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Abstract—Nowadays, recommender systems are becoming
popular since they help users alleviate the information overload
problem by offering personalized recommendations. Most
systems apply collaborative filtering to predict individual
preferences based on opinions of like-minded people through
their ratings on items. Recently, context-aware recommender
systems (CARSs) exploit additional context data such as time,
place and so on for providing better recommendations. However,
the large majority of CARSs use only ratings as a criterion for
building communities, and ignore other available data allowing
users to be grouped into communities. In this paper, we present a
novel approach for exploiting multi-criteria communities to
generate context-aware recommendations. The underlying idea of
three proposed algorithms CRMC, CRESC and CREOC is that
for each context, communities from the most suitable criteria
followed by the learning phase are incorporated into the
recommendation process. Experimental results show that our
approach can improve the quality of recommendations.

Keywords-collaborative filtering; context-aware recommender
system; matrix factorization; multi-criteria communities

I. INTRODUCTION

The development of the Internet has brought comforts of
life, but it also has caused the information overload problem.
For example, an e-commerce website can offer up to hundreds
of items in different categories for a user. As a consequence,
the user is frequently confronted with embarrassing situations
about what products to buy, what movies to watch or what
courses to learn, and he/she may find difficult to filter out the
irrelevant information and to choose the most suitable items.
Thus, Recommender Systems (RSs) are designed to suggest
users the items that best fit the user needs and preferences [15].
Among RSs techniques, the two most popular categories are
content-based filtering and collaborative filtering. There also
has the combination of both called a hybrid approach [5].

Content-based filtering suggests a target user items that are
similar in content to the ones he/she liked in the past [10]. In
this approach, each user possesses a profile describing his/her
tastes and preferences depending on application domain, e.g.
list of favorite film genres or research fields. Then the system
matches profile-item in order to predict user’s rating on the
item. Content-based filtering gives high performance if items
can be properly represented as a set of features. The challenge
of this technique is to extract the features of items while for
many domains, it is difficult to analyze and represent the
content e.g. music and movies. In addition, content-based

systems rarely show diversity and serendipity [17], i.e., the user
is usually recommended with unsurprising items containing
similar content to what the user has felt interested.

Collaborative filtering (CF) recommends for a target user
items by following opinions of his/her community, i.e. people
sharing similar tastes with him/her [10]. In order to form
communities, CF uses a rating matrix in which each user and
each item are associated with a row and a column respectively.
Each cell of this matrix corresponds to the rating of the user-
item pair describing degree of user’s preference for that item.
Then, the decision of whether two users are neighbors depends
on the similarity between their sets of ratings. Nowadays, CF is
widely applied in the majority of RSs because it requires no
prior knowledge of the application domain as well as no
content analysis, and leads the user to discover items in new
fields [8], [10].

Recently, Context-Aware Recommender Systems (CARSs)
have been developed to deal with the limitation of traditional
RSs that do not take into account contexts in which items will
be recommended, and to make the purpose of recommendation
is more specific, e.g. suggesting movies specifically for
Christmas week [2]. In the literature, Dey’s definition [7] of
contexts is widely adopted [16]: “Context is any information
that can be used to characterize the situation of an entity”. A
RS can consider contexts, e.g. time, location, weather,
companion, etc. Based on the moment when contexts are used
in the process, CARSs methods are classified into three groups:
pre-filtering (contexts are used for data selection before
application of standard CF), post-filtering (contexts are
incorporated to refine the result of CF), and contextual
modeling (contexts are directly integrated to predict user
ratings on items) [2].

Generally, users in a CF system are grouped into
communities only on the basis of their ratings. Such single-
criterion communities approach suffers from the data sparsity
problem referring to a situation in which user ratings are
insufficient to estimate the similarity between users. In fact, the
rating matrix is very sparse because a user usually gives few
ratings compared to the number of items on columns of the
matrix. The sparsity problem becomes more serious in CARSs
using CF because the integration of contexts into the matrix
will considerably increase the number of columns while the set
of ratings is unchanged [4]. Moreover, one user can belong to
many groups besides rating community. For example, a
researcher can be a member of an expert group, of a romance
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film club, and so on. Then, he/she can receive various
interesting suggestions from those. Thus, in this paper we aim
at using all data that are available or effortless to collect such as
demographic information or any type of data allowing users to
be grouped into multi-criteria communities for improving
context-aware recommendations.

The remainder of the paper is structured as follows. First,
Section 2 summarizes some related work in CF and context-
aware recommendations. Next, in Section 3, we present the
extended -community spaces model on which we define three
context-aware recommendation algorithms. The experiments
conducted to evaluate the proposed algorithms are detailed in
Section 4, and finally, Section 5 contains the conclusion and
some future work.

