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Abstract—There is increasing collaboration in new generation
supply chain planning applications, where participants across a
supply chain analyze and plan on a big volume of sales data over
the internet together. To achieve real-time collaborativeplanning
over big data, we have developed an unconventional technology,
BigObject, based on anin-place computing approach in two ways.
First, instead of moving (big) data around, move (small) code to
where data resides for execution. Second, organize the complexity
by determining the basic functional units (objects) for computing
in the same sense that macromolecules are determined for living
cells. The term ”in-place” indicates that data is in residence in
memory space and ready for computing. BigObject is an in-place
computing system, designed for storing and computing multi-
dimensional data. Our experiment shows that in-place computing
approach outperforms traditional computing approach in two
orders of magnitude.

Index Terms—In-Place Computing, big data, database, real-
time system, transformation programming, in-memory comput-
ing

I. I NTRODUCTION

Over the past decade with the growth of the internet and
mobile technologies, the clock speeds of businesses have been
accelerating gradually. To remain competitive, businesses and
their supply chains need to be responsive and adaptive to
the markets. Technologies enable the possibility for partners
around the world to collaborate together and achieve common
business goals in a real-time manner. Such real-time collabo-
ration is critical when business becomes competitive.

Our work was motivated by a real-time collaborative plan-
ning problem, where a group of participants analyze and plan
sales over internet in collective efforts. Such corporate-wide or
supply-chain-wide collaboration is extremely complex anddif-
ficult while both the number of participants and the size of data
to be analyzed continually grow. Unfortunately, traditional data
technologies such as relational database management systems
are inadequate for analyzing such big data, even though they
are proven to be efficient to handle transactional applications.
On the other end, most commonly adopted approaches to big
data computing such as MapReduce [1] in a distributed fashion
were originally designed to process a big volume of data,
rather than addressing real-time performance issues, especially

for applications with data components that present high degree
of interdependency.

The main properties that characterize big data are often
described as multiple V’s [2], with Volume and Velocity as
the main properties. In this paper, we add another V,Valence,
to describe the degree of interdependency among data com-
ponents of big data applications that are not embarrassingly
parallel. The valence of a dataset determines how difficult
it is to decompose the dataset into subsets and thus how to
divide the problem into sub-problems, which helps to decide
an appropriate approach to big data computing and storage.
The applications with high-valence datasets include social
graph [3] analysis and the collaborative planning problem
we are addressing in this paper. The collaborative planning
problem presents high valence due to its interactive natureas
well as collaboration with multiple views on the shared sales
data, where any action or reaction will affect the views of
others.

In order to achieve real-time collaborative planning over big
data with high valence, we have developed an unconventional
technology,BigObject, based on anin-place computingap-
proach in two ways. First, it moves away from the traditional
computing model that requires explicit data retrieval to a data-
centric computing model [4], [5] in which computations take
place where data resides. The idea is, instead of moving (big)
data around, to move (small) code to where the data resides for
execution. Second, it organizes the complexity of big data by
determining the basic functional units (objects) in a similar
way that macromolecules are determined for human living
cells. The idea is to express and manipulate big data in a
high-level (or macro-level) and efficient way. In the rest of
this paper, for simplicity we use the term ”big data” to mean
”big data with high valence” and use ”traditional computing
model” to refer to ”the computing model that requires data
retrieval from relational databases”.

The term ”in-place” indicates that the data is in residence in
memory space and ready for computing. Both code and data
reside in the same space, well organized and standing by. The
key concern for data-intensive computing is the readiness of
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Figure 1. A collaborative planning scenario in business.

data and its corresponding data structures. The term ”data-
centric” has multiple meanings in reference to where data
lives, which could mean same location, same machine or
the same memory space in different contexts. By definition,
in-place computing is data-centric computing as well as in-
memory computing, but not vice versa.

