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Abstract—There is increasing collaboration in new generation for applications with data components that present higheteg
supply chain planning applications, where participants acoss a  of interdependency.
supply chain analyze and plan on a big volume of sales data ave  The main properties that characterize big data are often

the internet together. To achieve real-time collaborativeplanning . - , . .
over big data, we have developed an unconventional technay, described as multiple V's [2], with Volume and Velocity as

BigObject, based on anin-place computing approach in two ways. the main properties. In this paper, we add anothevalence

First, instead of moving (big) data around, move (small) cod to to describe the degree of interdependency among data com-
where data resides for execution. Second, organize the cotegity ponents of big data applications that are not embarragsing|
by determining the basic functional units (objects) for conputing 4 rgjel. The valence of a dataset determines how difficult

in the same sense that macromolecules are determined forihg . . -
cells. The term "in-place” indicates that data is in residerce in it is to decompose the dataset into subsets and thus how to

memory space and ready for computing. BigObject is an in-plae  divide the problem into sub-problems, which helps to decide
computing system, designed for storing and computing multi an appropriate approach to big data computing and storage.
dimensional data. Our experiment shows that in-place compiing  The applications with high-valence datasets include $ocia
g?dpé?sa%? n(q):tpneitr::c:jrgﬂs traditional computing approach in two 430k [3] analysis and the collaborative planning problem
| ndex Terrr?s—ln-F;Iace Computing, big data, database, real- W€ &€ addressing.in this paper. The_co_llaborat?ve planning
time system, transformation programming, in-memory compd- Problem presents high valence due to its interactive nasre

ing well as collaboration with multiple views on the shared sale
data, where any action or reaction will affect the views of
I. INTRODUCTION others.

Over the past decade with the growth of the internet andin order to achieve real-time collaborative planning ovigr b
mobile technologies, the clock speeds of businesses have baata with high valence, we have developed an unconventional
accelerating gradually. To remain competitive, business®l technology,BigObject based on ann-place computingap-
their supply chains need to be responsive and adaptivepimach in two ways. First, it moves away from the traditional
the markets. Technologies enable the possibility for geistn computing model that requires explicit data retrieval tcasad
around the world to collaborate together and achieve commaentric computing model [4], [5] in which computations take
business goals in a real-time manner. Such real-time apllalplace where data resides. The idea is, instead of moving (big
ration is critical when business becomes competitive. data around, to move (small) code to where the data resides fo

Our work was motivated by a real-time collaborative plarexecution. Second, it organizes the complexity of big data b
ning problem, where a group of participants analyze and pldetermining the basic functional units (objects) in a samil
sales over internet in collective efforts. Such corporgide or way that macromolecules are determined for human living
supply-chain-wide collaboration is extremely complex difd cells. The idea is to express and manipulate big data in a
ficult while both the number of participants and the size aadahigh-level (or macro-level) and efficient way. In the rest of
to be analyzed continually grow. Unfortunately, tradisbdata this paper, for simplicity we use the term "big data” to mean
technologies such as relational database managemenmsystibig data with high valence” and use "traditional computing
are inadequate for analyzing such big data, even though thmgdel” to refer to "the computing model that requires data
are proven to be efficient to handle transactional appticati retrieval from relational databases”.

On the other end, most commonly adopted approaches to bighe term "in-place” indicates that the data is in residemce i
data computing such as MapReduce [1] in a distributed fashimemory space and ready for computing. Both code and data
were originally designed to process a big volume of dategside in the same space, well organized and standing by. The
rather than addressing real-time performance issuesciefipe key concern for data-intensive computing is the readinéss o
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Figure 2. Two views based on the actual sales data in thequewiear.
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Figure 1. A collaborative planning scenario in business.

Figure 3. Two views based on the forecasted sales data.
data and its corresponding data structures. The term "data-
centric” has multiple meanings in reference to where data

lives, which could mean same location, same machine or

the same memory space in different contexts. By definitioﬁ?onsive to the market, an (_ante_rprise needs to deal withlyapi
in-place computing is data-centric computing as well as il;f_hangmg demand-supply situations all year long, and thexe

memory computing, but not vice versa. reql_Jires its dem_and chaiq partners (i.e., channels) anglysup
64-bit architecture is the key to making in-placing Compu{;hallntpartne[s; (ie., Ifufp:]'ers) to th.)rlf Closfly tatnd C@I fablt