II. RELATED WORK

As discussed above, CF recommends items based on
feedbacks of people having similar preferences with a target
user. CF techniques use the set of ratings which have been
known in advance to estimate the rating function
f: User x Item  Rating, where Rating is the domain of ratings
(e.g., five-star scale, or {like, dislike}). The task of rating
prediction is to estimate the (user, item) pairs which have not
been rated yet by users.

CF techniques are divided into two main categories
according to their algorithms to form communities [1], [10].
Memory-based or neighborhood-based techniques require no
computation at model building time, as they provide
predictions based on ratings of the closest neighbors, i.e. they
compute at the request time. Model-based techniques use
previous user activities to first learn a predictive model that is
later used to generate predictions. The main advantages of
former techniques are simplicity (relatively simple to
implement), efficiency (no costly training phase), justifiability
(users better understand the recommendation and its relevance),
and stability (without having to re-train the system) [6].
However, some potential drawbacks of memory-based
approach are sensitive to data sparseness and cannot be pre-
computed for fast online recommendation. On the contrary,
model-based algorithms are typically faster at the request time
though they might have expensive learning or updating phase.
Hence model-based methods can be preferable when
recommendation speed is a critical factor.

Latent factor models, such as Matrix Factorization (MF),
solve the recommendation task by decomposing the rating
matrix and learning latent factor for each user and item in the
data [9]. This approach is based on the assumption that both
users and items can be transformed to the same latent factor
space with a reduced number of factors. Methods based on
latent factors infer the characteristic of data without exactly
knowing each feature. In this way, the rating matrix R is
decomposed into two matrices P and Q. Each row of P
represents the strength of the association between a user and
features and each column of Q describes the strength of the
relation between an item and features. The task of the MF is to
find two matrices P and Q and their product approximates
R QT x P. Factorization models have recently become one of

the preferred approaches to CF, especially when combined with
neighborhood models [8].

Rather than to exploit ratings as a unique criterion to form
communities, some work propose multi-criteria communities
approaches. Squicciarini et al. [19] present a multi-criteria
model to deal with multiple aspects of users’ profiles. First,
based on Apriori algorithm, the authors introduce a modified
method to automatically group each user’s contact into social
circles with common characteristics. Next, the system will use
grouping information to recommend the appropriate privacy
setting for a new contact or a new uploaded item. In other
words, when a target user uploads a new object (an item or a
contact), the system looks for the social group which is most
likely to deal with the object in the similar way as the user.
Then, the privacy settings adopted by the found social group is
considered as the base for predicting policies for the new
object. In fact, this approach exploits various interesting
properties of social network to partition users such as education
background, hobbies, relationship, privacy preferences, etc., so
this brings a lot of benefits. Alternatively, Nguyen et al. [12]
propose the -community Spaces Model based on rough sets
theory, where  denotes a given user similarity factor. By using
the relationships between criteria, this approach allows
estimating the missing -communities for new users via a rule-
based induction process.

In general, all of traditional CF approaches ignore
information about contextual situations in which suggested
items will be consumed. Hence, up to date, several studies
propose extensions for CF in order to incorporate contextual
information into recommendation process.

A. Context-aware recommendations

Recently, CARSs introduce contextual information into
rating matrix with an extended definition of rating function
f: User x Item x Context  Rating where Context is a set of
possible values for contextual information associating with the
application. In this way, the three most common paradigms for
incorporating contexts into RS are pre-filtering, post-filtering
and contextual modeling.

Pre-filtering uses contexts to filter out irrelevant ratings
before 2D user-item paradigm is applied. One major advantage
of this approach is that it allows deployment of the numerous
traditional recommendation techniques. Baltrunas and Ricci [4]
take a somewhat different approach to contextual pre-filtering
paradigm by proposing and evaluating the benefit of the item-
splitting method where each item is split into several virtual
items based on the different contexts in which these items can
be consumed. Pre-filtering can also be achieved by using
“micro-profiles” where a single user profile is split into several
contextual sub-profiles representing the user in each context
[3]. Following this method, the recommendation process will
use these micro-profiles instead of a single user profile.

In post-filtering, contexts are incorporated after computing
recommendation with 2D methods. Paniello et al. [14] consider
two post-filtering methods Weight and Filtering, and try to
figure out when it is better to use pre-filtering or post-filtering.
With empirical comparison of different paradigms, the authors



conclude that the best approach to use (pre- or post-filtering)
really depends on a given application.