64-bit architecture is the key to making in-placing comput-
ing technology meaningful and effective. While232 is quite
limited, 264 is considerably unlimited in the sense that a 64-bit
address space is large enough to hold the big data in most cases
that we see today. With in-place computing in 64-bit address
space, it becomes possible for today’s commodity machines
to deliver performance approaching the hardware limit (i.e.,
giga-operations per second) and scalability for the data size
growing beyond the swap space size of the running machine.

Due to the high valence of datasets, the collaborative
planning problem is best addressed with in-place computing
in a single machine in order to avoid the high cost of data
shuffling among multiple machines. However, we do not wish
to over-promise the capability of the technology. When usedin
cohesion with a single commodity machine, it is impracticalto
handle high terabytes or petabytes of data within a reasonable
timeframe. It is our planned work in the future to investigate
the distributed in-place computing model in order to process
data at that scale.

Our experiments show that one hundred millions of sales
records in collaborative planning can be computed in a few
seconds simply using one core, one CPU, one machine with
64GB RAM. We aim to compute one billion of records of data
in seconds on a commodity machine equipped with multiple
CPU’s and multiple cores.

II. REAL-WORLD PROBLEM – REAL-TIME

COLLABORATIVE PLANNING

We have faced challenges for supply chain planning in
China, which is a large yet expansively developing country
with a very complicated market environment due to various
and diverse cultures, climate conditions, living styles and the
ways people conduct business across the country. To be re-
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Figure 2. Two views based on the actual sales data in the previous year.
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Figure 3. Two views based on the forecasted sales data.

sponsive to the market, an enterprise needs to deal with rapidly
changing demand-supply situations all year long, and therefore
requires its demand chain partners (i.e., channels) and supply
chain partners (i.e., suppliers) to work closely and collabora-
tively to react to market changes. It is important to understand
the market trends, project future demand and ensure that the
supply can meet the demand. The demand/supply planning,
used to be an annual or semi-annual activity conducted solely
by executives, has now become a daily activity collectively
achieved by both executives and middle-level managers. The
business goal of such large-scale collaborative planning is to
reach a consensus for sales forecasting.

Let us consider the collaborative planning problem as a
game played by a set of participants (i.e., players) who act
and react on shared data (i.e., game board) according to a
set of rules (i.e., game rules) to determine the legitimate
actions and states, and collectively achieve a common goal.
The complexity of a collaborative planning is determined by
the number of participants, the size of shared data and the
degree of interdependencies among data.

As an actual scenario of a real world collaborative planning
application, a brand manufacturer with about 200,000 product
items (product dimension) and around 10,000 stores (channel
dimension) plans the demand and supply based on the sales
forecasting of the next 52 weeks and the historical sales
from the past two years. Each product has a unique ID
and many attributes such as category, sub-category, brand,
color, material, etc. Each store also has a unique ID and
many attributes, area, city, type, etc. The planning process
includes many different manager roles such as the product
manager, category manager, sales manager, area manager and
brand manager as well as different types of sales data. Fig. 1
illustrates a collaborative planning game, where all managers
share forecasted sales data in different hierarchical views.
Managers, both executives and middle-level managers, can
view and update the data under their roles.
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Figure 4. The result after raising the value of B1 in the left view. Alerts are
raised for exceptions shown in boxed nodes.

A Simplified Planning Example

To illustrate how to perform a collaborative planning pro-
cess, we present a simplified example with (1) two managers,
brand manager and category manager, and (2) two datasets,
actual sales data from the previous year and forecasted sales
data. Assume four products, P1, P2, P3 and P4, where P1, P2
belong to brand B1, and P3, P4 belong to brand B2, while
P1, P3 are of category C1 and P2, P4 are of category C2. The
business goal of the collaborative planning process is for the
brand manager and the category manager to reach a consensus
for sales forecasting, and discover if any forecasted sales(for
product, brand or category) goes beyond expectation.

