
Making Offloading Decisions Resistant to Network
Unavailability for Mobile Cloud Collaboration

Huijun Wu, Dijiang Huang
Arizona State University

{Huijun.Wu, Dijiang.Huang}@asu.edu

Samia Bouzefrane
Conservatoire national des arts et métiers

samia.bouzefrane@cnam.fr

Abstract—Offloading is one major type of collaborations be-
tween mobile devices and clouds to achieve less execution time and
less energy consumption. Offloading decisions for mobile cloud
collaboration involve many decision factors. One of important
decision factors is the network unavailability that has not been
well studied. This paper presents an offloading decision model
that takes network unavailability into consideration. Network
with some unavailability can be modeled as an alternating
renewal process. Then, application execution time and energy
consumption in both ideal network and network with some
unavailability are analyzed. Based on the presented theoretical
model, an application partition algorithm and a decision module
are presented to produce an offloading decision that is resistant
to network unavailability. Simulation results demonstrate good
performance of proposed scheme, where the proposed partition
algorithm is analyzed in different application and cloud scenarios.

Keywords—Mobile Cloud Computing, Offloading, Reliability.

I. INTRODUCTION

The collaboration of mobile devices and clouds enlarges the
advantages of both mobile devices and clouds. The mobile de-
vices can use the unlimited computation and storage resource
of cloud, and meanwhile, the cloud gets more close to end user
through the bridge of mobile devices. Mobile cloud application
based on mobile cloud collaboration deploys its components
into different places including local smart phone and virtual
machines in cloud. The application initially starts all compo-
nents on smart phone locally. When remote cloud resource
becomes available, the mobile cloud application may offload
computing-intensive or memory-consuming components to re-
mote cloud to improve performance or save mobile device
energy. One key issue in offloading process is how to make
offloading decisions. Due to the complexity of mobile and
cloud environments, offloading decision involves mobile side
parameters such as CPU and memory, cloud side environment
including virtual machine capability and performance, and
the state of network in between, which altogether makes the
decision making problem difficult to tackle. The network state
is the most complicated and important part among three aspects
considered.

Network status has great impact on mobile cloud collabora-
tion. Due to mobility of mobile users, the network connecting
mobile devices and clouds changes drastically. The network
connection may be lost when a mobile device moves into
some area that is not covered by wireless network. When the
connection to cloud is lost, the original execution routine is
interrupted and the application has to wait until the connection

resumes [1]. The expected benefit of mobile cloud collabo-
ration may not be obtained due to interruption of execution
plan. The collaboration may even lead to negative impact to
execution time or energy consumption in such scenario. Thus,
we need to find offloading solution that is resistant to network
unavailability to assure the less execution time and less energy
consumption benefits.

To address the problem of offloading decision making in
network with some unavailability, we present an offloading
decision module that produces offloading decision that is re-
sistant to network unavailability. The unstable network is mod-
eled as an alternating renewal process that provides statistic
information of connection duration. The proposed offloading
decision module monitors network connection states and du-
rations that are recorded in a history buffer. Then it calculates
application partition that is aimed to give benefit in network
with low availability. And it finally validates the partition
and outputs the offloading decision. The offloading decision
module contains two key components. One is for partitioning
application components into smart phone and cloud sides based
on unstable network assumption. The other is for validating the
application partition by comparing the possible unavailability
of the partition and the observed network unavailability. The
proposed offloading decision module can be put into mobile
cloud application to provide application offloading decisions
with the consideration of network unavailability.

In summary, the contributions of presented research are
highlighted as follow:

• Mobile cloud collaboration model considering net-
work unavailability: The proposed scheme models
the application execution time considering unstable
network situation. The unstable network is modeled
as an alternating renewal process. Then application
execution time and energy consumption are analyzed
in both ideal network and unstable network.

• Application partition algorithm: The proposed al-
gorithm utilizes application information to find the
application partition that can achieve both less execu-
tion time and less energy consumption when network
availability is low. The algorithm works in a heuristic
manner.

• Bayesian decision approach: The partition given by
above partition algorithm is validated by comparing
tolerated unavailability of given partition and observed
network unavailability. Since the network states es-
timated based on history observation are not fully

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254106

trusted. The final offloading decision is made by a
bayesian decision approach to mitigate the possible
error.

• Offloading decision module: The proposed solution
provides a module that can be plugged into mobile
cloud applications to enable decision making in unsta-
ble network scenario. The offloading decision module
consists of four parts: observation buffer, application
partition component, network state predictor and par-
tition validation component.

The paper is organized as follows. Section II introduces
related work on mobile cloud offloading framework and of-
floading decision. Section III presents system and models
in both ideal and unstable network situations. Section IV
presents application partition algorithm and partition validation
approach followed by offloading decision module. Section V
presents simulation results and analysis. Section VI concludes
the paper.