For contextual modeling, contexts are used directly in
recommender function as an explicit predictor of a user’s rating
for an item. With the rise of MF approaches in 2D
recommendation algorithms, many researchers follow this
approach for context-aware recommendation. First, Shi et al.
extend the classical MF by first computing movie-to-movie
similarity based on mood tags and then incorporating additional
information to the prediction model [18]. Other contributions to
contextual modeling approach are two contextualizing models
proposed by Odic et al. which are described in the next section.

B. Contextualizing latent factor models

In [13], Odic et al. propose two ways to incorporate
contexts into MF: contextualizing users’ biases as in (1) and
users’ latent features as in (2) where ˆ( , , )r u i c is the rating

prediction from user u for item i in context c; , bu and bi are
global ratings, user’s and item’s biases respectively; bu(c) is a
user’s bias in context c; two vectors iq


and up

 are item’s and
user’s latent features respectively; and ( )up c

 is user’s latent
feature in context c.

ˆ( , , ) ( ) T
i u i ur u i c b b c q p   

 
(1)

ˆ( , , ) ( )T
i u i ur u i c b b q p c   

 
(2)

Both above methods are inherent in the characteristics of
model-based approaches, so their advantages are excellent at
detecting the relationship between user’s interest in each
context and latent factors, and in a given context, they are
generally effective at estimating overall structure relating to
most or all users and items. However, one of their
shortcomings is that in some contexts, they often ignore the
strong association among a small set of closely related users or
items which neighborhood techniques do best.

In summary, all the preceding CARS methods are mainly
based on ratings as the unique factor in collaboration, and
ignore the fact that users’ preferences could be affected by
multi-criteria communities while some existing multi-criteria
models have not been integrated contextual information into
recommendation process. Thus, this paper aims to exploit
multi-criteria communities which are incorporated contexts for
improving the quality of context-aware recommendations.

III. GENERATION OF CONTEXT-AWARE RECOMMENDATIONS

The underlying ideas of our approach are that a user can be
associated with multiple communities including the group
computed from the rating matrix in order to receive more
interesting suggestions, and the influence of these communities
on recommendations to the user in a particular context could be
different. For example, in the context “alone at home on
weekend”, a researcher will probably watch “Gone with the
wind” following the opinion of his/her classical romance movie

fan club while “at cinema with friends in workday”, he/she
may like movie “Star Wars” according to the suggestion of
colleagues. This example shows that the user can discover
potential interesting movie genres by making use of different
communities. In our approach, a CARS can use features in
users’ profiles as criteria for grouping users into multiple
communities, so it is necessary to determine which criterion is
most suitable for generating recommendations to users in each
context. In other words, we need to define a pre-order on the
set of criteria for each context, and then propose context-aware
recommendation algorithms based on these pre-orders.

In the next section, from an adoption of basic concepts of
the -community spaces model [12] we propose an extension
of this model with an integration of contextual information as
well as a definition of a pre-order on the set of criteria
according to their relevance in the particular context. Finally,
we present three CF algorithms which incorporate the extended
model into context-aware recommendation process.

A. Extension of the -community Spaces Model

In the -community spaces model, the authors define U as
a set of users and A as a set of available user similarity factors
(or criteria). For example, in the MovieLens dataset [11], age,
occupation, favorite genre, and ratings are such criterion . For
each   A, there is an equivalence relation () on U:

u, u’ U, (u () u’)  (u) = (u’) (3)

where (u) is the value of criterion  taken by user u. For
example, (u (occupation) u’)  occupation(u) = occupation(u’):
two users u and u’ have the same profession. Any equivalence

class with respect to () denoted ( )
kG  is called an -

community, and the -community space denoted () is the
quotient set of U by the relation ().

In this model, every user u will be associated with a
personal position vector P(u) as in (4), defining each i-space,
G(i)(u), which is the community that he/she belongs to.

1 ( )( ) ( ),...( ),( )) , (n
iP u G u u AG    (4)

All position vectors are grouped into -community table
(see TABLE I), this shows that a user will have different
neighbors depending on . For example, the user u2 has
P(u2) = (25–34, Engineer, Crime, Group#2). Communities are
computed in various ways relying on the nature of , and we
use similar methods proposed by Nguyen et al. [12] to form
communities.

