes are
updated and soil values are reseted accordingly.

C. Using the System

Fig. 3 shows how service requests and responses take place.

Figure 3. Forwarding mechanism

The following occurs when a user visits our web services.

• The client resolves the DNS by querying the ISPs DNS
(1).

• DNS returns the IP address of our Flux DNS (2).
• The client’s computer contacts the Flux DNS to resolve

the domain (3).
• The FDNS assigns and returns a gateway node to the

client for this session (4).
• Client contacts the gateway note with it’s service request.

E.g. HTTP, FTP etc (5).
• The client’s request is forwarded through the swarm

network utilizing WFA (6,7).
• The client request arrives at a gateway node and the

payload is then deciphered. The service request is then
forwarded to the server (8).

• The server responds and the response is forwarded back
to through the network to the requesting client (9).

• The response is forwarded through the swarm network
utilizing WFA for neighbor selection. However, return
routes may not be the same. (10,11).

• The gateway node deciphers the payload and replies the
user with servers response (12).

It is also noted that paths taken from client to server and
server to client are explicitly made different. This reduces
man-in-the-middle attacks.

TABLE III
SIMULATION PARAMETERS

Role / Agent Allocation
Total number of nodes 24,000
ASN nodes 10,000
- FDNS / Seed nodes 625
- Entry (region) nodes 2343 (25% of 10k)
- Relay (Inter-link) nodes 4686 (50%)
- Exit (region) nodes 2346 (25%)
User-clients 4000
Malicious agents 10,000

VI. PERFORMANCE EVALUATIONS

A. Super-computer simulation (Nanyang Analytics)

Simulations were carried out to determine whether WFA
provides expected benefits as opposed to commonly used for-
warding algorithms in a swarm network. WFA uses different
inputs to determine link quality as opposed to previous IWD-
based approaches. Hence, we also need to ensure that we are
able to achieve similar performances.

We build a simulator consisting of 10,000 swarm nodes.
These nodes are clustered together in groups of up to 16
nodes. Each cluster promotes a FDNS/Seed node. Each node
randomly picks up 16 nodes to form its neighbor list. The
neighbor list within each node does not necessarily contain
the addresses of nodes in the same cluster. After allowing
the network to boot up and reach a steady state, the link
configurations are then stored in a list. Using this list, we
re-evaluate the same network terrain with different algorithms
while maintaining the same network configuration as a control.
We collected up to 6 network configurations to be used in our
simulations. While network configurations differ in individual
node’s neighbor list, the allocation of node roles remains
largely identical. The parameters are shown in Table III.

The 4000 user-clients sends requests at 156.25 Mbps to
ASN. After a short waiting period, an additional load of 10,000
nodes are used to simulate a flash crowd at an additional 300
Mbps.

A valid neighbor is defined as one nearer to the destination
address then the node’s current location. We considered the
following selection strategies.

1) Round-robin selection - Valid neighbors are selected
one after another.

2) Random selection - Neighbors are selected randomly.
3) Nearest neighbor - Nearest neighbor to the current node

is selected.
4) Furtherest neighbor - Furthest neighbor to the current

node is selected. However, furthest from current node
does not mean nearer to the destination node.

5) Least cost - Valid neighbor that has the best traffic
characteristics, or lowest link cost

6) Least cost with probability model - Lowest link cost
has highest probability of being selected.

7) Water-flow Algorithm - Selection based on best avail-
able performance using probability model with the ad-

TABLE IV
LEAST-COSTS VS WFA

Least-costs WFA
Outbound requests
(Simulates HTTP GET mes-
sages)

400,000
0.38 TB

400,000
0.38TB

Received responses
(Acknowledgment of successful
point to point connection)

392717
2.996 TB

399613
3.049 TB

Failed transmission
(On first attempt, no repeats)

7283 387
(−94.69%)

dition of consumption modeling and periodic network
updates.