ing technology meaningful and effective. Whité? is quite o™ Olie?f[: odmar et cta:cn?es. q IS |mp(>jor a(r; oun that th

limited, 264 is considerably unlimited in the sense thata64—bﬁ?e market trends, project future demand and ensure that the

address space is large enough to hold the big data in most ca%{eoply can meet the deman_d. The dema_nd/supply planning,
that we see today. With in-place computing in 64-bit addre §ed to b? an annual or semi-annual a_ct|V|ty _C(_)nductedy_solel
space, it becomes possible for today’s commodity machin _executlves, has now _become a.dally activity collectively
to deliver performance approaching the hardware Iimit,(i.e;C ieved by both executives and middle-level managers. The
giga-operations per second) and scalability for the data s
growing beyond the swap space size of the running machi

Due to the high valence of datasets, the collaborativeLet us consider the collaborative planning problem as a
planning problem is best addressed with in-place computiggme played by a set of participants (i.e., players) who act
in a single machine in order to avoid the high cost of dagnd react on shared data (i.e., game board) according to a
shuffling among multiple machines. However, we do not wisset of rules (i.e., game rules) to determine the legitimate
to over-promise the capability of the technology. When used actions and states, and collectively achieve a common goal.
cohesion with a single commodity machine, it is impractical The complexity of a collaborative planning is determined by
handle high terabytes or petabytes of data within a reagenathe number of participants, the size of shared data and the
timeframe. It is our planned work in the future to investgatdegree of interdependencies among data.

the distributed in-place computing model in order to preces as an actual scenario of a real world collaborative planning
data at that scale. application, a brand manufacturer with about 200,000 pcodu

Our experiments show that one hundred millions of sal§gms (product dimension) and around 10,000 stores (channe
records in collaborative planning can be computed in a fedeension) plans the demand and supply based on the sales
seconds simply using one core, one CPU, one machine Wifecasting of the next 52 weeks and the historical sales
64GB RAM. We aim to compute one billion of records of datgom the past two years. Each product has a unique ID
in seconds on a commodity machine equipped with multiplghd many attributes such as category, sub-category, brand,
CPU’s and multiple cores. color, material, etc. Each store also has a unique ID and
many attributes, area, city, type, etc. The planning preces
includes many different manager roles such as the product
manager, category manager, sales manager, area manager anc

We have faced challenges for supply chain planning brand manager as well as different types of sales data. Fig. 1
China, which is a large yet expansively developing countifjustrates a collaborative planning game, where all manag
with a very complicated market environment due to varioughare forecasted sales data in different hierarchical stiew
and diverse cultures, climate conditions, living stylesl éime Managers, both executives and middle-level managers, can
ways people conduct business across the country. To be view and update the data under their roles.

usiness goal of such large-scale collaborative planrsrg i
%ach a consensus for sales forecasting.

II. REAL-WORLD PROBLEM — REAL-TIME
COLLABORATIVE PLANNING
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changed to 600 thousands from 400 thousands and the
Figure 4. The result after raising the value of B1 in the leéw Alerts are value of B1 under C2 is _changed 10 900 thousands from
raised for exceptions shown in boxed nodes. 600 thousands respectively. Next, the sales of C1 is

changed to 1,400 thousands from 1,200 thousands and

the value of C2 is changed to 1,400 thousands from
A Simplified Planning Example 1,100 thousands respectively. Finally, the total salest(ro
node) is changed to 2.8 million from 2.3 million.

cel—cs) '&L;Str?etze?]?’; ts?mp?g(é:jmejaﬁlllaebv?/irfg“(/f) ?ﬁg%&%;rg}&) Left View Exceptions The total sales, the sales of B1,
! P P P gers, the sales of C2 under B1 and the sales of P2 are deviated