TABLE I: EXAMPLE OF -COMMUNITY TABLE WITH |A| = 4

Users /  = Age Occupation Genre Ratings
u1 18–24 Student Romance Group#5

u2 25–34 Engineer Crime Group#2

u3 45–49 Technician Adventure Group#2



In our approach, we assume that the importance of  will
vary by context c which consists of a set of contextual feature
values. We denote context c = (c1, …, ct) where ci is the value
of ith feature. For example, there are two contextual features
{location, day type}, and contexts could be (at cinema,
weekend), (at home, workday), etc. In traditional CF, G()(u) is
considered for calculating the prediction of user u on item i for
all contexts. For our context-aware recommendation algorithms
presented later on, we define G()(u, i, c) as the -community
contains only users similar to user u based on criterion , and
have rated item i under context c. Note that G()(u, i, c) is a
subset of G()(u).

Starting from the idea that the role of each criterion is not
identical in a given context, so we will establish a priority on
the set of criteria A for each context. This contextual priority is
represented by a pre-order on the set A defined as follow:

( c ’)  error_rate(, c)  error_rate(’, c) (5)

where error_rate(, c) is error rate of certain algorithm applied
on -communities to give recommendations for context c. Note
that this value can be calculated in training phase of the
algorithm, and  c ’ means  is more appropriate than ’ for
the context c.

B. The Algorithms

Following the extended model presented above, to generate
context-aware recommendations to a target user u, we propose
three algorithms. First, the CRMC (Context-aware
Recommendation based on Multi-criteria Communities)
algorithm is defined on the basis of finding the prior -
community for a given context. Next, as CRMC based on CF,
it suffers from the sparsity problem. Thus, to provide better
recommendations, two algorithms CRESC (Context-aware
Recommendation based on Enrichment from Similar multi-
criteria Communities) and CREOC (Context-aware
Recommendation based on Enrichment from Ordered multi-
criteria Communities), the extensions of CRMC, use
enrichment methods for the prior -community in case few
users have rated on items in the context. The main difference
between two latter algorithms is the techniques used for
merging candidate communities into the prior -community.

1) CRMC Algorithm
In principle, a CARS using CF relies only on one single-

criterion community to compute prediction of a target user on
items for all contexts. In contrast, the prediction for a given
context in CRMC algorithm is calculated from the community
with respect to the criterion having the highest priority under
the context by the pre-order defined as in (5). Thus, with
different contexts, there are generally alternative suitable
criteria for them. For example, when “at cinema in workday”,
the community associating with age criterion could be the prior
but when “at home on weekend” the community built from
favorite genre may be chosen to generate recommendations.
The CRMC algorithm has three steps as illustrated in Figure 1.

Figure 1. Overview of CRMC approach.

Step 1: Select the prior -community for the context.
The first step aims to identify the most suitable criterion  for
the context. In general, after the CRMC algorithm has been
defined, it can be applied on a training set containing items
rated by users to establish a particular priority for each context
based on the pre-order as in (5). Thus, the community G()(u)
according to the highest priority criterion  is selected as result
for this step.

Note that the priorities on the set of criteria for all contexts
can be computed in a pre-process step and stored in secondary
memory, and G()(u) can also be created offline by different
methods depending on the nature of . If  is simple criterion
as a demographic feature, neighbors of user u can be identified
by () in (3). On the other hand, with a complex criterion 
like favorite genre or ratings, certain measures such as cosine,
Euclidean distance or Pearson correlation are used for
computing the similarity between users [6].

Step 2: Refine the selected -community. After the prior
-community G()(u) has been selected in Step 1 for the given
context c, the second step is to refine it by taking contextual
information into account. Rather than consider all neighbors
who have rated the item i, this step filters out users who give
ratings on item i in contexts which are different from c.
G()(u, i, c) denotes the -community that contains only users
similar to user u based on criterion , and have rated item i
under context c. The rating prediction in the next step described
later on will depend on opinions of neighbors belonging to this
refined community.

The refinement step is indispensable because it is difficult
to construct offline context-aware communities in advance.
There are two main reasons for this difficulty. First, user’s
communities often pertain to his/her long-term preferences.
Moreover, as the more contexts are used, the more excessive
amount of memory will be required to maintain the
neighborhood list per context.



Step 3: Generate rating prediction. From the point of
view that sometimes user’s preference for items depends on
contexts and in some cases it is not affected by contexts at all.
That means, the user may favor some items under a particular
context, and he/she is also likely to prefer other items despite
the context. Thus, we propose a formula for the prediction of
user preference on item i in context c by combining non-
context and context-sensitive parts as long-term and short-term
preferences respectively with a weighting parameter .

( )ˆ ˆ ˆ( , , ) . ( , , ) (1 ). ( , )Ctx nonCtxr u i c r u i c r u i    (6)

For the non-context part, CRMC applies MF which is one
of the most successful methods of latent factor models [9]. The
main idea is the rating matrix will be factorized regardless
contexts to predict the rating of user u for item i. Elements of

iq


in (7) indicate the importance of factors in item i, and

elements of up


measure the influence of the factors on user’s
preferences.