Simulations were performed on Nanyang Analytics Super-
computer. The system is described as follows.
• IBM System x iDataplex
• 300 Nodes of 2-Socket Intel Xeon 5500 series
• Quad Data Rate InfiniBand for Node Interconnect
• IBM General Parallel File System (GPFS), DCS9900

Storage System
Results have shown that “Least cost” and “Least cost

with probability model” are similar and provides the lowest
failed transmission. We excluded geographical selection as the
system runs on a localized machine and will not be affected
by ‘spatial distribution’ of the nodes. This is then compared
with WFA in Table IV

B. Prototype

To show feasibility of such a system, we prototyped our
network using 500 host machines. Each of the 500 hosts is an
independent swarm agent and communicates through TCP/IP
on LAN. Each host has its own IP address, in a subnet of the
university’s network. Internet browsers (e.g. Mozilla Firefox)
are used as clients. Service request can be either GET, LIST
messages sent from client’s browsers. The requests received
by servers indicate the number of service requests successfully
forwarded to the servers. The server then chooses which
request to respond to. The network is created with arrangement
shown in Fig. 4. Up to 10 users are created to provide periodic
service requests. By varying the rate of service requests from
the user base, we can achieve different load conditions. Up to
500 hosts are used to form the swarm network (FDNS, Seed
and Relay nodes). Guarantees5 are absent to show how the
swarm network performs self-configuration and management
to maintain its service level. When guarantees are in place,
the occurrence of timeouts becomes negligible.

The results are shown in the following Table V.
Approximate requests per second correspond to the request

rate from the 10 clients. It does not include intermediate
forwarded packets. We adjust the load on the network by

5Guarantees are used to ensure that requests and responses will be re-
attempted in quick succession to reduce the failures. (1) Entry nodes perform
a re-request if response is not received in time. (2) Nodes returns an
acknowledgment when they successfully forwarded their payload.

Figure 4. Network arrangement

TABLE V
PERFORMANCE STATISTICS

Type Low-load High-load Extended
Requests
(Sent from the user-
agents)

31,800 56,000 440,075

Received
(Received by the
servers)

31,766 55,985 440,083

Responses
(Received by the user-
agents)

31,753 55,985 440,071

Timeouts
(Failed connections
detected)

32 436 104

Approx request/s 5 25 15
Avg upload (Kbps) 290.74 1378.46 804.65
Avg download (Kbps) 290.43 1378.09 804.70

varying the number of requests made by the clients. Each
request and reply (message) was approximately 8 KB.

1) Low-load scenario: We ran the swarm network for over
2 hours under a low load scenario. The results is shown under
“Low-load” in Table V

We illustrate the utilization of each node over the entire
experiment in Fig. 5.

The Y-axis (Utilization) is calculated based on the maximum
performance of the node. This is determined prior to this run
by increasing the load until it failed6. The X-axis (Node ID)
is used to identify each node. The Z-axis (Timeline) refers to
the time elapsed which in Fig. 5 is approximately 2 hours.

The load is distributed relatively fairly over the entire
network with the use of WFA. Most of the nodes generally
experience up to 20% utilization. If least-cost selection was
used, the link would aggregate and result congestion. Without
the combination of consumption modeling and link updates,
traffic flows will not be distributed as effectively.

To understand the impact of WFA and the benefits of
autonomic real-time re-configuration of the network, we focus
on one node. We show the congestion experienced by the node

6This includes software exceptions, or thread unresponsive

Figure 5. Low-load utilization

Figure 6. Latency of WFA vs ”Least-cost” selection

using both WFA (A) and “Least-cost” selection (B) in Fig. 6.
The latency measure in Fig. 6 refers to the time taken

for a valid response to a forward request is received. It
can also similar to Round-Trip-Time experienced by inter-
node communications. As the node experiences congestion,
WFA and autonomic responses triggers a re-organization. This
results in (A), a spike that lasts momentarily and affects only
a few service requests. Without these features, the node has
no ability to share its workload with its neighbors. Hence,
the load builds up and delays increases (B). When the delay
has reached a specified timeout, the client (and network) has
to re-negotiate another node (and path) to be used, and the
utilization drops off as the node is deprecated due to bad
performance (or through a link update).

To compare utilization of nodes across a variety of hard-
ware, we determine the maximum number of requests each
node is able to process without any failures7. Instantaneous

7Failures occur when nodes throw exceptions when they are unable to bind
to sockets fast enough. There are also errors from constraints of the operating
systems used.

Figure 7. High-load utilization

Figure 8. Hop count statistics

utilization is then normalized against the individual maximum
of each node.

2) High-load scenario: We then increase the load by a
factor of 5 to exert more pressure on the system. With a much
higher loading factor, we expect to observe traffic aggregations
and weakness of the system. This experiment is conducted
over a much shorter period of 40 minutes. Results are shown
under “High-load” in Table V.