II. RELATED WORK

In recent years, some research work on mobile cloud
collaboration has been proposed. Cuckoo [2] and eyeDentify
[3] proposed a static offloading framework based on Ibis [4]
middle ware. The proposed framework is build on Android and
requires a separate compile process to generate mobile device
and cloud versions of the same application. This framework
does not have offloading decision intelligence. Zhang et al.
proposed a web service based elastic offloading framework
[5]. This framework uses a cost model to make offloading
decision. The author did not provide an effective method to
obtain optimal offloading decision. ThinkAir [6] and MAUI
[7] are energy saving frameworks. They profile the hardware
components and make offloading to optimize energy usage
of mobile devices. These two frameworks only consider the
energy issue of offloading and ignore other aspects including
network states. Clonecloud [8][9] and eXCloud [10] are virtual
machine related frameworks. Clonecloud mirrors the mobile
device application in the cloud. eXCloud migrates Java virtual
machine stack to cloud. These two frameworks record the
application state on mobile devices and resume the application
from the stored state in cloud.

Besides mobile cloud collaboration frameworks, some
research work focus on offloading decision making issues.
Giurgiu et al. [11] models application as a dependency graph.
‘All step’ and ‘K step’ algorithms were proposed to solve
application partition problem. Memory and transferred data
size were taken into the consideration, but not network avail-
ability. Ou et al. [12] discussed system failure in offloading
systems. They analyzed system execution time considering
system failure and recovery. They did not consider how to
make offloading decisions. Wolski et al. [13] considered of-
floading decision problem based on network bandwidth. They
assumed that the network availability is not an issue. However,
the network may even not be connecting in real mobile cloud
computing scenario due to mobility or other reasons. Xian
et al. [14] proposed an offloading method aimed at energy
saving. The proposed method adjusts the time out threshold to
decide whether to wait for remote cloud response or to resume
execution locally. Gu et al. [15] proposed an offloading ap-
proach based on a fuzzy control model. They modeled mobile

b6

b2

d41=0.1

d43=0.8

d84=0.6

d87=0.2
d73=0.7

d75=0.3 d56=0.4

d52=0.5

d12=0.9

b3

b7

b8

b4

b5

b1

t8=0.1

t7=0.4

t4=0.3

t3=0.2 t5=0.5

t1=0.8

t6=0.7

t2=0.6

partition

Fig. 1. Application graph example.

device situation as fuzzy parameters. Their approach considers
optimization of wireless network bandwidth requirement and
interaction delay. Sinha et al. [16] and Ou et al. [17] proposed
offloading scenarios involving multiple sites. However, their
approaches do not consider the network availability issue
during the mobile cloud offloading process.

Although the above researches provided various offloading
frameworks and decision models, network availability issues
were ignored. We take network availability into consideration
to better model real world scenarios.

III. SYSTEM AND MODEL

Mobile cloud consists of mobile devices and clouds. There
is usually one to one mapping between mobile devices and
virtual machines in cloud [18]. The mobile cloud application
is constructed as a set of components or bundles. Some com-
ponents can run on either mobile device or virtual machine,
while the other components, such as user interface and sensors,
have to run on mobile devices. The major offloading objectives
are saving application execution time and energy consumption
on mobile devices. Notations in following discussion are
summarized in TABLE II in Appendix for convenience.

A. Application Model and Ideal Network Model

The application is presented as a directed acyclic graph
G = {B,E} where every vertex is a bundle and every edge
is data exchange between bundles [11]. Each bundle has an
attribute indicating whether it can be offloaded. The unmovable
bundles are marked as local which means these bundles cannot
be offloaded due to application requirements. Let m be the total
count of bundles in the application, then the initial bundle set
is B = {bi | i ∈ [1, 2, . . . ,m]} and the edge set is E =
{eij | i, j ∈ [1, 2, . . . ,m]} where eij represents directed data
transfer from bi to bj . Let n be the count of movable bundles
and n ≤ m. A configuration c [11] is defined as a tuple of
partitions from the initial bundle set, < Bphone, Bcloud >,
where Bphone = {bi | i ∈ [1, 2, . . . , k]} has k bundles and
Bcloud = {bi | i ∈ [1, 2, . . . , s]} has s bundles. And they
satisfy Bphone ∩ Bcloud = ∅ and Bphone ∪ Bcloud = B. The
bundles that are marked as local are initially put in the set
Bphone and cannot be moved. An example is shown in Fig. 1
where unmovable bundles are marked as grey and dot line
indicates configuration. The bundles on the left side are Bphone
and the bundles on the right side are Bcloud.

1) Execution Time: For a given task, bundle bi has an
attribute ti indicating its computation time on smart phone.
And edge eij is associated with an attribute dij indicating the
transferred date size from bundle i to bundle j. These value
can be measured or estimated from collected application and
device data. Total time of running task only on smart phone is

tphone =
∑
bi∈B

ti, (1)

where data exchanges between bundles are not counted as
they happen locally and cost little time compared to time
of data exchange over network. For a particular configura-
tion c, offloading rate p [12] is defined as the proportion
of offloaded task to all task in terms of computation time.
Then, task proportion is the same as time proportion due to
the same processing capability on the same mobile device
p(c) = (

∑
bi∈Bcloud

ti)/tphone, and p(c) satisfies 0 ≤ p(c) ≤ 1.

