
Non-intrusive process-based monitoring system to
mitigate and prevent VM vulnerability explorations

Chun-Jen Chung∗, JingSong Cui†, Pankaj Khatkar∗ and Dijiang Huang∗
∗School of Computing Informatics and Decision Systems Engineering

Arizona State University, Tempe, AZ, USA
{chun-jen.chung, pkhatkar, dijiang}@asu.edu

†Computing School, Wuhan University, Wuhan, China
jscui@whu.edu.cn

Abstract—Cloud is gaining momentum but its true potential
is hampered by the security concerns it has raised. Having
vulnerable virtual machines in a virtualized environment is one
such concern. Vulnerable virtual machines are an easy target
and existence of such weak nodes in a network jeopardizes
its entire security structure. Resource sharing nature of cloud
favors the attacker, in that, compromised machines can be used
to launch further devastating attacks. First line of defense in
such case is to prevent vulnerabilities of a cloud network from
being compromised and if not, to prevent propagation of the
attack. To create this line of defense, we propose a hybrid
intrusion detection framework to detect vulnerabilities, attacks,
and their carriers, i.e. malicious processes in the virtual network
and virtual machines. This framework is built on attack graph
based analytical models, VMM-based malicious process detection,
and reconfigurable virtual network-based countermeasures. The
proposed framework leverages Software Defined Networking to
build a monitor and control plane over distributed programmable
virtual switches in order to significantly improve the attack
detection and mitigate the attack consequences. The system and
security evaluations demonstrate the efficiency and effectiveness
of the proposed solution.

Keywords – Software Defined Networking, Attack Graph,
Intrusion Detection, Countermeasure Selection, Virtual Ma-
chine Introspection.

I. INTRODUCTION

Security is one of the concerns that still make people think
twice before migrating to the cloud. Virtualization introduces
several attack surfaces for the cloud, like hypervisor, virtual
machines (VMs), virtual network [1] to name a few. Among
them, VMs are the most important resources for user and
the most vulnerable target for the attacker. In traditional data
centers, where system administrators have some control over
the host machines, vulnerabilities can be detected and patched.
However, patching known security holes in a cloud, where
customers usually have the privilege to control the software
installed on their VMs, may not work effectively and any
action by the administrator might violate the Service Level
Agreement (SLA) [2]. Furthermore, these vulnerable VMs are
not only harmful to their users, but also pose a threat to
other VMs. The challenge is to establish an effective detection
and response system for accurately identifying vulnerabilities
and malicious processes on users’ VMs, rapidly detecting
attacks from internal and external network, and efficaciously

minimizing the impact of security breaches to cloud users.
Detection and removal of malicious code is not easy unless

each VM is equipped with malicious code detection and
monitoring tool. In worse case, malicious code will reside
stealthy somewhere in the cloud system and such a hidden
malicious code becomes a ticking bomb. If the malicious code
is controlled by a remote attacker, s(he) is able to recruit
other vulnerable VMs and launch a multi-step or coordinated
Distributed Denied of Service (DDoS) attack. Goal for the
attacker is to get control of a target VM. After controlling
the VM, a remote attacker is able to monitor, intercept, and
change the state and actions of other software on the system.
The controlled malicious code is also able to hide itself and
even disable the host intrusion detection system, which is
a significant threat to a cloud. Therefore, malicious code
detection and mitigation is a very important security tool for
protecting VMs from being controlled by attackers.

Vulnerable VMs are ports of entry for a variety of security
threats such as DDoS attacks, spamming, and malware distri-
bution. Owners of compromised VMs are most often unaware
that their systems are being used by someone else. Such a
virtual machine whose security has been breached, either by a
virus or other means, and consequently allows an unauthorized
user to remotely control the system for malicious activities
without the owner’s knowledge is known as a Zombie VM.
While the proliferation of Zombie VMs presents a substantial
threat to the cloud system and network security, BotNets rep-
resent an even grave danger. In recent years, many resources
have been dedicated towards the detection of compromised
hosts in various domains, but there has been very little focus
on the detection and prevention of zombies in the cloud
environment.

Traditional methods to detect malware rely primarily on
anti-malware agent installed on a VM to search the executable
malicious code using pattern matching techniques. With such
“in-the-box” agent-based approach, both detecting agent and
detected results are visible and vulnerable to an attack, where
the malware can temper with the result and disable the agent
to hide the malicious code. To address this problem, more
and more solutions have been proposed recently to place the
malware detection engine outside the VM, then using VM
Introspection (VMI) technology to detect and monitor the ma-

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254107



licious process in the VM [3][4][5]. Such “out-of-box” agent-
free approach significantly improves the tamper resistance of
malware detection engine [4]. However, introspection causes
the so-called semantic gap, where the high-level semantic view
of guest operating system are missing, e.g. active process,
loaded kernel module, and system calls.

To address the problems described above, we propose a
hybrid defense-in-depth intrusion detection framework based
on our previous work NICE [6] to detect and monitor the
vulnerability and attacks in the cloud. For better detection of
attacks, our framework incorporates attack graph analytical
model to describe the detected vulnerabilities in each VM and
creates the vulnerability dependency based on VM’s reachabil-
ity in the virtual network. For the VM-based malicious process
detection, we propose a non-intrusive agent-free detection and
monitoring tool using VMI technology. In order to address
semantic gap challenge, we reconstruct the semantic view
to traverse thread dispatched database. We also reconstruct
the complete process list of kernel and compare the user-
level processes with the kernel-level process using cross-view
technology to identify the hidden process.