brand manager and category manager, and (2) two datasets, from the actual sales (Fig. 2) by 30%. They are shown
actual sales data from the previous year and forecasted sale in boxed nodes
data. Assume four products, P1, P2, P3 and P4, where P1, P . . o
belong to brand B1, and P3, P4 belong to brand B2, while ) Right View Exceonn_sThe total sales and the sale_s of
B1 under C2 are deviated from the actual sales (Fig. 2)
P1, P3 are of category C1 and P2, P4 are of category C2. The b o .
. . : " y 30%. They are shown in boxed nodes.
business goal of the collaborative planning process ister t i ) )
brand manager and the category manager to reach a consensfi§hough the above scenario looks simple, the computation
for sales forecasting, and discover if any forecasted gées IS complex and time-consuming when the volume of data is
product, brand or category) goes beyond expectation. huge and a considerable number of participants are involved
Fig. 2 shows two views based on the actual sales datalefs @ challenging task to design a collaborative planning
(ie., P1, P2, P3 and P4 are shared). Fig. 3 shows two vie@@plication with real-time response.
based on the forecasted sales dataset (i.e., P1, P2, P3 and P4 ) . L
are shared). The brand manager is interested in both viewsgjlaborative Planning Application
the left, showing the (actual and forecasted) sales datgpgd  Let us return to the game model of collaborative planning
by the product’s brand first and then by the product’s categobf supply chains. The planning (game) is conducted by having
That is, the hierarchy of the left views is in a top-down ordefifferent mangers share and adjust weekly forecasted data f
of brand and category Meanwhile, the category manager islifferent viewpoints. In our application, the sales mamage
interested in both views on the right, showing the (actual a’sees a view with a hierarchy in the order of area, city, store,
forecasted) sales data grouped by the product’s categsty fisategory, sub-category, brand and product, while the miodu
and then by the product’s brand. That is, the hierarchy of tihganager sees a view with a hierarchy in the order of category,
right views is in a top-down order afategoryandbrand Sales sub-category, brand, product, area, city and store. A oageg
numbers shown in this example are all in thousands of dollarsanager or a brand manager, who reports to the product
The value at each leaf node is the (actual or forecastedanager, sees a partial view of what the product manager
sales amount for a product, and the value at each interneedis¢es, and an area manager, who reports to the sales manager
node is the (actual or forecasted) sales amount for a brandsees a partial view of what the sales manager sees. However,
a category. Both the brand manager and category managerrayematter what views they see, all of them share the same
interested to know if any forecasted sales (product, brand groduct-store data (for both actual sales and forecasted)sa
category) is deviated from the actual sales in the previeas y which are located at the leaf nodes of the view hierarchike. T
by 30%. They wish to be notified when such exceptions asales manager and product manager have options to create or
caught. change a view hierarchy by adding, removing or switching
Expecting the sales of brand B1 to rise 50% in reactiaattributes.
to an advertising campaign, the brand manager updates th@here are three major types of computing operations in our
forecasted sales of B1 from 1 million to 1.5 million dollaes( planning application described as follows.
seen in the left view of Fig. 4). This update will immediately , aggregation The data values of intermediate nodes in a
affect the forecasted sales for every product that beloags t  pierarchy are determined by an aggregation rule, which
B1, every category and the total sales. The changes will be s not necessarily the summation function. When a view
propagated through the views in Fig. 4 as follows. is created, the data values of intermediate nodes will be
1) Left View Upward The total forecasted sales (at root  calculated based on an aggregation rule upward starting
node) is changed to 2.8 million from 2.3 million. from the leaf nodes. When a data value is changed,
2) Left View Downward By proportion, the sales of C1 either at a leaf node or at an intermediate node, all
is changed to 600 thousands from 400 thousands and intermediate nodes above the changed node will be re-
the value of C2 is changed to 900 thousands from 600 calculated automatically.



« Distribution Besides aggregation, when a manager
changes the data value at an intermediate node or the
root node, the system will automatically distribute the

TABLE |
MYSQLGROUP BY/ ROLLUP TIME

: . R # Records| 1M 5M 10M  50M 100M
changes downward the hierarchy according to a distri- Time | 6.03 36.12 72.86 549.92 1520.64
bution rule (e.g., even distribution, proportional distri
bution or weighted distribution). Once the changes are TABLE Il
distributed to the leaf nodes, the system will automatycall MYSQLUPDATE TIME
trigger the aggregation process for all view hierarchies # Records| 1M M 10M 50M 100M
that share the same product-store data at the leaf level. Time | 11.25 6191 128.83 677.06 1353.50

The distribution process is not applied to actual sales data
since they are historical and irreversible.

« Exception Detection While facing a large amount of algorithms [6], [7]) to process data with small amount

data in a hierarchy, it is very difficult for a manager
to examine data in the hierarchy manually. It is helpful
for managers to set up a set of exception criteria rules,
which describe whether the data patterns or relations
go beyond their expectation. These exception criteria
rules will be triggered to check against the data once
distribution and aggregation operations are completed.
The managers expect the system to catch exceptions in
real time and raise alerts. For example, the sales manager
wishes to be alerted for forecast accuracy exceptions

of memory and later merge the results.