Then, the computation time on smart phone is

tphonecomputation(c) =
∑

bi∈Bphone

ti = (
∑
bi∈B

−
∑

bi∈Bcloud

)ti

= (1− p(c))tphone.
(2)

Assume the cloud is q times faster than smart phone, thus
the time consumption in clouds is q times less than the time
spent on mobile devices [14], which is tcloudi = ti/q. The
computation time in cloud is

tcloudcomputation(c) =
∑

bi∈Bcloud

tcloudi =
1

q

∑
bi∈Bcloud

ti

=
p(c)

q
tphone.

(3)

Thus the total computation time is:

tcomputation(c) = tphonecomputation(c) + tcloudcomputation(c)

= (1− (1− 1

q
)p(c))tphone.

(4)

A typical offloading process works as follows. Initially,
the application starts on smart phone and all components run
locally. Then, the application may offload some components
to remote virtual machines. These offloaded bundles run in
cloud remotely. However they need to communicate with the
bundles resident on smart phone. Thus they have to exchange
data through network. Assume network bandwidth is w, then
the network delay is the sum of delays in both data transfer
directions:

tnetwork(c) =
∑

bi∈Bphone

bj∈Bcloud

dij
w

+
∑

bi∈Bcloud
bj∈Bphone

dij
w
.

(5)

In an ideal network environment, the total execution time for
a given configuration c is the sum of computation time and
network delay:

t(c) = tcomputation(c) + tnetwork(c). (6)

The offloading benefit of execution time comes from the trade
of tcomputation and tnetwork. The computation part saves
execution time because the cloud processing capability is
powerful than mobile devices. However, the offloading has

to pay network delay, which counteracts the computation
time saving. For computation intensive applications whose
computation time saving is much larger than network delay,
the offloading benefit is obviously seen.

2) Energy Consumption: Two hardware modules of mobile
devices are involved in the energy consumption estimation:
CPU and radio frequency (RF) module. Other modules, like
display, audio, GPS etc., are not considered because the
components that interact with theses modules have to run
on mobile devices locally. Both energy consumption on CPU
and RF module can be further separated into dynamic part
and static part [19]. When hardware module is in idle state,
the energy consumption is corresponding to static part. When
hardware module is in active state, more energy is consumed,
which is corresponding to dynamic part. Assume the power of
CPU in idle state is Ksta

CPU and the power of CPU in active
state is Ksta

CPU +Kdyn
CPU . The energy consumption of CPU is:

PCPU (c) = Ksta
CPU t(c) +Kdyn

CPU t
phone
computation(c). (7)

Similarly, let Ksta
RF and Kdyn

RF be the power of RF module in
idle and active state separately. The energy consumption on
radio frequency module is:

PRF (c) = Ksta
RF t(c) +Kdyn

RF tnetwork(c). (8)

Thus, the total energy consumption is:

P (c) = PCPU (c) + PRF (c). (9)

If offloading is not applied, only CPU consumes energy
and its active period is the whole execution time. The total
energy consumption of running tasks only on smart phone is:

Pphone = (Ksta
CPU +Kdyn

CPU)tphone. (10)

The offloading influences energy consumption of mobile de-
vices in two aspects. First, the mobile device may save
energy because the mobile device does not pay for the energy
consumption corresponding to the tasks that are offloaded and
completed in cloud. Second, the data exchange between ap-
plication components are now fulfilled by networking instead
of local procedure invocation, which leads to energy cost for
sending and receiving packets. Similarly to time benefit of
offloading, the computation intensive application may obtain
obvious energy benefit when computation tasks are offloaded
to save large CPU energy consumption and network energy
consumption is small.

B. Model and Impact of Network Unavailability

The connection between mobile devices and clouds is
usually not stable due to mobility of devices. When the mobile
device moves out of wireless coverage, it loses connection
to cloud. The mobile device continues to make attempts to
reconnect to cloud when the network is unavailable. When
it gets into coverage again, the connection resumes. As the
mobile device moves, the connection state changes as on, off,
on, off . . . , which can be modeled as an alternating renewal
process.

Fig. 2 shows how network availability changes along with
time coordinate. Solid line represents network is available,
while dash line represents network is unavailable. Two network

ξ1

χ

η1 ξ2 η2 ξi ηi

t0

Fig. 2. Network unavailability model.

states alternate with each other. One on duration and one off
duration form a cycle. The on state duration is denoted as ξ
and the off state duration is denoted as η. {ξi, i = 1, 2, . . .}
is independent and identically distributed (i.i.d.), and so is
{ηi, i = 1, 2, . . .}. And ξi and ηj are independent for any
i 6= j, but ξi and ηi can be dependent [20]. The cycle duration
is denoted as χ and χi = ξi + ηi where i = 1, 2, The
proportion of on duration in any individual cycle is a random
variable denoted as ρ = ξ/χ.

1) Execution Time: When the network is unavailable, the
application has to wait because phone cannot send input
to cloud and cannot retrieve output from cloud either. The
application resume the execution after the network becomes
available again. The total execution time is prolonged accord-
ing to the proportion of ρ:

t′(c) =
t(c)

ρ
. (11)

The offloading gives time benefit when t′(c) < tphone(c).
In ideal network environment, ρ = 1 and t′(c) = t(c). t′(c)
raises to infinity when ρ decreases from 1 to 0. At some point,
the benefit disappears finally. We define this point as critical
value of ρ for time benefit:

ρ′time(c) =
t(c)

tphone
. (12)

The time benefit is:

∆t(c) = tphone(c)− t′(c), (13)

when ρ > ρ′time(c).