Fig. 2 shows two views based on the actual sales dataset
(i.e., P1, P2, P3 and P4 are shared). Fig. 3 shows two views
based on the forecasted sales dataset (i.e., P1, P2, P3 and P4
are shared). The brand manager is interested in both views on
the left, showing the (actual and forecasted) sales data grouped
by the product’s brand first and then by the product’s category.
That is, the hierarchy of the left views is in a top-down order
of brand and category. Meanwhile, the category manager is
interested in both views on the right, showing the (actual and
forecasted) sales data grouped by the product’s category first
and then by the product’s brand. That is, the hierarchy of the
right views is in a top-down order ofcategoryandbrand. Sales
numbers shown in this example are all in thousands of dollars.

The value at each leaf node is the (actual or forecasted)
sales amount for a product, and the value at each intermediate
node is the (actual or forecasted) sales amount for a brand or
a category. Both the brand manager and category manager are
interested to know if any forecasted sales (product, brand or
category) is deviated from the actual sales in the previous year
by 30%. They wish to be notified when such exceptions are
caught.

Expecting the sales of brand B1 to rise 50% in reaction
to an advertising campaign, the brand manager updates the
forecasted sales of B1 from 1 million to 1.5 million dollars (as
seen in the left view of Fig. 4). This update will immediately
affect the forecasted sales for every product that belongs to
B1, every category and the total sales. The changes will be
propagated through the views in Fig. 4 as follows.

1) Left View Upward The total forecasted sales (at root
node) is changed to 2.8 million from 2.3 million.

2) Left View Downward By proportion, the sales of C1
is changed to 600 thousands from 400 thousands and
the value of C2 is changed to 900 thousands from 600

thousands respectively. Next, the sales of P1 is changed
to 600 thousands from 400 thousands and the value of
P2 is changed to 900 thousands from 600 thousands
respectively.

3) Right View Upward The sales of B1 under C1 is
changed to 600 thousands from 400 thousands and the
value of B1 under C2 is changed to 900 thousands from
600 thousands respectively. Next, the sales of C1 is
changed to 1,400 thousands from 1,200 thousands and
the value of C2 is changed to 1,400 thousands from
1,100 thousands respectively. Finally, the total sales (root
node) is changed to 2.8 million from 2.3 million.

4) Left View Exceptions The total sales, the sales of B1,
the sales of C2 under B1 and the sales of P2 are deviated
from the actual sales (Fig. 2) by 30%. They are shown
in boxed nodes.

5) Right View ExceptionsThe total sales and the sales of
B1 under C2 are deviated from the actual sales (Fig. 2)
by 30%. They are shown in boxed nodes.

Although the above scenario looks simple, the computation
is complex and time-consuming when the volume of data is
huge and a considerable number of participants are involved.
It is a challenging task to design a collaborative planning
application with real-time response.

Collaborative Planning Application

Let us return to the game model of collaborative planning
of supply chains. The planning (game) is conducted by having
different mangers share and adjust weekly forecasted data from
different viewpoints. In our application, the sales manager
sees a view with a hierarchy in the order of area, city, store,
category, sub-category, brand and product, while the product
manager sees a view with a hierarchy in the order of category,
sub-category, brand, product, area, city and store. A category
manager or a brand manager, who reports to the product
manager, sees a partial view of what the product manager
sees, and an area manager, who reports to the sales manager,
sees a partial view of what the sales manager sees. However,
no matter what views they see, all of them share the same
product-store data (for both actual sales and forecasted sales),
which are located at the leaf nodes of the view hierarchies. The
sales manager and product manager have options to create or
change a view hierarchy by adding, removing or switching
attributes.

There are three major types of computing operations in our
planning application described as follows.

• Aggregation The data values of intermediate nodes in a
hierarchy are determined by an aggregation rule, which
is not necessarily the summation function. When a view
is created, the data values of intermediate nodes will be
calculated based on an aggregation rule upward starting
from the leaf nodes. When a data value is changed,
either at a leaf node or at an intermediate node, all
intermediate nodes above the changed node will be re-
calculated automatically.