Using Software Defined Networking (SDN) has been
gradually adopted by commercial companies such as Citrix
XenServer [7] and VMWare NSX [8]. SDN provides the
ability to control the traffic in the virtual network for the QoS
purpose, it also can be used to improve security and mitigate
the attacks in a virtual cloud networking environment, for
example, to build the basic firewalls, VPN, and network-based
intrusion framework. We leverage SDN to build a monitor and
control plane over distributed programmable virtual switches
in order to significantly improve the attack detection and
mitigate the attack consequences.

The proposed framework does not intend to improve any
of the existing intrusion detection algorithms. Instead, we
create this framework based on Xen virtualization platform
and establish a system having following features:

• A light-weight network based intrusion detection engine
in the dom0 of each cloud server for capturing and
analyzing the network traffic.

• Attack graph analytical model for describing vulnerabil-
ities and their dependencies in the cloud system.

• VM process monitor for monitoring and detecting hidden
malicious processes in each VM using VMI and semantic
reconstruction technologies.

• Countermeasure selection by matching and correlating
alerts from intrusion detection engine, vulnerabilities in
the attack graph and signal from VM process monitor.

• Deployment of virtual network reconfiguration-based
countermeasure through network controller using Soft-
ware Defined Networking (SDN).

This paper is organized as follows. Section II presents
related work. System overview and models are described in
Section III, section IV describes system design. Proposed
mitigation and countermeasures are presented in Section V
and Section VI evaluates our framework in terms of security

and system performances. Section VII describes future work
and concludes this paper.

II. RELATED WORK

Detection of compromised machines currently takes place
largely at host level and/or network level. At the host level,
while anti-virus and anti-spyware systems are effective in
catching and preventing the spread of known threats [9],
majority of users do not keep these security software updated
or properly configured. At the network level, IDSs and network
firewalls fail to address already compromised vulnerabilities
within the networks they protect. For example, when a system
within the firewall becomes compromised by the careless
actions of an authorized user, like allowing a trojan horse
access to the internal network, then once such a system
has been compromised, a personal firewall loses effectiveness
because the attacker has already gained some level of control
over the system.

Intrusion Detection System (IDS) attempt to detect and
prevent the spread of compromised machines or their attacks
by developing characteristic network traffic profiles, called
signatures, and using them to identify attacks. However, sim-
ilar to anti-virus solutions, IDSs are generally effective only
as far as the malicious traffic pattern is detectable. In most
cases, the intruder is able to continue to evade detection by
blending malicious actions and activity with legitimate usage.
Recent trends have shown intruders exploiting limitations and
vulnerabilities within firewalls and IDS to better conceal the
identities of zombies, thus making it harder to detect attacks.
While system and network administrators attempt to combat
this problem by addressing vulnerabilities in firewalls and anti-
virus software as soon as they become known, zombies and
their agents have been evolving even faster.

In a virtualized environment, such as a cloud system, it
becomes easy for the attacker magnify the loss. In order to
prevent the compromised VM from attacking vulnerable VMs
due to the possible security hole cased by the resource sharing,
the detection and monitor tools are necessary to secure each
VM in a cloud system. For the VMM based malware detection,
Livewire [3] proposed first concept of placing an“out-of-
VM” monitor and applying VMI technology to reconstruct the
semantic view of the internal structure of the VM. However,
it can only reconstruct low-level VM states (e.g., disk blocks
and memory pages). The high-level VM states (e.g., processes,
kernel module, and files) still require an intrusive way to
bridge the semantic gap. VMwatcher [4] is another “out-of-
box” approach that overcomes the semantic gap created by
the missing information about detailed internal view of the
system by “in-the-box” approaches. To close the semantic gap,
it applies a technique called ‘guest view casting’ and non-
intrusively reconstructs the high-level internal VM semantic
views from outside. However, it VMwatch only focuses on
the malware detection in VMs and cannot monitor or detect
the security status in the virtual network.

Antfarm [10] is an implementation of VMM-based intro-
spection techniques that tracks the activities of processes in



VMs by monitoring low-level interactions between guest oper-
ating systems (OS) and their memory management structures.
It can determine when a guest OS creates, destroys, or context-
switches the processes without explicit information about the
OS. Lycosid [11] is a VMM-based hidden process detection
and identification service. It uses Antfarm to obtain a trusted
view of guest OS processes, invokes a user-level program
to obtain a untrusted view of these processes, and then uses
cross-view validation principle to detect malicious hidden OS
processes. The drawback of Lycosid is that it uses an intrusive
approach to obtain the processes information from guest OS.
Maitland [12] introduced a light-weight introspection tech-
nique in absence of hypervisor, that provides the same levels
of within-VM observability. To address isolation challenges
in out-of-VM approaches, Out-Grafting [13] was proposed. It
allows fine-grained process-level execution monitoring. Our
framework uses non-intrusive approach to monitor and detect
the internal process of VMs and identifies the suspicious
processes with the help of attack graph model.

To model possible vulnerabilities and their dependencies in
a cloud, we use attack graph. An attack graph is able to repre-
sent atomic attacks in a network and describe possible attack
paths for attackers to reach his/her goal, which we consider
is to get root privileges on a particular VM. Various tools
for attack graph generation and analysis have been proposed.
One such tool was proposed by O. Sheyner et al. [14][15].
To tackle scalability issues with attack representations, P.
Ammann et al. [16] assumed attacks to be monotonic in nature,
which allows attackers not to backtrack. TVA (Topological
Vulnerability Analysis) tool developed by Jajodia [17] was
another attack graph generation tool but it required some initial
input by hand. MulVAL [18] was proposed by X. Ou et al.
in which they utilized Datalog representation of network state
and attack scenarios. We adapt the MulVAL approach to create
our version of attack graph, Scenario Attack Graph (SAG).