Relationality It is common to spend a lot of time and
effort tuning relational databases for big-data analytics
type applications, which often need to scan through
a large portion of data from several tables. Relational
databases are not reliable in terms of consistent perfor-
mance. Performance could be further degraded due to
compound SQL statements or large multi-way joins. The
recent development of NoSQL [8]—[10] is to address such
performance issues.

when the actual sales is deviated from the forecastedRelational database designers understood the performance
one for some percentage. Based on the exception critggues of large data movement and have supported stored
formula, the application will compare the forecasted dasrocedures as well as some built-in functions to run inside
against the actual sales and raise necessary exceptione database servers. Simple aggregation operation such as
summation can be implemented using S@OLLUP [11]
operator.
A collaborative planning application can be designed bas [0 have an |d¢a of hovv_ relational databases perfor_m, we
P g app 9 ggnducted experiments with SQROLLUP operator using

?on;Hﬁ;r;?gr']o;%;mg;tggp?cﬁiilﬁ ':v?mer\;zégr:zt')ﬁﬁ?:;;nsgvgral open-source databases. Since all tested datajzases
time. The challenges are listed below similar result;, we qnly show the results of MySQL.[12]_
' ' database for illustration purposes. Table | shows the time i
« Large Data Movement The operations, aggregationseconds to perform aggregation GROUP BY with ROLLUP
distribution and exception detection, require access ¢perator using the following SQL statement:
the .ent_|re tables_of actual sales and forecaste(_j sal SLECT C.area, Mstore, P category. M product,
Retrieving large size of data from the database will take  suym sal es) AS s_sum
excessive 1/0 and network overhead. FROMM P, C
+ Bounded Virual Memory Even the 64-bitaddress spacef 55 [PrORuEL=F produet 0 M ScoregoLore
is considerably unlimited, the (virtual) memory that can  wTH roLLUP
be allocated from the heap space in a program is boundett

to the size of swap space. It is not scalable without adding -iSting 1. Aggregation is accomplished by S@OLLUP operator.

more RAM or increasing the swap space. Relational databases spend a considerable amount of time
« Paging Anomaly The main-memory data structures alfor large data writes such a3NSERT or UPDATE, which are
located from the heap space to hold retrieved data aigeded by both distribution and exception detection. Téble
also in virtual memory, which are subject to swapping. Bhows the time in seconds to perfotd®DATE for MySQL.
is possible that swapping occurs immediately after dataapparently, when the data size is large, such as 100 million,
is retrieved from the database into memory, leading 19 is difficult for a relational database to meet the real-
severe I/O performance problems. time requirement for a collaborative planning application
« Large Data Update Both distribution and exception de-This leads us to move away from relational databases and
tection operations require large data update in a datab@g&elop BigOject, a general-purpose computing systenhas t

resulting in severe performance problems. SQL updafigundation of our collaborative planning application.
and insert are expensive operations. "

« Juggling Being aware of memory space too small to BIGOBJECT
fit all data at once, application developers are forced to BigObject is an in-place computing system for multi-
design algorithms (i.e. out-of-core or external-memomgimensional data. Data are organizedhbig objects which

Challenges




Programming Framework TABLE 1l TABLE IV
o A CHANNEL DIMENSION TABLE A PRODUCT DIMENSION TABLE
BigObject Kernel

1T channel.store| channel.area  product.sku| product.category
S1 NY P1 Food
BigObject Base S2 NY P2 Food
S3 CA P3 Cloth

Figure 5. Architecture of BigObject.
TABLE V
A SALES MEASURE TABLE

are in place in 64-bit memory space and in place to execUtghannel.store  product.skii sales value

an expression or an algorithm. Similar to macromolecules S1 P1 6
in living cells, big objects are also well organized that all 37 i’ >
necessary data and data structures are self-containeidghav S2 P3 8
no need to allocate memory from the heap space. This is an S3 P1 4
important requirement to guarantee scalability for datze si S3 P2 9
growing beyond the swap space size of the running machine.