• Distribution Besides aggregation, when a manager
changes the data value at an intermediate node or the
root node, the system will automatically distribute the
changes downward the hierarchy according to a distri-
bution rule (e.g., even distribution, proportional distri-
bution or weighted distribution). Once the changes are
distributed to the leaf nodes, the system will automatically
trigger the aggregation process for all view hierarchies
that share the same product-store data at the leaf level.
The distribution process is not applied to actual sales data,
since they are historical and irreversible.

• Exception Detection While facing a large amount of
data in a hierarchy, it is very difficult for a manager
to examine data in the hierarchy manually. It is helpful
for managers to set up a set of exception criteria rules,
which describe whether the data patterns or relations
go beyond their expectation. These exception criteria
rules will be triggered to check against the data once
distribution and aggregation operations are completed.
The managers expect the system to catch exceptions in
real time and raise alerts. For example, the sales manager
wishes to be alerted for forecast accuracy exceptions
when the actual sales is deviated from the forecasted
one for some percentage. Based on the exception criteria
formula, the application will compare the forecasted data
against the actual sales and raise necessary exceptions.

Challenges

A collaborative planning application can be designed based
on the traditional computing model. However, it is impractical
to build such a planning application with reasonable response
time. The challenges are listed below.

• Large Data Movement The operations, aggregation,
distribution and exception detection, require access to
the entire tables of actual sales and forecasted sales.
Retrieving large size of data from the database will take
excessive I/O and network overhead.

• Bounded Virtual Memory Even the 64-bit address space
is considerably unlimited, the (virtual) memory that can
be allocated from the heap space in a program is bounded
to the size of swap space. It is not scalable without adding
more RAM or increasing the swap space.

• Paging Anomaly The main-memory data structures al-
located from the heap space to hold retrieved data are
also in virtual memory, which are subject to swapping. It
is possible that swapping occurs immediately after data
is retrieved from the database into memory, leading to
severe I/O performance problems.

• Large Data Update Both distribution and exception de-
tection operations require large data update in a database
resulting in severe performance problems. SQL update
and insert are expensive operations.

• Juggling Being aware of memory space too small to
fit all data at once, application developers are forced to
design algorithms (i.e. out-of-core or external-memory

TABLE I
MYSQLGROUP BY/ROLLUP T IME

# Records 1M 5M 10M 50M 100M
Time 6.03 36.12 72.86 549.92 1520.64

TABLE II
MYSQLUPDATE T IME

# Records 1M 5M 10M 50M 100M
Time 11.25 61.91 128.83 677.06 1353.50

algorithms [6], [7]) to process data with small amount
of memory and later merge the results.

• Relationality It is common to spend a lot of time and
effort tuning relational databases for big-data analytics-
type applications, which often need to scan through
a large portion of data from several tables. Relational
databases are not reliable in terms of consistent perfor-
mance. Performance could be further degraded due to
compound SQL statements or large multi-way joins. The
recent development of NoSQL [8]–[10] is to address such
performance issues.

Relational database designers understood the performance
issues of large data movement and have supported stored
procedures as well as some built-in functions to run inside
the database servers. Simple aggregation operation such as
summation can be implemented using SQLROLLUP [11]
operator.

To have an idea of how relational databases perform, we
conducted experiments with SQLROLLUP operator using
several open-source databases. Since all tested databasesgave
similar results, we only show the results of MySQL [12]
database for illustration purposes. Table I shows the time in
seconds to perform aggregation byGROUP BY with ROLLUP
operator using the following SQL statement:

SELECT C.area, M.store, P.category, M.product,
SUM(M.sales) AS s_sum

FROM M, P, C
WHERE M.product=P.product AND M.store=C.store
GROUP BY C.area, M.store, P.category, M.product

WITH ROLLUP

Listing 1. Aggregation is accomplished by SQLROLLUP operator.

Relational databases spend a considerable amount of time
for large data writes such asINSERT or UPDATE, which are
needed by both distribution and exception detection. TableII
shows the time in seconds to performUPDATE for MySQL.