III. SYSTEM OVERVIEW AND MODELS

A. Design Goals and Assumption

We establish a hybrid intrusion detection framework to
detect and monitor the malicious traffic in the network and
malicious process in each VM using VMI technology. To
achieve that, we have following design goals:

• The framework should be able to capture all of vulner-
abilities in the cloud system and enumerate all possible
attack paths after analyzing the vulnerabilities and their
dependencies.

• The framework should be able to detect malicious pro-
cesses in VMs immediately when the process is created,
but such detection shall not be done by any piece of code
running on VM.

• The framework should be able to select the optimal
countermeasure and deploy it before the attacker takes
the next exploitation step.

In this work, we assume that the hypervisor is trusted
and secured, which means the hypervisor properly isolates

A

C

B

v1 v2
v4

v3

Exploit vulnerability v1 on A

Knowledge form A

Exploit vulnerability v2 on A

Exploit vulnerability v4 on C

Exploit vulnerability v3 on B

Knowledge form C

Knowledge form A
Privilege 

Escalation on B

Vulnerabilities on nodes A, B and C for a simple network system

Figure 1. A simple attack graph example.

the resources and environment for the running VMs. The
hypervisor is protected against any exploits launched by the
attacker and the detection engine installed in the hypervisor
is invisible to the attacker. We also assume that users are
able to install vulnerable software and execute any malware
or malicious code in their VM. System administrator cannot
patch the software or remove the malicious code without users’
agreement. However, the Cloud Service Provider (CSP) allows
to block the traffic issued by such processes. Furthermore, the
VM outage caused by cloud system reliability [19] is out the
scope of this paper.

B. Attack Graph Model

An attack graph is a modeling paradigm to illustrate all
possible attack paths in a network that can be exploited by
internal or external attackers. It is a crucial model to under-
stand threats and then to decide appropriate countermeasures
in a protected network [20]. In an attack graph, each node
represents a condition or an action. A condition node is a
precondition and/or a consequence of an exploit. It represents
a system configuration or an access privilege that should be
true in order to exploit any other vulnerabilities. An action
node is a step that attacker exploits an existing vulnerability
in order to compromise a VM. It depends upon existence of
one or more conditions along the path and is not necessarily
an active attack since a normal protocol interaction can also
be used for an attack.



VM1, vul1 VM2, vul2 VM3,  vul3
(1) Alert raised by Snort(5) Monitoring and Identify related processes thru VMI (6) enable the receiving port of vul1 if the monitored process is normal (4) Suspend the receiving port of vul2 (4) Suspend the receiving port of the following vul..(2) track the sending port of vul1 (3) Suspend the receiving port of vul1

Figure 2. suspend-check-forwarding model.

As the attack graph lists all known vulnerabilities in the
system and the connectivity information, one can get a whole
picture of current security situation of the system. We can then
see the possible threats and attacks by correlating detected
events or activities with that depicted by the attack graph.
Attack graph is thus helpful in identifying potential threats,
possible attacks and known vulnerabilities in a cloud system.
Once an event is recognized as a potential attack, attack graph
tells important information about how the attacker can utilize
that event the damage it can cause to other machines. With this
information in hand we can apply specific countermeasures to
mitigate a malicious event impact and take actions to prevent
it from contaminating other virtual machines.

Fig. 1 shows a simple example of an attack graph. The left
hand side of the figure shows a simple network topology with
three VMs. VM A contains two vulnerabilities, v1 and v2. v2
can only exploited by an attacker if (s)he has exploited v1 and
obtained the required privilege to exploit v2. VM B and C
has v3 and v4 vulnerabilities respectively. The right hand side
of the figure shows the generated attack graph corresponding
to the network topology in the figure. Oval nodes represent
attacker’s action to exploit a vulnerability. Diamond nodes
represent precondition of exploiting next vulnerability on the
path and/or the consequence (post-condition) of an exploit. It
shows that there are two possible attack paths to reach the
goal which means to compromise VM C.

C. Suspend-check-forwarding model

The attack graph model enumerates all of possible threats in
the system, and presents an analogy of a map to list different
paths from source or attacker to destination or target. With
the help of intrusion detection agent, we can identify where
currently the attacker is on the attack graph. The alert raised by
intrusion detection agent reveals that the traffic from a source
to a destination with a certain protocol is suspicious. In order
to detect the malicious payload, we propose a suspend-check-
forwarding model to deter attacker’s actions. Out system does
so by detecting the infected process and stopping its communi-
cation with other processes in different VMs. We integrate the
attack graph, VMI technology, and programmability feature of
SDN to design our inspection model for tracking the available
attack paths, monitoring the internal process of a guest VM,
and suspending the traffic to a destination VM for further
inspection.

The concept of this model is shown through Fig. 2. In order

Hardware

. . .

. . .

. . .

Hypervisor

Physical Network

Virtual Network

Raw Data

Semantic Data

Figure 3. System Architecture.

to verify the activities of internal process inside a possible
victim and prevent the malicious code from further spreading
out to infect other VMs, our system tracks the traffic that is
generated from the port of the malicious process and whose
IP address is the source of the alert message raised by a
detection agent (step 1 and 2 in Fig. 2). After that, the system
suspends the traffic on the receiving port of vulnerability
on the destination VM after the suspicious node (step 3),
and continually suspends the following interaction ports of
vulnerabilities lying on the same attack path (step 4). Such
suspended ports belong to applications susceptible to attacks.
After suspending the traffic, monitoring on the infected VM
begins to look for malicious processes (step 5). If a malicious
process is detected, the traffic is blocked by the network
controller in SDN, otherwise the traffic suspension is cleared
and the receiving port on the destination VM is enabled (step
6).