ˆ ( , ) .T
nonCtx i ur u i q p

 
(7)

The context-sensitive part in (6) will rely on the refined
community calculated from the Step 2. The computation of this
part will be varied by the nature of the prior criterion. For the
community initially generated in Step 1 from a simple criterion

+ such as demographic feature, the value of ( )ˆ ( , , )Ctxr u i c  can
be estimated as the average rating given to item i under context
c by user’s neighbors founded in Step 2 as in (8) where
r(u’, i, c) is the rating of user u’ on item i in context c.

( )
( )

( )' ( , , )

1ˆ ( , , ) ( ', , )
| ( , , ) |

Ctx

u G u i c

r u i c r u i c
G u i c










  (8)

In case the prior community is initialized from a complex
criterion * in Step 1, the context-sensitive part is computed by
the popular user-based collaborative recommendation formula:

( )

( )

' ( , , )( *)

' ( , , )

( , '). ( ', , )

ˆ ( , , )
| ( , ') |





 







u G u i c
Ctx

u G u i c

sim u u r u i c

r u i c
sim u u

(9)

here sim(u, u’) is a similarity between two users. The details of
CRMC algorithm are described in Figure 2.

Regarding the trade-off between context-sensitive and non-
context parts, using the parameter  aims to support the
assumption that the larger G()(u, i, c) is, the more influence of
the context c on preference of user u for item i is, and vice
versa. Then, the value of  will depend on the size of
G()(u, i, c). More details, if |G()(u, i, c)| exceeds a threshold
max, then  will be made to approach 1, and conversely, if

|G()(u, i, c)| is less than another threshold min, then  will be
driven to approach zero. In case |G()(u, i, c)| is in [min, max], 
will be made in the neighborhood of 0.5.

CRMC algorithm
Input: user u, item i, context c
Output: rating prediction ˆ( , , )r u i c

'
arg min[ _ ( ', )]

A
error rate c


 




Refine G()(u) to form G()(u, i, c)
Compute ˆ ( , )nonCtxr u i as in (7)

if  is simple criterion

then Compute ( )ˆ ( , , ) 
Ctxr u i c as in (8)

else Compute ( *)ˆ ( , , )
Ctxr u i c as in (9)

Compute ˆ( , , )r u i c as in (6)

Return ˆ( , , )r u i c

Figure 2. Algorithm description for the proposed CRMC.

2) CRESC Algorithm
In CRMC algorithm, the number of users in the refined

community G()(u, i, c) could be insufficient for the calculation
of prediction, and this might cause the performance to be
degraded. Focusing on the sparsity problem, we propose
CRESC algorithm as an extension of CRMC with an
incorporation of community enrichment into recommendation
process before generating prediction. The CRESC algorithm
has four steps illustrated in Figure 3. in which Step 1 and Step
2 are the same as those in CRMC algorithm.

Figure 3. Overview of CRESC approach.

In Step 3, when the size of refined community G()(u, i, c)
is less than a threshold max, CRESC will complete it with other
communities of the user u, which are closest to G()(u, i, c). To
estimate the similarity between G()(u, i, c) and another
community G(’)(u, i, c), CRESC uses the deviation between
the average rating in context c of these two communities

defined as in (10) where ( , , )r u c is the average rating of
G()(u, c) containing neighbors of user u who give ratings in
context c. The less the value is, the more similar these
communities are.



( ) ( ')( ( , , ), ( , , )) | ( , , ) ( , ', ) |sim G u i c G u i c r u c r u c      (10)

We define G(*)(u, i, c) as the enriched community after
merging users from other closest communities. First,
G(*)(u, i, c) is initialized by G()(u, i, c). Next, the algorithm
will find the closest community G(’)(u, i, c) to G()(u, i, c), and
then merge G(*)(u, i, c) with G(’)(u, i, c). The enrichment
process is repeated until it gathers sufficient community size.
As a result, the enriched community G(*)(u, i, c) will be applied
to generate prediction in the final step.

The Step 4 of CRESC is similar to the Step 3 of CRMC
except that G(*)(u, i, c) rather than G()(u, i, c) is applied to
generate prediction. The CRESC algorithm is described in
Figure 4.