Apparently, when the data size is large, such as 100 million,
it is difficult for a relational database to meet the real-
time requirement for a collaborative planning application.
This leads us to move away from relational databases and
develop BigOject, a general-purpose computing system, as the
foundation of our collaborative planning application.

III. B IGOBJECT

BigObject is an in-place computing system for multi-
dimensional data. Data are organized inbig objects, which



Figure 5. Architecture of BigObject.

are in place in 64-bit memory space and in place to execute
an expression or an algorithm. Similar to macromolecules
in living cells, big objects are also well organized that all
necessary data and data structures are self-contained, having
no need to allocate memory from the heap space. This is an
important requirement to guarantee scalability for data size
growing beyond the swap space size of the running machine.

In order to implement an efficient in-place computing
model, BigObject supports three critical mechanisms, (1) in-
memory mechanism, (2) transformation mechanism, and (3)
data-centric computing mechanism. This first describes how
big objects reside in 64-bit memory space persistently. The
second describes how to create or transform big objects from
raw data or other big objects. And the third describes a
programming framework to run code directly on big objects.

Similar to Unix/C architecture, the architecture of BigObject
consists of three layers,BigObject base, kernel, and pro-
gramming framework, as shown in Fig. 5. BigObject base
is a persistent data space as well as a computing space, in
which big objects are born, live, and work. Like Unix kernel,
BigObject kernel provides a set of functions to create and
manipulate big objects. The top layer of the architecture isa
programming framework, which supports language constructs
and API for developers to write code with big objects.

BigObject base can be treated as an in-memory database if
a query language is provided. Like most NoSQL systems [8],
[9], it is possible to implement SQL for BigObject. However,
our intention is to stay away from the computing approach
that relies heavily on data retrieval during computation. The
programming framework is not designed for query purposes,
but used to program real algorithms for the computing purpose.
Efficiency (i.e., performance) and expressiveness (i.e., high-
level way to manipulate big data) are two key design principles
for BigObject.

A. Big Objects

BigObject organizes data in multi-dimensional space. A
dimension is composed of a set of members, each of which
has certain properties calledattributes. For example, age and
gender are common attributes in customer dimension. Data
to be analyzed, such as actual sales or forecasted sales, are
calledmeasures. Multi-dimensional data are naturally defined
in relational databases with star schema. For example, Table III
and IV define two dimensions,channelandproduct, and their
attributes,area and category. Table V is a measure table of
sales records, each row indicating the sales amount for a
product sold at a store.

TABLE III
A CHANNEL DIMENSION TABLE

channel.store channel.area
S1 NY
S2 NY
S3 CA

TABLE IV
A PRODUCT DIMENSION TABLE

product.sku product.category
P1 Food
P2 Food
P3 Cloth

TABLE V
A SALES MEASURE TABLE

channel.store product.sku sales value
S1 P1 6
S1 P2 5
S1 P3 7
S2 P3 8
S3 P1 4
S3 P2 9
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Figure 6. A tree objectactual-saleswith hierarchy:channel.area≺ chan-
nel.store≺ product.category≺ product.sku.

Both dimensions and measures are organized into table
objects, with a structure similar to table in relational databases.
In our example,salesobject is a table object.

Another kind of object in BigObject is tree object. A
tree object has a hierarchical structure that is suitable for
performing analytical computation efficiently. Fig. 6 shows
a tree object derived fromsales object, where hierarchical
attributes from top to bottom arechannel.area≺ channel.store
≺ product.category≺ product.sku. We usea1 ≺ a2 to denote
that the level of attributea1 is higher than the level ofa2 in
the tree hierarchy. For example, the root ofsalesobject has
two child nodes holding data: NY:and CA: as shown in
Fig. 6.

The data structures of the table objects and tree objects
look like any normal data structures we often see in C/C++
or Java. However, they are implemented to hold the following
properties:

• Big – capable of maintaining a large size of data ele-
ments, addressable in one big space (e.g. 64-bit address
space).

• In-place – ready to compute, no query, no explicit data
retrieval.

• Persistent – viable to keep the state, which outlives the
process that created it.