IV. SYSTEM DESIGN

A. System Architecture

The proposed system is designed to work in a cloud virtual
networking environment. It consists of a cluster of cloud
servers and their interconnections. We assume that the latest
virtualization solutions are deployed on cloud servers. The
virtual environment can be classified as Privilege Domains,
e.g., the dom0 of XEN Servers [7] and the host domain
of KVM [21], and Unprivileged Domains, e.g., VMs. Cloud
servers are interconnected through programmable networking
switches, such as physical OpenFlow Switches (OFS) [22] and
software-based Open vSwitches (OVS) [23] deployed in the
Privilege Domains. In this work, we refer OFSs and OVSs and
their controllers as to the Software Defined Network (SDN).
The deployed security mechanism focuses on providing a
non-intrusive approach to prevent attackers from exploring
vulnerable VMs and use them as a stepping stone for further
attacks.

The system architecture of our solution is illustrated in
Fig. 3. The control center consists of a network controller,
a VM profiler, and an attack analyzer.

A network intrusion detection engine NICE-A can be in-
stalled in either Dom0 or DomU of a XEN cloud server.



Attack Analyzer

Figure 4. Workflow of Attack Analyzer.

Its job is to capture and filter malicious traffic. Alerts from
NICE-A are sent to control center upon detection of anomalous
traffic. After receiving an alert, attack analyzer evaluates the
severity of the alert based on the attack graph. It then initiates
countermeasures through the network controller after deciding
what countermeasure strategies to take.

As described in [6], countermeasures initiated by the attack
analyzer are based on the evaluation results from the cost-
benefit analysis of the effectiveness of countermeasures. The
network controller initiates countermeasure actions by recon-
figuring virtual or physical OpenFlow switches. We must note
that the alert detection quality of NICE-A depends on the
implementation of NICE-A that uses Snort. We do not focus
on the detection accuracy of Snort in this paper. Dom0 consists
of VM Process Monitor which uses VMI to monitor running
processes on VMs.

B. Attack Analyzer

Attack Analyzer is a centralized information process center
to process the security-related information and has the whole
picture of the security status of the monitoring cloud server
cluster. The major tasks of this component include collecting
and processing information about the identified alerts, suspi-
cious traffic and suspected processes from each VM Process
Monitor, selecting the best countermeasure based on the
knowledge of current attacks and system status, and sending
the commands to the Network Controller for countering or
mitigating the attack. These functionalities are realized by four
subcomponents: Attack Graph analysis model, countermeasure
selection, and VM profiler.

Figure 4 shows the workflow in the attack analyzer com-
ponent. Alert received from NICE-A is checked against the
vulnerability in the attack graph (AG). If a match is found,
i.e. the vulnerability corresponding to the alert already exists
in the attack graph then it can be regarded as a known

attack matching with signature in the alert message. If no
alert matches in the AG, then alert correlation and analysis
is performed and AG is updated. However, for a matching
alert, Attack analyzer locates the VM in the matched node
based on the destination IP address in the alert. The VM
Process Monitor then performs the inspection action on the
corresponding VM using VMI to detect and identify the
suspicious process with reference to the VM profiler. If a
process is identified as suspicious, a selected countermeasure
is applied by the network controller based on the severity
of evaluation results. If the inspected process is found to be
harmful, appropriate countermeasure is applied by the network
controller, otherwise the outgoing traffic is resumed from the
suspended VM.

C. Attack Graph

To keep track of all possible attack in the cloud, AA main-
tains an attack graph analysis model to analyze vulnerabilities
and their relationship from all monitored VMs. The related
tasks to the attack graph include constructing and updating the
attack graph when a vulnerability is patched or the network
topology is changed, correlating alerts with attack graph,
predicting attacks, managing the VM Profiler, and selecting the
optimal countermeasure. The attack graph is pre-constructed
based on the following information:

• Cloud system information: it is collected from each PD.
The information includes the number of VMs in each
cloud server, the running services on each VM, and VM’s
Virtual Interfaces (VIFs) information.

• Virtual network topology and configuration information:
NC collects this information, that includes virtual network
topology, host connectivity, VM connectivity, every VM’s
IP address, MAC address, port information, and traffic
flow information.

• Vulnerability information: it is generated by both
on-demand vulnerability scanning and regular pen-
etration testing using the well-known vulnerability
databases, such as Open Source Vulnerability Database
(OSVDB)[24], Common Vulnerabilities and Exposures
List (CVE)[25], NIST National Vulnerability Database
(NVD) [26], etc. Such scanning can be initiated by the
NC and VM process monitor.

Many alert correlation techniques have been proposed
[27][28][29] to reduce the false detection rate. In our frame-
work, alert correlations and analysis are also handled by Attack
Analyzer in the control center. This component has two major
functions: (1) correlate alerts and integrate them into the attack
graph model, (2) provide threat information or countermeasure
to Network Controller for virtual network reconfiguration or
further inspection.

D. Network Controller

Network controller is the main component to conduct the
VM oriented (high level) countermeasure on the suspicious
and malicious traffic based on the decision from Attack
Analyzer. Network controller is the key component to support



programmable network using OpenFlow protocol [30]. In our
framework, each cloud server has a software switch, i.e.,
implemented by using Open vSwitch (OVS) [23] as the edge
switch to handle all of traffic to and from VMs. The communi-
cation between cloud servers (i.e., physical servers) is handled
by OFS. Both OVS and OFS are controlled by the Network
Controller, allowing the controller to set security/filtering rules
on both OVS and OFS. Network Controller is also responsi-
ble for collecting network information of current OpenFlow
network, and provides inputs to Attack Analyzer to construct
attack graphs.

E. VM Profiler

VM Profiler keeps tracking the security-related status of
each VM. These profiles are necessary for the Attack Analyzer
to identity suspicious events. We use three lists to record the
security status of the processes for VMs in the cloud.