CRESC algorithm
Input: user u, item i, context c
Output: rating prediction ˆ( , , )r u i c

'
arg min[ _ ( ', )]

A
error rate c


 




Refine G()(u) to form G()(u, i, c)
G(*)(u, i, c) = G()(u, i, c)
while |G(*)(u, i, c)| < max and A  

( )( )

\{ }
' arg max[ ( ( , , ), ( , , ))]j

j A
sim G u i c G u i c


 

 


G(*)(u, i, c) = G(*)(u, i, c)  G(’)(u, i, c)
A = A \ {’}

end while
Compute ˆ ( , )nonCtxr u i as in (7)

Compute ( )ˆ ( , , )
Ctxr u i c as in (8)

Compute ˆ( , , )r u i c as in (6)

Return ˆ( , , )r u i c

Figure 4. Algorithm description for the proposed CRESC.

3) CREOC Algorithm
We propose CREOC algorithm as a twin of CRESC. The

CREOC algorithm also has four steps which Step 1, Step 2 and
Step 4 are the same as the ones in CRESC. The main difference
between two algorithms is the way they enrich -community in
Step 3. In CREOC, instead of computing the similarity between
two communities defined as in (10), we offer to fully utilize the
order on the set of criteria, which has been calculated in
training phase to supplement -community size.

According to the assumption that to gain more confident
about context-aware prediction, the number of users in the prior
-community needs to be greater than a certain threshold max

in Step 3. When there is a shortage of users within
-community, CREOC will merge the users in the closest
communities from the higher to lower priorities until it gathers
sufficient users. Remember that the priorities have to comply
with the pre-order on the set of criteria by context. For
example, after training phase, the priority on the set of criteria
is: age c genre c ratings c occupation in the context

c = (at cinema, with friends). This means that the community
from age is the prior -community. If the number of users
belonging to the community is less than max, it will be
enriched with similar users from genre community. The
enrichment is repeated until the initial community gains enough
users for prediction. The main advantage of CREOC when
compared to CRESC is that CREOC avoids computing the
similarity between G()(u, i, c) and other communities
G(’)(u, i, c).

To conclude, by using hybridization of multi-criteria
communities, CRESC and CREOC algorithms aim to alleviate
the sparsity problem in CARSs.

IV. EXPERIMENTS AND EVALUATION

We conducted several experiments to show how the
recommendation is affected by selecting prior -communities
in each context, and to evaluate the performance of proposed
algorithms. More details, the experiments are intended to deal
with three questions:

 Can single-criterion rating communities always give
high accuracy recommendation in all contexts?

 Do multi-criteria communities affect the accuracy of
contextual prediction?

 How is the performance of proposed algorithms
compared with others in literature?

A. Experimental Setup

The preparation for our experiments involves preprocessing
dataset, setting the value of parameters, and choosing
competitor algorithms as well as evaluation metric.

1) Dataset
Our experiments are conducted on the MovieLens dataset

[11], which consists of 100 000 ratings assigned by 943 users
on 1682 movies pertaining to 19 genres. To gain reliable
results, we used predefined training and testing sets from
MovieLens. Data was partitioned 80% for training and the
remaining 20% for testing rating prediction.

2) Experimental protocol
Notably, since MovieLens dataset does not contain

contextual information, apart from user-movie rating matrix,
we applied the method inferring contexts used in [16]. In this
method, the context feature “location” where a movie was seen
(at cinema or at home) is inferred through a combination of the
dates of when a movie was shown in a cinema and the creation
time of rating. Inferring of ratings is based on the assumption
that movies rated within 2 months of their cinema premiere
date have been seen in the cinema; otherwise they are assumed
to have been seen at home. The inference of context features
“day type” (workday or weekend) and “season” when user
watched a movie relies on timestamps of ratings. After
inferring process, we have three contextual features {location,
day type, season}, so set of contexts C = {(workday, at home,
spring), (weekend, at cinema, winter), …}.

We also considered the distribution of ratings per context,
and eliminated some contexts because of very low ratings. In



fact, there are a few ratings in the context at cinema, so location
has been excluded from the list of features. The exclusion of
location feature does not affect our experimental results
because we take into account the number of contexts rather
than the number of features. Then, it remains 8 contexts:
c1 = (workday, spring), c2 = (workday, summer),
c3 = (workday, fall), c4 = (workday, winter),
c5 = (weekend, spring), c6 = (weekend, summer),
c7 = (weekend, fall), and c8 = (weekend, winter).