In order to implement an efficient in-place computing L
model, BigObject supports three critical mechanisms, 1) i N Y-/\CA _ -
memory mechanism, (2) transformation mechanism, and (3) = | o
data-centric computing mechanism. This first describes how St S2- S3- channel.store
big objects reside in 64-bit memory space persistently. The  Food: Cloth..  Cloth Food:_ product.category
second describes how to create or transform big objects from,;™ 5, ps. P3. PLL P2 et

raw data or other big objects. And the third describes a
programming framework to run code directly on big objects.[S1FP16 S1L.P2:S [SLP3L7  [S2,P3J:8 [S3,P1]:4 [S3,P2):9
Similar to Unix/C architecture, the architecture of Big©&dtdj
consists of three |ayers]3i90bject base kerne| and pro- Figure 6. A tree objechctual-saleswith hierarchy:channel.area< chan-
gramming frameworkas shown in Fig. 5. BigObject basg"®-store= product.category< product.sku
is a persistent data space as well as a computing space, in
which big objects are born, live, and work. Like Unix kernel,
BigObject kernel provides a set of functions to create andBoth dimensions and measures are organized into table
manipulate big objects. The top layer of the architectura isobjects, with a structure similar to table in relationalatatses.
programming framework, which supports language congru¢h our examplesalesobject is a table object.
and API for developers to write code with big objects. Another kind of object in BigObject is tree object. A
BigObject base can be treated as an in-memory databasgdb gpject has a hierarchical structure that is suitabte fo
a query language is provided. Like most NoSQL systems [§]erforming analytical computation efficiently. Fig. 6 show
[9], it is possible to implement SQL for BigObject. Howevery ree object derived fronsales object, where hierarchical
our intention is to stay away from the computing approachiyinytes from top to bottom achannel.area< channel.store

that relies heavily on data retrieval during computatioheT _ product.category< product.skuWe usea; < as to denote
programming framework is not designed for query purpos§fgy the level of attribute; is higher than the level ofs in

but used to program real algorithms for the computing pLPOshe tree hierarchy. For example, the rootsaflesobject has

Efficiency (i.e., performance) and expressiveness (iil@h-h +vo child nodes holding data: NY:and CA: as shown in
level way to manipulate big data) are two key design prirespl Fig. 6.

for BigObject.
gV The data structures of the table objects and tree objects

A. Big Objects look like any normal data structures we often see in C/C++

or Java. However, they are implemented to hold the following
BigObject organizes data in multi-dimensional space. froperties:

dimension is composed of a set of members, each of which

has certain properties calledtributes For example, age and « Big — capable of maintaining a large size of data ele-
gender are common attributes in customer dimension. Data ments, addressable in one big space (e.g. 64-bit address
to be analyzed, such as actual sales or forecasted sales, arespace).

called measuresMulti-dimensional data are naturally defined « In-place — ready to compute, no query, no explicit data
in relational databases with star schema. For exampleg THbI retrieval.

and IV define two dimensionshannelandproduct and their ~ « Persistent — viable to keep the state, which outlives the
attributes,area and category Table V is a measure table of process that created it.

sales records, each row indicating the sales amount for & Relocatable — movable from one space to another, in same
product sold at a store. machine or different machines.



virtual memory space '39/"pi/ng"\ program tag
paglng file = aggregate({
. (on-demand) | NY:26 cAl3 parent+=curren ;
table object . — T | p
s1:18 S2:8 $3:13 |-
CPU T \ \
N - Food:11 Cloth:7  Cloth:8 Food:13
) file T | | Co
tree object | P16 P25 P3:7 P3:8 P1:4  P2:9 ping
”/rrriémory as file [S1,P1]:6 [S1,P2]:5 [S1,P3]:7 [S2,P3]:8 [S3,P1]:4 [S3,P2]:9
Figure 7. Memory-mapped big objects. Figure 8. Aggregation using a program tag.

B. In-Memory Mechanism It is a binary operator which takes a big object as the first

Big objects are implemented using the memory mappifgherand and an attribute of a dimension as the second operand
technique. Memory mapping that implements demand paghd creates a tree object. A trans-join operation "liftsé th
ing became available for application developers in POSIierarchy of the tree object one level up by grouping the leaf
compliant Unix since the 1980s. This allows programs igodes by the attribute. For each group of leaf nodes thaeshar
allocate virtual memory space backed by a memory-mappgé same attribute value, an intermediate node is created as
file. As shown in Fig. 7, a memory-mapped file is a segmefHe new parent node of the group. As a result, a new level
of virtual memory assigned a direct mapping with a file, 8f intermediate nodes are inserted between the leaf nodes an
block device or any resource that can be opened for randgfe original parent nodes.