• Frequently Compromised Process List (FCP): FCP is a
list of processes related to well-known vulnerabilities in
CVE, NVD, and OSVDB because these vulnerabilities
are easy to be compromised by zero-day attacks, for
example, IExplorer.exe, Acrobat.exe, WinRAR.exe, WIN-
WORD.exe and so on. FCP is a public list for all VMs.

• Blacklist (BL): BL is a list of malicious processes that
have been identified by a PI from a VM. The process in
BL is not allowed to establish a communication channel
to other VMs in the cloud.

• Whitelist (WL): WL is a list of processes that have not
been identified as suspicious.

F. VM Process Monitor

Detecting the hidden malicious process is a very important
task for securing the system. For the malicious process detec-
tion, traditional methods primarily rely on the detection and
monitoring agent installed in the protected system. However,
such systems have drawbacks like system integrity is not pre-
served, detection and monitor agent is easy to be attacked, and
the correctness of the detection result cannot be guaranteed.
To address these problems, placing the detection and monitor
agent out of the protected VM is reasonable.

Virtualization Technology equips VM with three properties:
isolation, encapsulation, and privilege. Due to these properties,
it is easy to deploy the detection and monitoring agent in
the virtualization platform. In this article, we focus on XEN
virtualization platform only. We place the detection and mon-
itor agent out of the protected VM, use VMI technology and
semantic reconstruction to traverse thread dispatched database,
and to reconstruct the complete process list of kernel and
compare the user-level process with the kernel-level process
using cross-view technology to identify the hidden process.

Figure 5 shows VM Process Monitor. We develop five sub-
modules in this monitor: security console, daemon, VMI, se-
mantic reconstruction, extractor and executor. Security console
is an interactive console for administrators to setup the VM to
be monitored and configure the monitor strategies and rules.
These configuration messages will be sent to the daemon

Figure 5. VM Process Monitor.

module with a command and displayed on the console to notify
the administrators or serve as a log. Daemon, extractor and ex-
ecutor are all supporting functions for VMI and reconstruction
modules to pass the messages and commands between VMM
and VM Process Monitor.

VMI module is responsible for mapping the addresses
between the application process’ virtual address space in the
VM and the actual physical address space through two-layer
mappings. The first layer translates the Guest Virtual Address
(GVA) to the Guest Physical Address (GPA). The second layer
translates the GPA to the Host Physical Address (HPA). By
reading the GVA from the outside of VM, VMI is able to read
the content of the memory information in the VM through the
translation from VM’s GVA to VM’s HPA.

In a virtualized platform, the virtual machine monitor
(VMM) or hypervisor can only read VM’s internal virtual
hardware information, which is a large volume of unread-
able raw data. It lacks meaningful semantic view of internal
structures in the guest operating system and it is also hard
to directly map the current running status of the system.
This situation is often referred as “sematic gap” problem.
The semantic translation module is the one for addressing
the sematic gap issue. It is responsible for reconstructing the
kernel-level process of a VM and recovering the VM’s virtual
hardware information from the information captured by the
VMI.

For example, in order to retrieve the socket and network
connection information of processes in a MS Windows VM,
the VM process monitor locates the ADDRESS OBJECT
and TCPT OBJECT data structures in VM’s memory,
which is pointed by AddrObjTable and TCBTable in
PE (Portable and Executable) header of the kernel module
tcpip.sys. The VM process monitor traverses the linked list of

ADDRESS OBJECT and TCPT OBJECT data structures
to identify all the in-use sockets and active network connec-
tions, and most importantly, the processes they belong to.

V. COUNTERMEASURE STRATEGIES

We consider the countermeasure strategies at both network
level and host level. The network level countermeasures



Firewall(IP Tables)
Internet

Intruder
Private Network

Public Network

Hardware

User2's Workstation User1's WorkstationCloud Server

Open vSwitch

User3's Private NetworkSQL Server Web Server
Isolated bridge

Figure 6. Network topology for the case study.

primarily rely on network reconfiguration strategies through
SDN. It contains countermeasures such as traffic isolation,
deep packet inspection (DPI), MAC address rewrite, IP address
rewrite, network topology change, port blocking, and rate-
limiting, as well as traffic drop, redirect, and suspend. In this
work, we use port blocking and traffic suspension as network
level countermeasure strategies for the proof of concept.

As for the host-level countermeasure strategies, our system
mainly involves two levels of actions: VM-level network
reconfiguration and process-level network reconfiguration. Vir-
tual switch, i.e., the OVS in a XEN system, are the main com-
ponent in the virtual networking of a cloud system for the VM
connectivity. A VM in the XEN environment is connected to a
virtual bridge in the OVS through the Virtual Interfaces (VIFs)
attaching to the VM. VMs on different bridges are isolated at
layer-2. Even the traffic between VMs on the same bridge
is under the control of the virtual switch. Our framework
utilizes this layer-2 traffic management capability to propose
a VM-level network reconfiguration strategy. The VM-level
reconfiguration strategy can either disable the suspicious VM’s
VIF to isolate it from other VMs or force the suspicious
traffic redirect to an in-line mode intrusion detection system
for further deep-packet inspection.

Process-level network reconfiguration provides a fine-
grained and scrutinized control over the network connections.
With the processes and sockets information of a VM reported
from VM Process Monitor, the Network Controller is able
to make OVS to isolate the traffic issued by the inspected
processes or to redirect the traffic to an in-line mode intrusion
detection system for further inspection before delivering to the
destination. The advantage of the process-level network recon-
figuration is that all other network services remain untouched
while the activity of the suspicious process is monitored or
isolated.