• Relocatable – movable from one space to another, in same
machine or different machines.



Figure 7. Memory-mapped big objects.

B. In-Memory Mechanism

Big objects are implemented using the memory mapping
technique. Memory mapping that implements demand pag-
ing became available for application developers in POSIX-
compliant Unix since the 1980s. This allows programs to
allocate virtual memory space backed by a memory-mapped
file. As shown in Fig. 7, a memory-mapped file is a segment
of virtual memory assigned a direct mapping with a file, a
block device or any resource that can be opened for random
access

The adoption of memory-mapped files resolves the per-
formance problems such as data movement, juggling and
swapping that we discussed in the previous section. As a
storage unit, the memory space used in a big object is
automatically mapped and saved in the memory-mapped file.
As a computing unit, algorithms can be directly applied on
the memory structure of a big object transparently without
any explicit data retrieval and additional memory allocation.

The beauty of the memory-mapping approach is that a big
object is simply a file, in which the content of the object
can be preserved even if the system is powered off, or move
around in different machines. It can also serve as a paging
device when the big object is computing. In other words,
memory-mapped big objects meet the desired four properties
(big, in-place, persistent, and relocatable). More importantly,
the size of a memory-mapped file can be bigger than the size
of the swap space, which supports a scalable solution to hold
and manipulate data in 64-bit address space (or whatever the
address space limitation of OS, 42-bit or 48-bit for Linux).

C. Transformation Mechanism

Transformation is a common technique used in science,
which converts a problem into some form easy to manipulate.
The mapper in MapReduce is an example of transformation,
which transforms a key-value domain into another. However,
transformation doesn’t come free. It always incurs cost, more
or less depending on the underlying implementation. The idea
of transformation mechanism is to transform data into a data
structure suitable for efficient computation, assuming thecost
of transformation can be tolerated.

BigObject adopts a transformation mechanism,Transforma-
tive Join (Trans-Joinin short), by using a similar semantics
of join from relational algabra [13]. Trans-join transforms a
big object into a tree object according to a desired hierarchy.
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aggregate(){
...
parent+=current;
...
}

program tag”ping”

”ping”

Figure 8. Aggregation using a program tag.

It is a binary operator which takes a big object as the first
operand and an attribute of a dimension as the second operand,
and creates a tree object. A trans-join operation ”lifts” the
hierarchy of the tree object one level up by grouping the leaf
nodes by the attribute. For each group of leaf nodes that share
the same attribute value, an intermediate node is created as
the new parent node of the group. As a result, a new level
of intermediate nodes are inserted between the leaf nodes and
the original parent nodes.

For example, the tree objectactual-salesin Fig. 6 is trans-
joined from thesales measuretable object in Table V based
on hierarchychannel.area≺ channel.store≺ product.category
≺ product.sku. This process is similar to usingGROUP BY

with ROLLUP operator on columnschannel.area, channel.store,
product.category, and product.skuby joining sales measure,
channel, andproduct tables in SQL.

Trans-join operator differs from theJOIN/GROUP
BY/ROLLLUP operators in that it physically constructs an ob-
ject with tree structure rather than outputs a table in relational
model [11]. Since trans-join can be used to construct a tree
object with the desired level of hierarchy, which allows us
to create the most suitable tree object for efficient computing
tasks. In our collaborative planning application, each different
hierarchical view, i.e., tree object, can be easily constructed by
using trans-join. The data is shared among all tree objects at
the leaf level and the aggregated values in intermediate nodes
are computed and analyzed accordingly.

D. Data Centric Computing Mechanism

One of the key ingredients of in-place computing is data
centric computing, in which computations take place where
the data resides. Instead of using query languages such as SQL
to retrieve necessary data out of databases, BigObject adopts
a simple programming framework, which allows (1) a piece
of program to attach to a tree object node for execution and
(2) expressing and evaluating an arithmetic expression of big
objects. This framework together with compiler optimization
not only provides a high-level expressive power, but also de-
livers good performance. The first feature in the programming
framework is realized by a language construct calledProgram
Tags, and the second feature is done byMacro Expression.