We then illustrate the load experienced by the network in
Fig. 7.

We observe that some nodes experience heavy utilization.
This occurs because they are initially high performance nodes.
WFA performs with a probability model that is biased towards
higher performing nodes. This results in a sudden aggregation
at these nodes. As these nodes are loaded, autonomic responses
triggers a re-organization that distributes the workload and thus
reducing the congestive effects.

The number of aggregation junctions that occur in this
scenario is dependent on the number of desired hops we
have specified. In this scenario, we instruct the network to
perform forwarding within 5 hops (across 4 nodes). To achieve
this goal, the network configures each node to have up to 8
neighbors. Statistics of all hops is shown in Fig. 8 in reference
to the percentage of their occurrence.

Figure 9. Extended utilization

3) Extended scenario: To understand how this network will
perform over longer periods of time, we operated the network
for 10 hours with up to 440,000 service requests. Results are
shown under “Extended” in Table V.

Utilization is shown in Fig. 9.
The system remains largely consistent over a long period

of time8. When aggregation occurs, a re-configuration is
performed. However, we observe that after a re-configuration
is completed, aggregation is still possible as the network runs
for longer period of time. Hence a series of re-configuration
occurs throughout the operation lifetime. The number of
requests received exceeds those that is sent, as messages are
re-transmitted when an acknowledgment time-outs.

To facilitate current and future studies, we have also con-
structed the following virtualization cluster.
• 16 units x 2-Socket Intel Xeon E5 series processors

(256 physical, 512 logical processors)
• 16 units x 64 GB 1600Mhz RDIMM Memory

(1TB Memory)
• 2 units x 10GBase-T switches

VII. DISCUSSION

A. Alterations and constraints for existing services

The swarm network does not require modifications to ex-
isting protocols or web servers. However, certain provisions
must be made for the system to be utilized. Service providers
have to map their domain name to our fluxing name servers.
They will need to provide us with the expected traffic flow
and type so that we can effectively filter illegitimate traffic.
We also need to know the addresses of their servers so that
we can perform the mapping accordingly.

Positioning servers behind our swarm network provides
anonymity that cloaks the addresses of the servers. However,
this also prevents servers from gathering information directly

8The graph shows utilization every 10s due for scaling purposes

from the clients. From the servers view, connecting agents
are the exit nodes of the swarm network and not the users
themselves. We do not inherently forward the client’s identity
across the swarm network unless explicitly specified. To
maintain sessions, the servers have to read meta-data from
the forwarded packets or requests to retrieve user information.

B. Resource impact on infrastructure

To facilitate autonomic functions of the swarm network,
majority of the overhead comes from (1) Updating neighbor
list and (2) Link updates.

1) Updating neighbor list: To maintain integrity and reli-
ability of the network, the neighbor list needs to be current.
Neighbor lists are updated at various intervals depending on
the network load. Interval tlow is used when network utilization
is below 50%. Interval thigh is used when utilization is above
50%. This number is chosen as a conservative limit for our
study. At each update, each node will contact all it’s neighbors
and request their neighbor list. Nodes will then return their
neighbor list so that each node can acquire it’s designated
number of neighbors. The expected outgoing overhead is
described in Equation 9.

Overhead(neighbor) = N ·
(n · rdata)req + (n · (n · hdata))res

t[low,high]
(9)

N = total number of nodes in the network.
n = number of current neighbors of a particular node.
n = [0, ..., nmax]
nmax = max size of neighbor list defined in swarm directive
rdata = request (control) message ≤ 1KB
hdata = host data (IP address, etc.) ≤ 2 KB
2) Link updates: Each node periodically broadcasts it’s link

status to allow the network to perform better link selection.
This occurs periodically at intervals of T . T varies according
to the variance between expected link status provided by the
consumption model and the actual link status. If the variance
is large, more frequent updates are required.

The link update overhead is described in Equation 10.

Overheadlink update = N · n · sdata

T
(10)

sdata = status of link (utilization, latency, RTT etc.) ≤ 1 KB
Under normal conditions, optimizing re-configurations can

take place over hours or days. However, when a DDoS attack
starts, re-configuration has to take place within minutes to
minimize the service disruptions.