In summary, the host level countermeasure strategies in-
clude:

1) VMIsp: VM-level Inspection put a suspected VM under
the inspection of a in-line mode intrusion prevention
system (IPS).

2) VMIso: VM-level Isolation disables all network traffic
to and from a suspected VM.

3) PrIsp: Process-level Inspection redirects the traffic of a
suspicious process in the VM to a in-line mode IPS.

4) PrIso: Process-level Isolation prevents the suspicious
process in a suspected VM from communicating with
other VMs while the network services from other pro-
cesses stay unaffected.

VI. EVALUATION

A. Case Study for Security Performance Analysis
To demonstrate the security performance of our framework,

we created an attack scenario to evaluate our network intrusion
detection system with attack graph model and non-intrusive
process-based monitoring system with VMI technology.

TABLE I
VULNERABILITIES IN THE TEST NETWORK.

Owner Host Vulnerability CVE ID
User1 Workstation Internet Explorer CVE2009-1918
User2 Workstation none none
User3 Web Server Apache HTTP service CVE2006-3747
User3 Database Server MySQL database service CVE2009-2446

Figure 6 shows the test network topology consisting of three
users. User1 and User2 acquire a VM for their workstations
respectively. They are all connect to the common virtual
network trough OVS. User3 creates a private network to host
a database server which can not be accessed directly from
external network and a web server which can be accessed
from internet through firewall and virtual network through
OVS. Attacker is assumed to be outside the network and has
access to the network through internet. The target for attacker
is to get root access on the database server. Table I lists the
vulnerabilities present on the VMs inside the test network.

Attack graph for the test network is shown in Fig. 7. The
original attack graph contains only one attack path which is
the path on the right side from node 1 to node 16. Node 1
in attack graph represents the attacker. Node 16 represents
the situation where attacker obtains root privilege on database
server in the private network of User3 and allows to execute
any code on the server which is the attacker’s goal. After node
4 has been exploited, it can lead to node 6 and allows attacker
to remotely execute malicious code on user VM. The execution
of malicious script allows the attacker network access to the
database server through tcp on port 3306, as denoted by node
8. From here, the attacker can exploit another vulnerability
on node 16 and can gain root access to the database server.
Another possible exploitation sequence the attacker can follow
is to go for exploitation of vulnerability denoted by node 12
which can lead the attacker to node 13 allowing permission
to execute code on the apache webserver.

The attack path on the left side is dynamically created by the
attack graph constructor when the vulnerability on the node



1: Attacker

Located(internet)

2: victim browses 

malicious website

4: Remote exploit of 

CVE-2012-0158

10: 

Multi hop access

11: netAccess 

(webServer, tcp, 80)

12: Remote exploit of 

CVE-2006-3747

13: execCode 

(webserver, apache)

14: Multi-hop access
15: netAccess 

(dbServer, tcp, 3306)

16: Remote exploit of 

CVE-2009-2446

17: execCode

(dbServer, root)

8: Direct network 

access

9: Victim browse a 

compromised website

3: 

victim downloads & 

opens malicious file

5: 

connection established 

with attacker

6: malware downloaded & 

executed on victim

7:

hidden execution of code 

on workstation

Figure 7. Attack Graph for the test network.

4 (CVE-2012-0158) is detected by NICE-A, which means
a user in the virtual network has downloaded a malicious
file containing the vulnerability of MSCOMCTL.OCX from
attacker’s website. Whenever the victim opens the downloaded
malicious file,a hidden connection is established to the remote
attacker. In order to detect if user on a VM has executed the
file, we need to enable the suspicious process monitoring and
detection module.

For better understanding we grouped attacker’s actions as
follows:

1) Attack Preparation: Attacker places a malicious file on
a website and waits for a novice user to download it. The
malicious file is capable of connecting back to the attacker to
provide a shell control, if it is opened by the victim.

2) Exploitation: When a cloud user downloads the ma-
licious DOC file, NICE-A raises an alert to report CVE-
2012-0158 vulnerability. At this stage, the receiver VM is
not exploited by the remote attacker, until a user opens the
file with MS Office 2007. When the file is opened, the em-
bedded shellcode establishes a connection, under the process
name WINWORD.EXE, to the remote attacker. Although the
connection can be detected by NICE-A, we cannot say it’s
a malicious behavior. Now, the suspicious process detector
(SPD) in the VM Process Monitor is activated to monitor the
process using VMI technology. The SPD detects an unknown
process created by WINWORD.EXE and tries to make a

Figure 8. Unknown process dependence with WINWORD.EXE.

Figure 9. Network connections created by WINWORD.EXE in Fig. 8.

connection to a remote host. Figure 8 shows the process
dependency for WINWORD.EXE detected by SPD. Figure 9
further details out the network connections established by
WINWORD.EXE.

3) Persistent Control: To be able to control the compro-
mised VM, attacker takes help of a malware. For instance,
malwares like GP.EXE and FU.EXE are used to manage
processes remotely and also allow hiding of processes to avoid
detection by the user. In our test case, attacker can be anywhere
including internal and external network, (s)he also can change
the location (attacker’s IP address) to get hold of command
and control anytime. The attacker then transfers these two
files stealthy through the reverse connection created by the
victim. After GP.EXE is executed on victim VM, it will extract
and install a malicious daemon GPd on the victim and sets
up a connection to the attacker. The GPd modifies victim’s
auto run registry to attach itself to autostart script, which
guarantees persistent control by the attacker. The attacker now
can fully control and manage the processes on the victim
VM. Since SPD has been enabled, it can detect an unknown
process (GP.EXE) which is created by WINWORD.EXE, as
shown in Fig. 10. Even though GP.EXE is closed, SPD still
be able to detect unknown process GPD.EXE depending on
WINWORD.EXE, as shown in Fig. 11. We got the experiment
result of Fig. 8-11 with support from volatility project [31].