2) Energy Consumption: During time period t′(c),
the computation time t′computation(c) and network time
t′network(c) are the same with tcomputation(c) and tnetwork(c)
in ideal network environment because computation and data
transfer only work properly when network is available as ideal
network. The CPU active time period is the same as that
in ideal network model because the given task is the same.
However, the CPU idle time period is the whole execution
time that is different from that in ideal network model. Thus,
the energy consumption for CPU is:

P ′CPU (c) = Ksta
CPU t

′(c) +Kdyn
CPU t

phone
computation(c). (14)

The RF module is active even when the network is unavailable
because it continues scanning the available network to resume
the connection. Thus, the active time period for RF module is
t′(c)− tcomputation(c). The energy consumption for RF is:

P ′RF (c) = Ksta
RF t

′(c) +Kdyn
RF (t′(c)− tcomputation(c)). (15)

Thus, the total energy consumption is:

P ′(c) = P ′CPU (c) + P ′RF (c). (16)

The offloading gives energy benefit if P ′(c) < Pphone. As
ρ decreases, both P ′CPU (c) and P ′RF (c) increase. Similarly,

the critical value of ρ for energy is defined as the point where
energy benefit disappears:

ρ′energy(c) = (Ksta
CPU +Ksta

RF +Kdyn
RF)t(c)/(Pphone

−Kdyn
CPU t

phone
computation(c) +Kdyn

RF tcomputation(c)).
(17)

The offloading energy benefit is:

∆P (c) = Pphone(c)− P ′(c), (18)

when ρ > ρ′energy(c).

3) Problem Formulation: When network availability ρ is
greater than the larger one of ρ′time(c) and ρ′energy(c), both
time and energy benefit are obtained. We define the critical
value of ρ is:

ρ′(c) = max{ρ′time(c), ρ′energy(c)}. (19)

The offloading problem with network unavailability consider-
ation is to find the application partition c to minimize ρ′(c):

min ρ′(c), (20)

while both time and energy benefit exist:

ρ > ρ′(c), (21)

where ρ is the current network availability estimated based on
observations. The c satisfying (21) may not exists when ρ is
too low. In this situation, the application should not offload any
components to cloud. The solution given by (20) is the best
partition that tolerates the network unavailability, and it may
give benefit when current network availability ρ goes worse.

IV. ALGORITHM AND SOLUTION

The bundle computation time ti’s form a vector t of m
dimensions. The data size dij’s form a square matrix Dm×m.
If there is no edge from bi to bj , then dij is set to 0.

The configuration c can be represented as a vector x of m
dimensions where xi indicates whether bi should be offloaded.
xi = 1 means bi should be offloaded to remote cloud, and xi=0
means bi should be kept on smart phone locally. For bi that
cannot be offloaded, xi is set to 0 initially and does not change.
Vector x has m elements in which n elements are variables
and the others are 0s. For simplicity, all 0s are put at the end
of x.

Let 1 be a column vector whose elements are all 1s, then
tphone = tT 1. Offloading rate p(c) is now p(x) = tT x/tT 1.
And tnetwork(c) is tnetwork(x) = ((1 − x)TDx + xTD(1 −
x))/w. Thus t(c) is finally function of x, which is t(x).

The objective of offloading decision is to find configuration
x satisfying (20). This is a 0-1 Integer Programming (IP)
problem.

A. Application Partition

The solution space for configuration x is 2n, which means
it costs a lot of time to search the optimal solution. To find
proper x within acceptable time, we propose an Artificial Bee
Colony (ABC) [21] based algorithm. The colony consists of
three types of bees: employed bees, onlooker bees and scout
bees. The bee that goes to food source visited by it before is

named employed bee. The bee that waits on the dance area
for making a selection of food source is called onlooker bee.
And the bee that carries random search for discovering new
food source is named scout bee. The food source is a possible
solution x, and every bee can memorize one food source. It
is assumed that there is only one employed bee for each food
source. The memory of employed bees is considered as the
consensus of the whole colony, and the food sources found
by onlooker bees or scout bees merge into employed bees’
memory in algorithm. Assume the number of employed bees
is N and the number of onlooker bees is M (M > N). And let
MCN be Maximum Cycle Number. The algorithm overview
is shown in Algorithm 1.

Algorithm 1 Application partition algorithm overview.
1: Initialize employed bees.
2: cycle← 1.
3: repeat
4: Produce new solution for employed bees.
5: Apply greedy selection process for employed bees.
6: Determine probabilities, and assign M onlooker bees to

N employed bees accordingly.
7: Produce new solution for onlooker bees.
8: Apply greedy selection process for onlooker bees.
9: Determine abandon solution, if exists, and replace it

with scout bee.
10: Memorize the best solution so far.
11: cycle← cycle+ 1.
12: until cycle = MCN

At the first step, the algorithm generates a random initial
population X (cycle = 0) of N solutions where the population
size is the same as number of employed bees. Based on this
initial generation, the algorithm starts to evolve the generation
in cycles. The evolution repeats until the cycle number reaches
limit MCN . The algorithm outputs the best solution, denoted
as xbest, ever found in all cycles.