To prevent a cascade failure whereby an sudden increase
volatility of the network results in large number of updates,
we have capped the maximum updates to 10% of maximum
utilization of each node.

To show that the additional resources required is kept to
a minimal, we delayed the start of client requests. Fig. 10
shows 480 relay nodes, with a maintenance9 period from 0 to
45. After which 10 users send requests at 100ms intervals.

9Updating of neighbor and links, without any external traffic

Figure 10. Maintenance and Overhead

The requests stops at 100, and the swarm returns to it’s
maintenance mode. This shows that we are able to keep the
overhead to a minimal (1-3%) of total traffic.

C. Further works

Understanding hostile attackers and their strategies allows
us to explore game theory as a means to generate effective
counter-strategies [12]. In some conditions, it may be prefer-
able to fragment the network to isolate portions of network
under attack. While in others, directing packets to black holes
may be appropriate to avoid catastrophic overload. We can use
it to determine the appropriate arrangement of the network to
best weather the attack. Using computational and bandwidth
cost, we can formulate games and strategies to our advantage.
We also ported our system to run on mobile devices to create
larger and more pervasive networks.

VIII. RELATED WORK

Generally DDoS defense mechanisms can be categorized as
(1) Preventive, (2) Reactive and (3) Alternate Topologies [13].
Preventive measures such as resource accounting attempts to
provide fair service for users. QoS regulators are proposed
to reside between public networks and end servers. Fairness
policies can be implemented that provides good user protec-
tion. Authenticated tokens can also be used to send requests to
the servers. Resource brokerage can also be used to negotiate
user/server agreements. Reactive measures detects network
anomalies and respond accordingly. D-WARD, Pushback [14]
and many other techniques perform malicious traffic detection
and rate limiting. However these implementation faces eco-
nomic barriers as service providers seldom view protecting
competitor’s network as in line with their self-interest and
profits.

Reconfiguration approach changes the topology of the vic-
tim network by either adding more resources or isolating
systems under attack. (1) Overlay networks and (2) Indirection
infrastructure are such techniques. Reconfigurable overlay
networks allows distributed applications to detect and recover
from path outrages and periods of degraded performance.

Indirection Infrastructure such as I3: Internet Indirection In-
frastructure and Phalanx[15] provides rendezvous based com-
munication. This prevents a direct attack on servers but require
modifications to existing services.

Our Autonomous Swarm Networks provides a robust re-
configurable overlay network. Similar to Resilient Overlay
Network, Tapestry, SOS, and OASIS[16], we provide a re-
configurable network topology. However, these are mostly a
target-side solution which can be still potentially overwhelmed
by a bandwidth attack at its access points. Our ASN provides
autonomous reconfiguration of all access points. Recruiting
gateway nodes as necessary, or enlarging relay capacity to
perform traffic shaping for our users. We do not use central-
ized monitoring and reporting tools, but depend on swarm
algorithms to achieve overall optimization. Node list and links
are determined autonomously and adapts to various network
conditions. Traditional overlay networks does not actively and
consistently seek out the best topology and hence, not as effec-
tive or efficient. P2P networks such as Skype and BitTorrent
etc, do not have our extensive control over each node, changing
their roles as required. We have also design our system as a
fast-fail network. Each node recovers quickly in the event of
a flash flood. We have multiplexed our infrastructure to allow
multiple web servers to operate simultaneously. Each node
compartmentalize each virtual routing circuit and prevents the
overloading of one service network to affect another.

Overlay networks also requires strict ownership over their
nodes. This provisioning of such dedicated hardware resources
might be cost prohibited for any single party. Our swarm
network can be deployed on multiple platforms across ded-
icated and non-dedicated hardware. We provision for various
types of hardware and score them accordingly to be used
by the network. ASN can be weaved into existing Internet
applications to further the common good, as shown by many
crowd sourced grid computing softwares. The robust nature
of our fast-flux service network provides a high level of
serviceability while using unreliable hosts. This reduces the
dependency on dedicated hardware for its continued operation.
Our design allows the use of our network with only minor
modifications to domain name records. This allows it to
be easily deployable with little to no disruption to existing
services.

IX. CONCLUSION

In this paper we present our concept of an Autonomous
Swarm Network and its implementation. We discussed
on various autonomic features used to create a self-
administrating network infrastructure. These features demon-
strate self-management, self-configuration, self-optimization,
self-healing and self-protection capabilities. We based our
swarm algorithms on the self-interest of individual nodes used
to optimize flows.