access For example, the tree objeattual-salesn Fig. 6 is trans-

The adoption of memory-mapped files resolves the pggined from thesales measuréable object in Table V based
formance problems such as data movement, juggling agf hierarchychannel.area< channel.store< product.category
swapping t_hat we discussed in the prev.ious sgction.. AS_aproduct.sku This process is similar to usinGROUP BY
storage unit, the memory space used in a big object \ih roLLUP operator on columnshannel.areachannel.store
automatically mapped and saved in the memory-mapped filgoquct.categoryand product.skuby joining sales measure
As a computing unit, algorithms can be directly applied Oghanne) and producttables in SQL.
the memory structure of a big object transparently without Trans-join operator differs from theJO N/ GROUP

any explicit data retrieval and additional memory alloeati gy, ry || UP operators in that it physically constructs an ob-
The beauty of the memory-mapping approach is that a Bigry \ith tree structure rather than outputs a table in iaat

object is simply a file, in which the content of the objech,,qe| [11]. Since trans-join can be used to construct a tree

can be preserved even if the system is powered off, or MOYfia t with the desired level of hierarchy, which allows us

around in different machines. It can also serve as a pagificreate the most suitable tree object for efficient conmguti

device when the big object is computing. In other wordg,qyq |n our collaborative planning application, eachedént
memory-mapped big objects meet the desired four propertigs, . chical view, i.e., tree object, can be easily cormsémi by

(big, in-place, persistent, and relocatable). More im@atly, i trans-join. The data is shared among all tree objdcts a
the size of a memory-mapped file can be bigger than the Size o4t evel and the aggregated values in intermediatesiod

of the swap space, which supports a scalable solution to hgl[% computed and analyzed accordingly.
and manipulate data in 64-bit address space (or whatever the

dd limitati f OS, 42-bit or 48-bit for Li . . . .
address space fimitation o tor it-for Linux) D. Data Centric Computing Mechanism

C. Transforma.tmn.Mechamsm . . . One of the key ingredients of in-place computing is data

Transformation is a common technique used in SCIeNG&ntric computing, in which computations take place where
which converts a problem into some form easy to manipulaie gata resides. Instead of using query languages suchlas SQ
The mapper in MapReduce is an example of transformation, retrieve necessary data out of databases, BigObjectsadop

which transforms a key-value domain into another. Howeveo{'simple programming framework, which allows (1) a piece

transformation doesn’t come free. It always incurs costiemo,¢ program to attach to a tree object node for execution and

or less depending on the underlying implementation. Tha id ) expressing and evaluating an arithmetic expressiorigof b

of transformation mechanism is to transform data into a d&{@jects. This framework together with compiler optimipati
structure suitable for efficient computation, assumingdbst only provides a high-level expressive power, but also de

of transfqrmation can be tolerateq. i livers good performance. The first feature in the prograngmin
BigObject adopts a transformation mechaninansforma- framework is realized by a language construct caReagram

tive Join (Trans-Joinin short), by using a similar semanticsTags and the second feature is done Mgcro Expression
of join from relational algabra [13]. Trans-join transfasm

big object into a tree object according to a desired hiesarch Program Tag



discrepancy forecasted-sales actual-sales actual-sales
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Figure 9. lllustration of macro expression evaluation fquation 1.

voi d di screpancy(BO<int> D, BOint> F, BO<int> S) TABLE VI

{ OBJECTCREATION TIME
F. aggregate();
S. aggregate(); # Records| 1M 5M 10M 50M  100M
D=(F-9 /5§ Trans-oin | 0.38 187 3.75 19.28 39.25

Listing 2. A function consists of a macro expression . .
For efficiency, program tags and macro expressions are

compiled to C++ code first by a language compiler and
) . o then the generated C++ code is further compiled into an
A program tag is a piece of program containing stat@yecuytable library by a C++ compiler. Compiled executables

function for a tree object. Once a program tag is definegdyecution.

it can be attached to some nodes of a tree object and then

evaluated node-by-node in a tree traversal order. For ebeamiic. Concurrency Control

to implement aggregation operation for a tree object, we cann order to address the concurrency issues, we adopt a
"ping” each node in the tree object with a program tag agmple read-write lock concurrency control by locking view
shown in Fig. 8. In this aggregation example, each node $imp{hile share data is being updated. Recoverability is not a

adds its value to its parent's node in a depth-first traversgdncern since this is a planning job rather than a trangactio
order. Program tags can be designed to behave differentlyiat requires durability.