In the cycle, three types of bees work in sequence. The
details of three type bees’ actions are shown in Algorithm 2.
Employed bees produce new solutions by two local search
methods:

Flip employed bee randomly flips one element in the
vector x.

Swap employed bee randomly flips two elements of dif-
ferent values in the vector x, which is equivalent
to swapping two different elements in that vector.

Each employed bee evaluates the fitness of its original solution
x, new found xflip and xswap by (19). Then, each employed
bee memorizes the best one of these three food sources and
forgets the others.

Onlooker bees watch employed bee dancing, and plan the
preferred food source. Onlooker bees record critical values of
all food sources and calculate the probability for ith food source
as below:

pi =
1/ρ′(xi)

N∑
j=1

(1/ρ′(xj))
. (22)

Intentionally, the lower food source’s critical value is, the
more likely onlooker bee would like to go. The onlooker
bees chooses the food source y randomly according to its
probability. Since M > N , several onlooker bees may follow
the same employed bee and choose the same food source.
Then each onlooker bee applies the same local search methods
used by employed bees previously to explore new neighbour
solutions, and picks the best one of the three. After all onlooker
bees update their solution, each employed bee compares its
solution with its followers’ solutions, and picks the best one
as its new solution.

Algorithm 2 Details of application partition algorithm.
1: Initialize employed bees randomly

xi: the ith employed bee.
2: cycle← 1.
3: repeat
4: for each employed bee xi do
5: Apply Flip local search and find xflip.
6: Apply Swap local search and find xswap.
7: if ρ′(xi) > min{ρ′(xi), ρ′(xflip), ρ′(xswap)} then
8: xi ← arg min{ρ′(xi), ρ′(xflip), ρ′(xswap)}.
9: end if

10: end for
11: Determine probabilities (pi) by (22).
12: Mi ← piM : number of onlooker bees sent to

the ith food source.
13: yij ← xi (j = 1, 2, . . . ,Mi): the jth onlooker bee

of the ith food source.
14: for each onlooker bee yij do
15: Apply Flip local search and find yflip.
16: Apply Swap local search and find yswap.
17: if ρ′(yij) > min{ρ′(yij), ρ′(yflip), ρ′(yswap)} then
18: yij ← arg min{ρ′(yij), ρ′(yflip), ρ′(yswap)}.
19: end if
20: end for
21: for each employed bee xi do
22: if ρ′(xi) > min

j=1,2,...,Mi

{ρ′(yij)} then

23: xi ← arg min
j=1,2,...,Mi

{ρ′(yij)}.
24: end if
25: end for
26: Generate scout bee z randomly.
27: if max

i=1,2,...,N
{ρ′(xi)} > ρ′(z) then

28: arg max
i=1,2,...,N

{ρ′(xi)} ← z.

29: end if
30: if ρ′(xbest) > min

i=1,2,...,N
{ρ′(xi)} then

31: xbest ← arg min
i=1,2,...,N

{ρ′(xi)}.
32: end if
33: cycle← cycle+ 1.
34: until cycle = MCN

In our algorithm, only one scout bee is used. This scout
bee randomly generates vector z and compares z to the worst
solution of employed bees. If this random generated z is better
than the worst solution of employed bees, the corresponding
employed bee memorizes this new solution and forgets the old
one.

B. Bayesian Decision

To complete the last step of decision, ρ has to be estimated
from the observations {ξi, i = 1, 2, . . . , n} and {ηi, i =
1, 2, . . . , n}, and then compared with ρ′(c) according to (21).
We assume there is a module named Predictor that fulfills
this last step. In our implementation, the Predictor calculates
the average value of ρ and outputs the comparison of this
average value and ρ′(c). However, this implementation is only
a simple one, and it can be replaced with other advanced
implementation. Thus, the Predictor module can be treated
as a black box [13].

Although the observations are known, the distribution of ρ
is unknown in most scenarios. Thus, to estimate ρ analytically
is not practical. Besides, the network is always dynamic,
which is not fully understood yet. Therefore, to predict future
network state based on historical observation is usually done
empirically. From this perspective, the comparison result from
black box Predictor cannot be fully trusted. Thus, we use
another module named Bayesian Decision to mitigate the
errors of Predictor and to make the final decision for (21).

For simplicity, let T be ρ′(c). And we assume ωoffload
denotes the comparison result ρ > ρ′(c), and ωlocal denotes
ρ ≤ ρ′(c). The Bayesian risk of decision to offload is
the expected cost as a function of the posterior distribution
associated with offloading:

Roffload =

∫ T

0

Coffload(ρ)f(ρ|ωoffload)dρ

= Coffload(ρ) |
ρ=

∫ T

0
f(ρ|ωoffload)dρ

,
(23)

where loss function Coffload(ρ) can be either time expense
(11) or energy expense (16) according to user preference.
And f(ρ|ωoffload) is the probability of observing a network
availability value ρ given the Predictor’s output ωoffload.
When ρ is greater than T , offloading does not pay penalty,
thus the integral range is [0, T]. Similarly, the risk of decision
to execute locally is:

Rlocal =

∫ 1

T

Clocalf(ρ|ωlocal)dρ

= Clocal

∫ 1

T

f(ρ|ωlocal)dρ,
(24)

where loss function Clocal is constant value calculated by
either (1) or (10) according to the same user preference used
for (23). We may pay penalty in both offloading or local
execution scenarios, which is the risk behind the above two
equations. When offloading is applied, the execution time or
energy consumption may exceed the cost of local execution
according to (11) and (16). Similarly, if local execution is
chosen, the benefit may be lost when (21) is satisfied.