Let us briefly present the computation of -communities
used in our experiments, we defined four criteria: age,
occupation, favorite genre, and ratings from the MovieLens
dataset. For age, the set of users was split into 7 segments:
under 18, 18-24, 25-34, 35-44, 45-49, 50-55, and over 55 as
predefined by MovieLens provider; for occupation, users were
grouped into 21 categories by using their information in
dataset. Communities with respect to favorite genre and ratings
criteria were formed by two-step clustering process detailed in
[12]. For favorite genre, the vectors reflect the interest of user u
for 19 movie genres. Therefore, they are 19-dimension vectors
with one dimension w(u, gi) shows a level of user u interest in
genre gi. This weight relies on two main factors. They are the
numbers of movies belonging to gi that user u has rated and the
average of these ratings. The cosine was used to measure the
similarity between these vectors. For ratings, the vectors are
row vectors in the rating matrix. Pearson correlation was used
as a distance metric to compute the similarity of users.

Regarding parameters of algorithms, we chose 20 and 50
are the values of min and max respectively because the
neighbor size from 20 to 50 is most often described in the
literature [6]. Remember that if |G()(u, i, c)| in CRMC
algorithm or |G(*)(u, i, c)| in CRESC and CREOC algorithms is
greater than max then the value of  varies in (0.5, 1] to reflect
the influence of context-sensitive part in generating prediction.
Hence, for a fair comparison of algorithms,  was assigned to
0.75 as the middle value of the interval. Similarly, if
|G()(u, i, c)| or |G(*)(u, i, c)| is less than min then  is in [0, 0.5)
to present the domination of non-context part in predicting
users’ ratings, so  was set to the middle value 0.25. In other
case, we used  to keep the balance of two parts, so it was equal
0.5. For MF in non-context part, the regularization parameter,
learning rate and dimensionality of the latent user and movie
features were assigned to 0.015, 0.01 and 10 respectively. Note
that these values were also used in experiments of other
compared algorithms.

Regarding the choice of competitive algorithms, first we
used context baseline predictor (UIC baseline) [9] which is the
combination of pre-filtering approach and baseline predictor
(11). This means that, with a given context c, this method
selects from the initial set of ratings only those referring to the
context c, then generates the Users x Items matrix containing
only the data pertaining to context c, and applies 2D baseline
predictor. Here  is the overall average rating; bu(c) and bi(c)
are user and item biases in context c respectively.

ˆ( , , ) ( ) ( )i ur u i c b c b c   (11)

Other competitors are two algorithms proposed by Odic et
al. detailed in Section II. The reasons for the choice are that
both apply MF as similar as our algorithms do, and give high
accuracy predictions.

Finally, in order to assess the quality of recommendations,
we used Normalized Root Mean Square Error (NRMSE) as
evaluation measure for the predicted ratings [17], and our
experiments evaluated the accuracy for top 5, top 10, top 15,
top 20, top 25 and top 30 of recommendations.

B. Results and discussion

As mentioned above, we conducted two experiments to
verify the assumption that the selection of prior -communities
in a particular context will affect the recommendation quality
and to evaluate the effectiveness of the three proposed
algorithms. According to these experiments, the obtained
results are encouraging.

1) Experiment 1: Significance of criteria by context
First, we applied CRESC algorithm which is in turn based

on communities built from age, favorite genre, occupation and
ratings to observe the impact of criteria in each context. The
experimental results from Figure 5. demonstrate that in some
contexts rating communities do not provide better
recommendation than the others.

Notably, a smaller NRMSE value means a better
performance. Although in context 3, communities initialized
from ratings achieve the best results, they cannot retain this
achievement in remaining contexts. More details, in context 1,
the prior communities with respect to occupation criterion
dominate the others. The prior communities generated from age
and genre criteria outperform the others in context 5 and
context 7 respectively. As expected, using the most appropriate
communities improves the accuracy of CRESC method over
the one built from ratings. From this experiment, we also
observed the variation of winners in the rest of contexts but did
not present in the paper due to lack of space.

To more fully understand why the dominant criterion is
varied in each context, we performed an analysis on multi-
criteria communities and observed that the criterion will
probably become the most suitable one in the specific context
when the shortage of users within the refined community built
from it in Step 2 is not considerable. In other words, there are
cases that the refined -community itself has enough users to
ensure the confidence of prediction, or it needs to be completed
with only the communities from the top of suitable criteria, but
not more than two multi-criteria communities. We also found
out that the recommendation quality goes down significantly
when the number of users belonging to the prior -community
is very low. In some contexts, merging too many communities
into the prior -community will decrease the prediction
accuracy because of the noise.

We also applied CREOC algorithm in the first experiment,
and we received similar trends with CRESC algorithm, so we
do not show the detailed results here.



Figure 5. Comparison of criteria in CRESC algorithm.