4) Hidden Control: Hiding processes and their dependency
is a common strategy for attacker to obfuscate the detection. To

Figure 10. Unknown process dependency.



Figure 11. Unknown process connection.

Figure 12. Detected Hidden Process.

make the control hidden from the attacker, FU.EXE is a good
tool for attacker to hide the malicious processes. For instance,
the GP daemon process (GPd) can be removed from the pro-
cess chain list to hide the dependence with WINWORD.EXE,
so that the malicious daemon can be executed stealthy from
user and administration tools, as shown in Fig. 10. To prevent
attackers to hide themselves using this technology, we develop
the SPD with ability to detect the hidden processes and their
communication, as shown in Fig. 12.

5) Countermeasures: In different stages of alert, cloud
controller can make the decision of whether to take counter-
measure or which countermeasure should be taken according
to the alert level. If SPD does not detect any clue that the
vulnerability related to the first alert is exploited, Cloud IPS
can take the alert as false positive.

B. System Performance

We performed the evaluation on a cloud server with Intel
quad-core Xeon 2.4 GHz CPU and 32G memory. For the non-
intrusive suspicious process detection and monitoring system,
we created eight VMs running Windows XP SP3. In addition
to the default processes in Windows XP SP3 (27 processes),
we launched multiple instance of NOTEPAD.EXE to increase
the number of process to be detected in each VM for different
tests. All tests were performed on different number of VMs
(from 1VM to 8VMs) but the same configuration. Six different
tests (with different number of process) were performed for
each test run. Every test was performed 100 times with the
same number of process for all VMs in that test run. The
average time elapsed for each test is shown in Fig. 13.

�

��

���

���

���

���

���

���

���

���

�
��
��
�
�
�
�
�
	
�

���

���	

���	

���	

���	


��	

�

�� �� �� �� �� ��

����������		�	�
��������

���	

���	

Figure 13. VMI Performance Evaluation.

���

���

���

���

���

�
��
�
��
�
�	

�

�
��
�
�

��

��

��

��

��

���

� � � � � � � 	

��������	�
��

��

Figure 14. VMI Performance Evaluation.

As we can see from Fig. 13, the average process time for
each test run approaching to a horizontal line which means
the detection time is independent from the number of process.
However, the average process time is proportional to the
number of VM to be monitor simultaneously, as shown in
Fig. 14.

To measure the fine-grained performance impact of our sus-
picious process detector, we used UnixBench benchmark [32].
The results are shown in Fig. 15. The worst-case overhead of
our system is 9.25%, while the overheads in most other cases
are below 10%. The overall system performance overhead is
3.6% which is a small amount.

VII. CONCLUSION AND FUTURE WORK

The system we proposed in this paper integrates a network
based intrusion detection system to monitor and detect the
traffic in the virtual network and a non-intrusive host based
suspicious process monitor and detection system using “out-���������	
�������	���������� �	�� ������� ����� �������������	�������	������������������ � � !"#$" !%&$' ($)'*������+��
����	�,������	� -,��� .!"$) .!($. &$."*/��
��0����� ��� � � �!'$( �'%$" "$##*1����2� ��%&�(���3��4���&&&�������
��� 5� � %�!!$) %�.#$# ($'"*1����2� ���"#���3��4��"&&�������
���� 5� � ))($! ))($' &$&%*1����2� ��(&!#���3��4��'&&&�������
���� 5� � �&�" %'.)$# !$�"*�� ��0����� ��� � � #%"$( ")'$. #$&.*�� �+������2�	���������
��	�� � � �!($( �)($. #$'.*��
����2�����	�� � � �&($. %!.$% "$('*�������
� ���6%�
�	
��	�7� � � )(&$" )%"$" .$.'*�������
� ���6'�
�	
��	�7� � � ��%)$% �%)#$. %$'(*�������2����8������� � � (��$( (&. ($"!*���������	
�������	�����
��� #() #�.$) .$#&*

Figure 15. SPD Overhead measurement using Unixbench benchmark.



of-box” VMI technology. Moreover, the host-based intrusion
detection is based on VM introspection techniques that do not
need the implement special codes in users’ VMs.

When hardening network security, hosts cannot be kept
apart. Our IDS framework takes care of network security
and VM Process Monitor accounts for the security of the
host machines. The major benefit for using our framework
is to gain the ability to select optimal countermeasures and
making the virtual system attack resilient by deploying these
countermeasures swiftly. Furthermore, agility of our defense
mechanism can be greatly improved with the use of SDN
approach and provide an adaptive defense-in-depth approach.

From the case study for the security analysis and system
performance we conducted in the evaluation section, it shows
that our system is able to capture the malicious traffic and
detect the suspicious process related to the alert.

In order to increase the detection accuracy of intrusion and
presence of malware in the cloud, we need develop a more
sophisticated malware analysis and detection system for our
framework in the future to cover different types of VMs,
operation systems, vulnerabilities, and attacks. Additionally,
our proposed solution suffers from scalability issues since
generation of attack graph is complex. We will investigate
the decentralized network attack analysis model and/or col-
laborative approach to address the scalability issues of our
framework.

ACKNOWLEDGMENT

The authors would like to thank ONR Young Investigator
Program (YIP) award to support the research as part of the se-
cure mobile cloud computing project. The authors would also
like to thank the anonymous reviewers for their constructive
comments and suggestions to improve the research quality of
this work.

REFERENCES

[1] W. Jansen, “Cloud hooks: Security and privacy issues in cloud comput-
ing,” in 2011 44th Hawaii International Conference on System Sciences
(HICSS), Jan. 2011, pp. 1 –10.