To calculate (23), the posterior Probability Distribution
Function (PDF) f(ρ|ωoffload) can be calculated by Bayes
theorem:

f(ρ|ωoffload) =
f(ωoffload|ρ)f(ρ)

f(ωoffload)
, (25)

where f(ρ) is the prior PDF of availability ρ, f(ωoffload|ρ)
is the conditional PDF of event ωoffload given a availability
ρ. f(ρ|ωlocal) is calculated in the same way for (24).

We maintain a histogram for f(ρ). The value range [0, 1]
is divided into many slots, each of which is indexed by a
ρ value, and each of which is corresponding to a bin in
histogram. When a particular ρ value is observed, it falls
into one bin. The bins accumulate the observation count.
To calculate f(ωoffload|ρ) and f(ωlocal|ρ), We maintain two
counters for each bin in the histogram. One counter is for
counting event ωoffload and the other is for counting ωlocal.
The events ωoffload and ωlocal are counted according to their
corresponding bin indexed by availability ρ. There are another
two global counters that count the events ωoffload and ωlocal
no matter what availability value ρ is associated. These two
counters are used to calculate f(ωoffload) and f(ωlocal).

For example, assume the histogram has ten bins, which
means the range [0, 1] is divided into ten slots. The first bin is
corresponding to range [0, 0.1]; the second bin is corresponding
to range [0.1, 0.2], and so forth. When we observe an avail-
ability value ρ = 0.47, we add 1 to the fifth bin [0.4, 0.5].
Assume the corresponding event of this observation is ωlocal,
we add 1 to the counter of ωlocal associated with the fifth bin,
and add 1 to the global counter of ωlocal as well.

C. Offloading Decision Module

Predictor

Application

Partition

Buffer

[ξ, η]

Network state

observations

Application

information

Offloading

decision module

[ρ]

Bayesian

Decision

[ρ]

c

T

ωoffload

ωlocal

c

local

Fig. 3. Offloading decision module.

Based on the above discussions, the offloading decision
module is depicted in Fig. 3. The offloading decision mod-
ule maintains a buffer that stores network states duration
sequences. The buffer is constructed as a table that has two
columns ξ and η. Every row is an observation of cycle of
alternating renewal process. The rows are sorted with the
latest observation on the top and oldest observation at bottom.
When the table is full, the oldest tuples are removed from the
bottom. When application information is provided, Application
Partition executes the algorithm in section IV-A and outputs
threshold T and configuration c. Predictor reads buffer and
T , then gives availability prediction. Then Bayesian Decision
finally makes the decision according to section IV-B. The
final output of the offloading decision module is either a
configuration or a flag indicating local execution.

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(a) N = 2,M = 2

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(b) N = 2,M = 3

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(c) N = 2,M = 4

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(d) N = 3,M = 3

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(e) N = 3,M = 5

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(f) N = 3,M = 7

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(g) N = 4,M = 4

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(h) N = 4,M = 7

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(i) N = 4,M = 10

Fig. 4. Partition performance of difference bee colonies.

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(a) m = 8

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(b) m = 10

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(c) m = 12

Fig. 5. Partition performance of different component numbers.

V. SIMULATION AND ANALYSIS

In this section, we evaluate ABC based partition algorithm
including algorithm tuning and impact of different mobile
application and cloud. We evaluate our model and algorithms
in MATLAB.

We generate two hundred random application graphs as
base evaluation data set. The default parameter settings are
shown in TABLE I. We use a set of typical energy parameters
K for a phone according to [19]. The cloud-phone processing
ability ratio q varies in large range from previous work
[13][14]. We pick a medium value from the possible range as
default value and evaluate its impact to algorithm in section
V-C. We evaluate the algorithm in three aspects: bee colony,
different applications and cloud-phone relation.

TABLE I. DEFAULT PARAMETER SETTING

Parameter Default value

Application
m 10
n 8

Cloud [13][14] q 30

Phone [19]

Ksta
CPU 2.5

Kdyn
CPU 5
Ksta

RF 1.25
Kdyn

RF 1.25

Algorithm
N 3
M 5

A. Bee Colony and Algorithm Tuning

This experiment is based on two hundred random applica-
tion graphs (t and D). These application graphs are randomly
generated, and at least one configuration of each graph is
guaranteed to obtain both time and energy benefit in ideal
network environment. We evaluate the proposed algorithm
performance of difference bee colony size. The results are
shown in Fig. 4. The x-axis represents how many iterations that
the algorithm needs to reach the xbest, and y-axis represents
how many cases reach the solution of corresponding iterations.
From the figure, we may draw following guides for algorithm
tuning:

• Increasing onlooker bee number, algorithm shows the
better convergent rate. For the same employed bee
number (N), the more onlooker bees there are, the less
iterations are required to reach the optimal solution
obviously in all three situations (N = 2, 3, 4).