We conducted the experiment 1 with CRMC algorithm, and
the results in Figure 6. illustrate that the dominant criteria are
also varying in each context. However, communities built from
ratings are unable to become the winners in any context while
the others generated from occupation, genre, and age in turn
achieve the best performance in all remaining contexts. The
reason for this phenomenon is that the shortage of users within
rating communities is too severe, so if the recommendation
based only on these communities, the quality will decrease
significantly. Through this experiment, the obtained results
make us certain that in such cases, applying community
enrichment techniques in CRESC and CREOC algorithms will
be helpful.

Figure 6. Comparison of criteria in CRMC algorithm.

In summary, the results demonstrate that single-criterion
rating communities do not always give the best performance in
all contexts due to the sparsity problem. In addition, the
variation of the winners for contexts gives a positive answer for
the second research question and consolidates our assumption
that the influence of multi-criteria communities on
recommendation quality will be varied according to a given
context. That means, if we choose the better communities for
the context, the recommendation performance will significantly
increase, otherwise it will get worse.

2) Experiment 2: Comparison of algorithms
Regarding the last research question, the results of

algorithm comparison are reported in Figure 7. from which we
can see that in all contexts, three proposed algorithms in turn
outperform the competitors.

The domination of our algorithms in all contexts indicates
that the exploitation of multi-criteria communities will bring up
additional benefits for context-aware recommendation. More
details, CRMC gives the best performance in two contexts (5
and 6), CREOC outperforms the others in four out of eight
contexts (1, 3, 4, and 8) while CRESC is the overall winner in
two remaining contexts (2 and 7). Our best performing method



outperforms both users’ biases and user’s latent feature
methods. The reason for the improvement is when contextual
information acts as noise inserted into the data, the
contextualizing latent models may not distinguish between the
noise and the dependency of latent feature in contexts. In
contrast, the benefit of the proposed methods is balancing non-
contextual model such as MF and contextual neighborhood
model by adjusting weighting parameter , so they can detect
localized relationships between multi-criteria communities and
contexts as well as exploit the overall ratings without contexts.
By this way in some cases they can alleviate the impact of
noisy contextual information.

Figure 7. Comparison of algorithms.

Furthermore, we tried to figure out when it is better to use
CRMC, CRESC or CREOC. With CRMC, we found out that

when |G()(u, i, c)| approximates to max, CRMC should be
applied because it avoids the cost of finding similar users from
other communities and still ensures the prediction accuracy.
That means the contribution of community enrichment in
CRESC and CREOC in such cases is not considerable.

By comparison with CREOC, the CRESC algorithm
becomes less effective when the difference in average rating of
the prior community G()(u, c) and the one of other
communities is quite large. More precisely, if the similarity
between G()(u, i, c) and the closest community G(’)(u, i, c) is
too low, CRESC is likely to be negatively affected by the noisy
contextual information. In such cases, CREOC should be
chosen as its advantage is to fully exploit the order of criteria.
By contrast, when the difference between the average rating of
G()(u, c) and the one of the others is small enough, applying
CRESC becomes a better choice because it reflects the impact
of context on average rating of communities. Moreover,
CRESC prevents the total dependence on the order of criteria in
a particular context when this order is out of date and need to
be retrained.

V. CONCLUSION

In this paper, we present a novel approach which combines
matrix factorization with multi-criteria communities rather than
only exploits single-criterion rating communities for generating
context-aware recommendations. The main ideas are that a
CARS can use features in profiles as criteria for partitioning
users, and the influence of criteria will vary according to the
specific context. Based on an extension of -community spaces
model in which a pre-order on the set of criteria is defined by
context, we introduce three algorithms CRMC, CRESC, and
CREOC for generating context-aware predictions.

The experimental results show that using multi-criteria
communities in three proposed algorithms for context-aware
recommendations is better than approaches exploiting only
single-criterion rating communities. CRMC is relatively simple
and efficient in case the size of the target user’s -community
is large enough. When the prior -community is deficient in
the number of neighbors, community enrichment methods in
two remaining algorithms will be able to improve
recommendation quality. CRESC is better than CREOC when
the difference in average ratings of prior community and the
others under the specific context is not considerable.
Alternatively, CREOC algorithm takes advantage of the
priority on the set of criteria in a specific context, so it will be
able to improve recommendation quality when the similarity
computation in CRESC algorithm is not worth.

In the future, we aim to apply proposed algorithms in the
domain of music recommendation in which the influence of
contexts becomes more evident. For example, with the
“Endless love” song, a user prefers listening to it when he/she
feels happy, but does not when he/she gets upset. Besides, most
current context-aware algorithms mainly focus on the precision
as recommendation quality. In fact, following user’s objectives,
he/she might prefer the others such as diversity, novelty, etc.
Thus, we will investigate the incorporation of contextual
information into multi-objective recommendation.
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