[2] H. Qian and D. Medhi, “Server operational cost optimization for cloud
computing service providers over a time horizon,” in Proceedings of
the 11th USENIX conference on Hot topics in management of internet,
cloud, and enterprise networks and services, ser. HotICE’11, 2011.

[3] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection,” in Proc. of the 10th Annual Network
and Distributed Systems Security Symposium, 2003.

[4] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection and
monitoring through VMM-based ”out-of-the-box” semantic view re-
construction,” ACM Transaction on Information and System Securirty,
vol. 13, no. 2, pp. 12:1–12:28, Mar. 2010.

[5] X. Jiang and X. Wang, “Out-of-the-Box monitoring of VM-Based high-
interaction honeypots,” in Recent Advances in Intrusion Detection, ser.
Lecture Notes in Computer Science, C. Kruegel, R. Lippmann, and
A. Clark, Eds. Springer Berlin Heidelberg, Jan. 2007, no. 4637, pp.
198–218.

[6] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “NICE: network
intrusion detection and countermeasure selection in virtual network
systems,” IEEE Transactions on Dependable and Secure Computing,
vol. 10, no. 4, pp. 198–211, Jul. 2013.

[7] “Citrix XenServer.” [Online]. Available: http://www.citrix.com/xenserver
[8] “VMware NSX Network Virualization.” [Online]. Available:

http://www.vmware.com/products/nsx/

[9] P. Salvador, A. Nogueira, U. Franca, and R. Valadas, “Framework
for zombie detection using neural networks,” in Fourth International
Conference on Internet Monitoring and Protection, 2009. ICIMP ’09,
2009, pp. 14–20.

[10] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Antfarm:
Tracking processes in a virtual machine environment,” in Proceedings
of the USENIX Annual Technical Conference, 2006, pp. 1–4.

[11] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “VMM-
based hidden process detection and identification using lycosid,” in Pro-
ceedings of the fourth ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, ser. VEE ’08. New York, NY, USA:
ACM, 2008, pp. 91–100.

[12] C. Benninger, S. Neville, Y. Yazir, C. Matthews, and Y. Coady, “Mait-
land: Lighter-weight VM introspection to support cyber-security in the
cloud,” in 2012 IEEE 5th International Conference on Cloud Computing
(CLOUD), Jun. 2012, pp. 471 –478.

[13] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu, “Process out-grafting:
an efficient ”out-of-VM” approach for fine-grained process execution
monitoring,” in Proceedings of the 18th ACM conference on Computer
and communications security, ser. CCS ’11. New York, NY, USA:
ACM, 2011, pp. 363–374.

[14] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Automated
generation and analysis of attack graphs,” in 2002 IEEE Symposium on
Security and Privacy, 2002. Proceedings. IEEE, 2002, pp. 273– 284.

[15] O. M. Sheyner, “Scenario graphs and attack graphs,” Ph.D. dissertation,
Carnegie Mellon University, 2004.

[16] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based net-
work vulnerability analysis,” in Proceedings of the 9th ACM conference
on Computer and communications security, ser. CCS ’02. New York,
NY, USA: ACM, 2002, pp. 217–224.

[17] S. Jajodia, “Topological analysis of network attack vulnerability,” in
Proceedings of the 2nd ACM symposium on Information, computer and
communications security, ser. ASIACCS ’07. New York, NY, USA:
ACM, 2007, pp. 2–2.

[18] X. Ou, S. Govindavajhala, and A. W. Appel, “MulVAL: a logic-based
network security analyzer,” in Proceedings of the 14th conference on
USENIX Security Symposium - Volume 14. Berkeley, CA, USA:
USENIX Association, 2005, pp. 8–8.

[19] H. Qian, D. Medhi, and T. Trivedi, “A hierarchical model to evaluate
quality of experience of online services hosted by cloud computing,”
in 2011 IFIP/IEEE International Symposium on Integrated Network
Management (IM), 2011, pp. 105–112.

[20] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to
attack graph generation,” in Proceedings of the 13th ACM conference
on Computer and communications security, ser. CCS ’06. New York,
NY, USA: ACM, 2006, pp. 336–345.

[21] “Kernel based Virtual Machine (KVM).” [Online]. Available:
http://www.linux-kvm.org/

[22] “OpenFlow project,” http://openflow.org/. [Online]. Available:
http://openflow.org/

[23] “Open vSwitch project,” http://openvswitch.org/. [Online]. Available:
http://openvswitch.org/

[24] “Open source vulnerability database (OVSDB),” http://osvdb.org/.
[25] Mitre Corporation, “Common vulnerabilities and exposures, CVE,”

http://cve.mitre.org/.
[26] NIST, “National vulnerability database, NVD,” http://nvd.nist.gov.
[27] L. Wang, A. Liu, and S. Jajodia, “Using attack graphs for correlating,

hypothesizing, and predicting intrusion alerts,” Computer Communica-
tions, vol. 29, no. 15, pp. 2917–2933, Sep. 2006.

[28] S. Roschke, F. Cheng, and C. Meinel, “A new alert correlation algorithm
based on attack graph,” in Computational Intelligence in Security for
Information Systems, ser. Lecture Notes in Computer Science. Springer,
2011, vol. 6694, pp. 58–67.

[29] S. Roschke, F. Cheng, and C. Meinel, “A flexible and efficient alert
correlation platform for distributed IDS,” in 2010 4th International
Conference on Network and System Security (NSS). IEEE, Sep. 2010,
pp. 24–31.

[30] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[31] “Volatility.” [Online]. Available: https://code.google.com/volatility/
[32] “Unixbench – a Unix benchmark suite.” [Online]. Available:

http://www.tux.org/pub/tux/niemi/unixbench/