• Increasing employed bee number improves convergent
rate, but the improvement is not obvious compared
to increasing onlooker bee number. For the same
onlooker bees of M = 3 (Fig. 4(b), Fig. 4(d)), M = 4
(Fig. 4(c), Fig. 4(g)) and M = 7 (Fig. 4(f), Fig. 4(h)),
the cases that have more employed bees have slightly
performance improvement, which is not as obvious as
the improvement given by increasing onlooker bees.
For M = 4 figures, more than 0.05 cases reach the
optimal solution at iteration number 7 in Fig. 4(c)
while there are only 0.05 cases reach solution at
iteration number 7, which means more cases reach

solution in less than 7 iterations, in Fig. 4(g). Similar
phenomena is found for M = 3 and M = 7 figures.

• For the same total bee number of employed bees and
onlooker bees, the algorithm prefers more onlooker
bees slightly. For the same total bees of N + M =
6 (Fig. 4(c), Fig. 4(d)) and N + M = 8 (Fig. 4(e),
Fig. 4(g)), we can see that the overall performance
are almost the same. But the iterations to get optimal
solutions in the cases that have more onlooker bees are
slightly concentrated on some iteration numbers. For
N+M = 6, the iterations in Fig. 4(c) are concentrated
demonstrated by higher summit at iteration 4, while
it is diversely distributed from 1 to 8 in Fig. 4(d).
Similar situation occurs for N +M = 8.

B. Application Impact

To evaluate the algorithm performance for difference
applications, three experiments are done for component
number, unmovable component proportion and computation-
communication ratio separately. The experiment result for
difference component number is shown in Fig. 5. For the
same bee colony, the iterations to find the solution increases
along with the component number. For the large applications
that have many components, the algorithm may use large bee
colony to assure small iterations.

We evaluate the impact of unmoveable component propor-
tion of application in the second experiment and the result is
shown in Fig. 6. From the figure, we find that more iterations
are required to get the solution when the movable component
number increases. The trend is very like that in Fig. 5, which
implies that the unmoveable component number does not play
much role in the algorithm performance. This is because the
algorithm always consider the movable components and ignore
the unmovable component when generating new solutions in
each cycle. The total component size increase in Fig. 5 leads
to the increase of movable component number, which is like
what this experiment does in Fig. 6. Besides, we also found in
this experiment that higher movable proportion results in the
robust solution that can work under low network availability
ρ′(c) situations. This is because the high movable proportion
provides more candidate partition options so that more robust
solution may be achieved.

We generate another two sets of application graph data
of different computation load. The data set used in previous
experiments are used as reference data set. Then we adjust the
computation task to half and double of the reference data set
in the application graph generation process. The network task
remains the same, thus the computation-communication ratio
is adjusted to half and double in new data sets. The experiment
results for these three data set are shown in Fig. 7. From the
figure, we can see that the iterations, distributed at 2,3,4,5
and 6, are almost the same, which implies the computation
proportion of the given task does not influence the algorithm
performance. This is because the computation proportion in the
task influence the time benefit and energy benefit in the same
direction. In the experiment, we also find that the computation
proportion impacts the ρ′(c), because the more computation
proportion leads to more offloading benefit and the possible
solution is more resistent to network unavailability.

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(a) n = 7

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(b) n = 8

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(c) n = 9

Fig. 6. Partition performance of different unmovable component proportions.

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(a) half computation task

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(b) reference computation task

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(c) double computation task

Fig. 7. Partition performance of different computation tasks.

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(a) q = 5

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(b) q = 10

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

C
as

e
pr

op
or

tio
n

(c) q = 20

Fig. 8. Partition performance of different cloud speedup ratios.

C. Cloud Impact

We evaluate the algorithm performance under different
cloud speedup ratios shown in Fig. 8. The figure shows that
the iteration number does not depend on the cloud process-
ing capability. The cloud processing capability influences the
execution time considered in algorithm, which is similar to
the computation proportion impact. And similarly, the higher
cloud processing capability results in more robust partition
configuration.

VI. CONCLUSION

In this paper, we proposed an offloading decision model
for mobile cloud application. The proposed solution modeled
unstable network as an alternating renewal process. The execu-
tion time and energy consumption are analyzed in this unsta-
ble network scenario. The offloading problem is formulated
as an optimization problem to find an application partition
configuration that can provide offloading benefit when low
network availability is low. A bee colony based algorithm

was proposed to calculate the application partition resistant
to network unavailability. And a bayesian decision approach
was proposed to validate the partition and output the final
offloading decision. The simulation results demonstrated good
performance of proposed solution.

ACKNOWLEDGMENT

The authors would like to thank ONR Young Investigator
Program (YIP) award and NSF CPS #1239396 grant to support
the research on the MobiCloud project. The authors would also
like to thank the anonymous reviewers for their constructive
comments and suggestions to improve the research quality of
this work.