different levels and can be parameterized at invocatiore Th
programming framework allows developers to define program IV. PERFORMANCE EVALUATION

tags to perform desired computation on each node in a highBigObject is a data-centric approach, different from the
level way. traditional computing approach that requires data redtiev
In our collaborative planning application, both distribut from databases. Without the overhead of data retrievas it i
and aggregation operations are implemented using prografticipated that a BigObject-based application shouldoper
tags. more efficient than an application using relational databak
may not be easy to compare BigObject to relational databases
since there is no benchmark program that can run both.
Similar to matrix arithmetic expression, BigObject pragra Instead, we compare two applications that take different ap
ming framework supports the application developers toewriproaches but deliver the same results with the same datasets
and evaluate an arithmetic expression over big objectsravhe We have built a collaborative planning application, which
operators are either pre-defined or overloaded. The faligwisupports collaboration with multiple views and three op-
equation is a macro expression to calculate the discrepamegtions, aggregation, distribution, and exception dietec

Macro Expression

between actual sales and forecasted sales: using BigObject. The computation part is written in C++
and BigObject programming framework, and the GUI part
D=(F-5)/S (1) is implemented in Java with ZK, an open-source Ajax [14]

Web application framework. Since our goal is to develop an
, where S is the actual-salesobject, F' represents the affordable technology, we constrain the hardware used for
forecasted-salesbject andD is the discrepancyobject hold- the planning system and BigObject engine to a commodity
ing the result. It indicates forecast inaccuracy. Fig. 9vaho machine with 64-bit CPU at 2.3 GHz, 64GB of RAM, and
an example of how this equation is evaluated. BigObje&tOTB of hard disk. The machine runs 64-bit Ubuntu Linux
programming framework allows us to program this equatigersion 12.10).
in a high-level way as shown in Listing 2. Therefore, the We conducted experiments with different sizes of records.
exception detection in our collaborative planning appicda Table VI shows the time in seconds to build a view (hierarchy
can be easily implemented using macro expressions. as in Fig. 6) by transforming a table object into a tree object



TABLE VII 10000 .

OPERATIONTIME T bate Computing appreach ~x
#Records | 1M 5M  10M 50M  100M w000 - ]
Aggregation | 0.065 0.294 0.565 2.78 5.49 o
Distribution | 0.090 0.416 0.837 4.13 8.19 T
Exception | 0.072 0.305 0.609 3.00 6.06 100k P ]
T Traditional comput‘mg approach ---- T g 10 | |
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Figure 11. Performance of exception detection betweendititaal comput-
ing approach and the in-place computing approach.

TABLE VIl
o1l i STORAGE SIZE FOR DIFFERENT COMPUTING APPROACH
wm M 10m SoM 100M # Records | 1M 5M 10M 50M 100M
A MySQL Table | 81MB 410MB 822MB 4.1GB 8.3GB
Figure 10. Performance of aggregation between a traditicoenputing A Table Object | 20MB ~ 93MB  184MB  1.0GB  2.2GB
approach and the in-place computing approach. A Tree Object | 20MB  97MB  193MB 964MB  1.9GB