Fast-flux techniques increases the network robustness by
maintaining very high service availability while using un-
reliable hosts. The swarm network constantly re-configures
itself through a combination of autonomic responses and our

Water-flow Algorithm. All these techniques allow us to extend
the serviceability of cloud services under varying loads and
DDoS attacks. To demonstrate the feasibility of our Water-
flow Algorithm, simulations were performed at the High
Performance Computing Cluster at NTU. Up to about 20,000
agents and 400,000 service requests show that WFA provides
a competent mechanism to forward payloads. We then deploy
a swarm of up to 500 hosts. Each host possessing its own
unique IP address and performance characteristics. We then
subjected it to varying loads and periods of time. Our results
illustrate benefits and expected characteristics of our system.

REFERENCES

[1] A. Srivastava; B. B. Gupta; A. Tyagi; A. Shamn; A. Mishra, “Recent
Survey on DDoS Attacks and Defense Mechanisms,” Advances in Parallel
Distributed Computing, Communications in Computer and Information
Science, vol. 203, pp. 570-580

[2] A. Kumar V; S. G. Thorenoor, “Analysis of IP Network for different
Quality of Service ”, International Symposium on Computing, Commu-
nication, and Control (ISCCC 2009), vol.1, pp. 79-84

[3] R. Bahl; C.M. Sharma; M.K. Malik, “Comparative Study and Analysis
of Different Types of Buffering in Go-Back-2 Network in NS2,” UkSim
13th International Conference on Computer Modeling and Simulation
(UKSim), 2011, pp.498,500, 2011

[4] M. Kodialam; T. V. Kakshman; J. B. Orlin; S. Sengupta, “Oblivious
routing of highly variable traffic in service overlays and IP backbones,”
25th IEEE International Conference on Computer Communications. vol.
17 no. 2, April 2009 pp. 459-472

[5] Kephart, J.O.; Chess, D.M., “The vision of autonomic computing,”
Computer , vol.36, no.1, pp.41,50, Jan 2003

[6] S.R. White; J.E. Hanson; I. Whalley; D.M. Chess; J.O. Kephart, “An ar-
chitectural approach to autonomic computing,” International Conference
on Autonomic Computing, pp.2 , 9 , 17-18 May 2004

[7] J. Nazario; T. Holz, “As the net churns: Fast-flux botnet observations,”
in Malicious and Unwanted Software, MALWARE 2008, pp. 24-31, 2008

[8] J. Wardrop, “Some theoretical aspects of road traffic research”, Road
Engineering Division Meeting, 1952

[9] R. Schoonderwoerd; O. E. Holland; J. L. Bruten; L. Rothkrantz, “Ant-
based load balancing in communications network,” Adaptive Behavior,
vol. 5, no. 2, pp. 169-207, 1997

[10] G. D. Caro; M. Dorigo, “Antnet: Distributed stigmergetic control for
communications networks,” Journal of Artificial Intelligence Research,
vol. 9, pp. 317-365, 1998

[11] S. Hosseini; S. Behesthi, “Problem solving by Intelligent Water Drops,”
IEEE Congress on Evolutionary Computation, pp. 3266-3231, 2007

[12] A. Bensoussan; M. Kantarcioglu; C. Hoe, “A Game-Theoretical Ap-
proach for Finding Optimal Strategies in a Botnet Defense Model,”
Lecture Notes in Computer Science, vol. 6442, pp. 135-148, 2010

[13] A. Keshariya and N. Foukia, “DDoS defense mechanisms: A new tax-
onomy,” Lecture Notes in Computer Science (Data Privacy Management
and Autonomous Spontaneous Security), vol. 5939/2010, pp. 222-236,
2010.

[14] Y Xu; R Gurin, “On the robustness of router-based denial-of-service
(DoS) defense systems” SIGCOMM Computer Communications Review.
Vol. 35, No. 3 pp. 47-60 July 2005

[15] C. Dixon, T. Anderson, and A. Krishnamurthy, “Phalanx: withstanding
multimillion-node botnets,” Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation, 2008.

[16] J. Kurian; K. Sarac. “A survey on the design, applications, and enhance-
ments of application-layer overlay networks.” ACM Computing Surveys
CSUR. Vol. 43, 1, No. 5, December 2010.