REFERENCES

[1] J. Flinn, “Cyber foraging: Bridging mobile and cloud computing,”
Synthesis Lectures on Mobile and Pervasive Computing, vol. 7, no. 2,
pp. 1–103, 2012.

[2] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a compu-
tation offloading framework for smartphones,” in Mobile Computing,
Applications, and Services. Springer, 2012, pp. 59–79.

[3] R. Kemp, N. Palmer, T. Kielmann, F. Seinstra, N. Drost, J. Maassen, and
H. Bal, “eyedentify: Multimedia cyber foraging from a smartphone,” in
IEEE International Symposium on Multimedia (ISM). IEEE, 2009, pp.
392–399.

[4] N. Palmer, R. Kemp, T. Kielmann, and H. Bal, “Ibis for mobility:
solving challenges of mobile computing using grid techniques,” in
Proceedings of the 10th workshop on Mobile Computing Systems and
Applications. ACM, 2009, p. 17.

[5] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an
elastic application model for augmenting the computing capabilities of
mobile devices with cloud computing,” Mobile Networks and Applica-
tions, vol. 16, no. 3, pp. 270–284, 2011.

[6] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Unleashing
the power of mobile cloud computing using thinkair,” 2011.

[7] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010, pp. 49–62.

[8] B.-G. Chun, S. Ihm, P. Maniatis, and M. Naik, “Clonecloud: boosting
mobile device applications through cloud clone execution,” 2010.

[9] B.-G. Chun and P. Maniatis, “Augmented smartphone applications
through clone cloud execution.” in HotOS, vol. 9, 2009, pp. 8–11.

[10] R. K. Ma, K. T. Lam, and C.-L. Wang, “excloud: Transparent runtime
support for scaling mobile applications in cloud,” in International
Conference on Cloud and Service Computing (CSC). IEEE, 2011,
pp. 103–110.

[11] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling
the cloud: Enabling mobile phones as interfaces to cloud applications,”
Middleware, pp. 83–102, 2009.

[12] S. Ou, Y. Wu, K. Yang, and B. Zhou, “Performance analysis of fault-
tolerant offloading systems for pervasive services in mobile wireless
environments,” in IEEE International Conference on Communications
(ICC). IEEE, 2008, pp. 1856–1860.

[13] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi, “Using bandwidth
data to make computation offloading decisions,” in IEEE International
Symposium on Parallel and Distributed Processing (IPDPS). IEEE,
2008, pp. 1–8.

[14] C. Xian, Y.-H. Lu, and Z. Li, “Adaptive computation offloading for
energy conservation on battery-powered systems,” in International
Conference on Parallel and Distributed Systems, vol. 2. IEEE, 2007,
pp. 1–8.

[15] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic,
“Adaptive offloading inference for delivering applications in pervasive
computing environments,” in Proceedings of the First IEEE Inter-
national Conference on Pervasive Computing and Communications
(PerCom). IEEE, 2003, pp. 107–114.

[16] K. Sinha and M. Kulkarni, “Techniques for fine-grained, multi-site
computation offloading,” in IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid). IEEE, 2011, pp. 184–
194.

[17] S. Ou, K. Yang, and A. Liotta, “An adaptive multi-constraint partitioning
algorithm for offloading in pervasive systems,” in Fourth Annual IEEE
International Conference on Pervasive Computing and Communications
(PerCom). IEEE, 2006.

[18] D. Huang, “Mobile cloud computing,” IEEE COMSOC Multimedia
Communications Technical Committee (MMTC) E-Letter, vol. 6, no. 10,
pp. 27–31, 2011.

[19] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based
optimization framework in mobile cloud computing system.” in SOSE,
2013, pp. 494–502.

[20] T. Pham-Gia and N. Turkkan, “System availability in a gamma alternat-
ing renewal process,” Naval Research Logistics (NRL), vol. 46, no. 7,
pp. 822–844, 1999.

[21] D. Karaboga and B. Akay, “A comparative study of artificial bee colony
algorithm,” Applied Mathematics and Computation, vol. 214, no. 1, pp.
108–132, 2009.

APPENDIX

TABLE II. NOTATIONS.

Terms Meaning

B bundle set
bi a bundle
eij service dependency from bi to bj
Bphone, Bcloud bundle set for smart phone and cloud

separately
ti execution time of bi
c partition configuration
tphone application execution time in non-

offloading mode
p(c) offloading rate
q how faster cloud is than smart phone
dij size of data transferred over eij
w bandwidth
t(c) total execution time
t′(c) total execution time in unstable network
ξ, η on state duration, off state duration
χ cycle duration, χ = ξ + η

ρ network availability, ρ = ξ/χ

PCPU (c), PRF (c) energy consumption for CPU and RF sep-
arately

P ′
CPU (c), P ′

RF (c) energy consumption in unstable network
P (c) total energy consumption on a mobile

device
P ′(c) total energy consumption in unstable net-

work
Pphone energy consumption in non-offloading

mode
Ksta

CPU , Kdyn
CPU power of CPU and RF on smart phone

Ksta
RF , Kdyn

RF

ρ′time(c), ρ′energy(c) critical value for time and energy benefit
ρ′(c) circuital value for both time and energy

benefit
∆t(c), ∆P (c) time benefit, energy benefit