Program Tag
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Figure 9. Illustration of macro expression evaluation for equation 1.

void discrepancy(BO<int> D, BO<int> F, BO<int> S)
{

F.aggregate();
S.aggregate();
D = (F - S) / S;

}

Listing 2. A function consists of a macro expression

A program tag is a piece of program containing state-
ments and variables, which is used to implement a node-level
function for a tree object. Once a program tag is defined,
it can be attached to some nodes of a tree object and then
evaluated node-by-node in a tree traversal order. For example,
to implement aggregation operation for a tree object, we can
”ping” each node in the tree object with a program tag as
shown in Fig. 8. In this aggregation example, each node simply
adds its value to its parent’s node in a depth-first traversal
order. Program tags can be designed to behave differently in
different levels and can be parameterized at invocation. The
programming framework allows developers to define program
tags to perform desired computation on each node in a high-
level way.

In our collaborative planning application, both distribution
and aggregation operations are implemented using program
tags.

Macro Expression

Similar to matrix arithmetic expression, BigObject program-
ming framework supports the application developers to write
and evaluate an arithmetic expression over big objects, where
operators are either pre-defined or overloaded. The following
equation is a macro expression to calculate the discrepancy
between actual sales and forecasted sales:

D = (F − S)/S (1)

, where S is the actual-sales object, F represents the
forecasted-salesobject andD is thediscrepancyobject hold-
ing the result. It indicates forecast inaccuracy. Fig. 9 shows
an example of how this equation is evaluated. BigObject
programming framework allows us to program this equation
in a high-level way as shown in Listing 2. Therefore, the
exception detection in our collaborative planning application
can be easily implemented using macro expressions.

TABLE VI
OBJECTCREATION T IME

# Records 1M 5M 10M 50M 100M
Trans-join 0.38 1.87 3.75 19.28 39.25

For efficiency, program tags and macro expressions are
compiled to C++ code first by a language compiler and
then the generated C++ code is further compiled into an
executable library by a C++ compiler. Compiled executables
are dynamically linked and sent to BigObject system for
execution.

E. Concurrency Control

In order to address the concurrency issues, we adopt a
simple read-write lock concurrency control by locking views
while share data is being updated. Recoverability is not a
concern since this is a planning job rather than a transaction
that requires durability.

IV. PERFORMANCEEVALUATION

BigObject is a data-centric approach, different from the
traditional computing approach that requires data retrieval
from databases. Without the overhead of data retrieval, it is
anticipated that a BigObject-based application should perform
more efficient than an application using relational databases. It
may not be easy to compare BigObject to relational databases
since there is no benchmark program that can run both.
Instead, we compare two applications that take different ap-
proaches but deliver the same results with the same datasets.

We have built a collaborative planning application, which
supports collaboration with multiple views and three op-
erations, aggregation, distribution, and exception detection,
using BigObject. The computation part is written in C++
and BigObject programming framework, and the GUI part
is implemented in Java with ZK, an open-source Ajax [14]
Web application framework. Since our goal is to develop an
affordable technology, we constrain the hardware used for
the planning system and BigObject engine to a commodity
machine with 64-bit CPU at 2.3 GHz, 64GB of RAM, and
1.0TB of hard disk. The machine runs 64-bit Ubuntu Linux
(version 12.10).

We conducted experiments with different sizes of records.
Table VI shows the time in seconds to build a view (hierarchy
as in Fig. 6) by transforming a table object into a tree object.



TABLE VII
OPERATIONT IME

# Records 1M 5M 10M 50M 100M
Aggregation 0.065 0.294 0.565 2.78 5.49
Distribution 0.090 0.416 0.837 4.13 8.19
Exception 0.072 0.305 0.609 3.00 6.06
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Figure 10. Performance of aggregation between a traditional computing
approach and the in-place computing approach.

Table VII shows the time in seconds to perform aggregation,
distribution, and exception detection for a tree object.