Table VII shows the time in seconds to perform aggregation,SQL was originally designed as a query language, rather
distribution, and exception detection for a tree object. than a language to implement complex algorithms. It is noted
We implemented a second application that supports aggretjwt even SQL is able to perform aggregation usR@ L UP
tion and exception detection using the traditional comquti operator, it is nontrivial to come up with a single SQL
model, and experimented the application with several opestatement to perform distribution operation. A proporéibn
source databases, which all deliver quite similar resi#ts. distribution operation needs to first calculate the weight f
simplicity, we only show the results with MySQL (versioneach child node in the view hierarchy and then distribute the
5.5.31) database, in comparison with the first applicafidre changed amount to the child nodes according to their weights
two operations, aggregation and exception detection ia thi Implementing exception detection using pure SQL is a
application, are implemented in two different ways. Firstl complex operation. An exception detection operation néeds
the aggregation operation is written in one SQL statement p&rform an arithmetic expression from multiple data compo-
shown in Listing 1 in the previous section and runs on theents, calculate the discrepancies, check against th@#xae
database server. Secondly, the exception detection apeiat criteria and finally record the exceptions in details. Depéig
a C++ function, which retrieves the forecasted sales andhhcta collaborative planning application solely with SQL to aec
sales data from database into an internal data structune; celish all three major operations (i.e., aggregation, itistion,
putes intermediate results if needed, performs the disoi®p and exception detection) is a daunting task.
formula (see Equation 1) and finally records the exceptionsFig. 11 shows the experiment results of exception detection
when detected. It is clear that the in-place computing approach is more
By examining the aggregation time for the application usirgfficient than the traditional computing approach. In this
the traditional computing model (as shown in Table I) and thexperiment, our application takes 6.057 seconds for da& si
aggregation time for our planning application (as shown if 100 million (in records), while the application based on
Table VII), it is clear to see that our application outpenfisr traditional computing model takes 4446 seconds. It is about
the application using the traditional computing model i tw734 times faster.
orders of magnitude. When the data size is 100 million (in We also compare the storage sizes between the two com-
records), our application takes 5.49 seconds to aggregaeting approaches. Table VIl shows the size of a table (see
while traditional computing approach takes more than 15Jd@ble V) in MySQL, the size of a table object and a tree
seconds to doaGROUP BY/ ROLLUP operation. It is about object in BigObject for different numbers of sales recos.
276 times faster. Fig. 10 shows the performance compariduig object is much smaller than a table in MySQL due to
between our application which is based on in-place comgutiooncise record structures and string encoding schemeadtili
model and the application based on the traditional comgutim BigObject [15]-[17]. The string encoding scheme is also
model. helpful in reducing time for trans-join operation.



Traditional Distributed Computing operations per second (giga-operations). It is feasibleé an

Ef;aglzrgcae;;‘;g) Efﬁi&iﬁ’ﬁﬁgiﬂg (multiple machines) practical to process data up to one billion of records (or low
o terabytes of raw data) within a reasonable timeframe usireg o
3 s > commodity machine with multiple cores and multiple CPU's.
mega-operations giga-operations - computing power  \When processing data more than billions of records, it will
(10° ops/sec) (10 ops/sec)

require a distributed approach. In-place computing offers

Figure 12. Spectrum for computing models on commodity meehi  affordable solution for processing data with high valencd a
volume up to one billion of records.

The performance of applications using the traditional com-
puting model suffers from large volume of data retrieval and!]
update. By using in-place computing technology, the exper-
iment results show that a collaborative planning applarati
can be built to handle big data with acceptable response tinid
using a commodity machine. The question left for the readerﬁ]
is whether to trade the traditional approach based on oglalti
databases for such performance gain. (4]

V. NCLUSION
ConcLusio 5]

A real-world collaborative planning application is comyle
The complexity depends on the number of concurrent particié]
ipants in the collaboration as well as the data charadisjst
volume and valence, which determine the performance of
the application. The traditional computing model based oH
databases is inadequate for processing big data with high
valence. Meanwhile, most commonly adopted approaches for
big data computing such as Hadoop [18] were not design
specifically for real-time computing and may suffer from-per [g]
formance problems due to large data shuffling among multiple
servers. Instead, we take an unconventional approachaaep
computing model to address the issues raised by big volumg
and high valence. BigObject is an in-place computing system
designed for storing and computing multi-dimensional data
It focuses on 'squeezing’ (i.e., scaling in) computing perf [12]
mance out of the CPU’s of a single machine by trading spaidél
(complexity) with time (complexity). The general availtyi (14
of 64-bit architecture makes this possible and triggerssitsv [15]
to many software areas to rethink alternatives for poténtia
performance leap. (16

By building a collaborative planning application based on
BigObject, we are able to study the behavior of the in-plad¥’]
computing system and evaluate its performance against the
traditional approach. In the application, BigObject demon
strates with significant performance gain and well-orgedhiz [18]
complexity in both data structure and behavior. Our experi-
ment shows that the application takes seconds to compute one
hundred millions of data records using one core, one CPU
and one machine. In-place computing approach outperforms
the approach based on traditional computing model in two
orders of magnitude.

As part of the result from the experiment, we have learned
the comfort zone for in-place computing. Fig. 12 shows aspec
trum of computing power and the corresponding computing
models on today’s commodity machines. In-place computing
model is capable of delivering computing power between
million operations per second (mega-operations) andohilli
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