We implemented a second application that supports aggrega-
tion and exception detection using the traditional computing
model, and experimented the application with several open-
source databases, which all deliver quite similar results.For
simplicity, we only show the results with MySQL (version
5.5.31) database, in comparison with the first application.The
two operations, aggregation and exception detection in this
application, are implemented in two different ways. Firstly,
the aggregation operation is written in one SQL statement as
shown in Listing 1 in the previous section and runs on the
database server. Secondly, the exception detection operation is
a C++ function, which retrieves the forecasted sales and actual
sales data from database into an internal data structure, com-
putes intermediate results if needed, performs the discrepancy
formula (see Equation 1) and finally records the exceptions
when detected.

By examining the aggregation time for the application using
the traditional computing model (as shown in Table I) and the
aggregation time for our planning application (as shown in
Table VII), it is clear to see that our application outperforms
the application using the traditional computing model in two
orders of magnitude. When the data size is 100 million (in
records), our application takes 5.49 seconds to aggregate,
while traditional computing approach takes more than 1520
seconds to doGROUP BY/ROLLUP operation. It is about
276 times faster. Fig. 10 shows the performance comparison
between our application which is based on in-place computing
model and the application based on the traditional computing
model.
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Figure 11. Performance of exception detection between a traditional comput-
ing approach and the in-place computing approach.

TABLE VIII
STORAGE SIZE FOR DIFFERENT COMPUTING APPROACH

# Records 1M 5M 10M 50M 100M
A MySQL Table 81MB 410MB 822MB 4.1GB 8.3GB
A Table Object 20MB 93MB 184MB 1.0GB 2.2GB
A Tree Object 20MB 97MB 193MB 964MB 1.9GB

SQL was originally designed as a query language, rather
than a language to implement complex algorithms. It is noted
that even SQL is able to perform aggregation usingROLLUP
operator, it is nontrivial to come up with a single SQL
statement to perform distribution operation. A proportional
distribution operation needs to first calculate the weight for
each child node in the view hierarchy and then distribute the
changed amount to the child nodes according to their weights.

Implementing exception detection using pure SQL is a
complex operation. An exception detection operation needsto
perform an arithmetic expression from multiple data compo-
nents, calculate the discrepancies, check against the exception
criteria and finally record the exceptions in details. Developing
a collaborative planning application solely with SQL to accom-
plish all three major operations (i.e., aggregation, distribution,
and exception detection) is a daunting task.

Fig. 11 shows the experiment results of exception detection.
It is clear that the in-place computing approach is more
efficient than the traditional computing approach. In this
experiment, our application takes 6.057 seconds for data size
of 100 million (in records), while the application based on
traditional computing model takes 4446 seconds. It is about
734 times faster.

We also compare the storage sizes between the two com-
puting approaches. Table VIII shows the size of a table (see
Table V) in MySQL, the size of a table object and a tree
object in BigObject for different numbers of sales records.A
big object is much smaller than a table in MySQL due to
concise record structures and string encoding scheme utilized
in BigObject [15]–[17]. The string encoding scheme is also
helpful in reducing time for trans-join operation.
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Figure 12. Spectrum for computing models on commodity machines

The performance of applications using the traditional com-
puting model suffers from large volume of data retrieval and
update. By using in-place computing technology, the exper-
iment results show that a collaborative planning application
can be built to handle big data with acceptable response time
using a commodity machine. The question left for the readers
is whether to trade the traditional approach based on relational
databases for such performance gain.

V. CONCLUSION

A real-world collaborative planning application is complex.
The complexity depends on the number of concurrent partic-
ipants in the collaboration as well as the data characteristics,
volume and valence, which determine the performance of
the application. The traditional computing model based on
databases is inadequate for processing big data with high
valence. Meanwhile, most commonly adopted approaches for
big data computing such as Hadoop [18] were not designed
specifically for real-time computing and may suffer from per-
formance problems due to large data shuffling among multiple
servers. Instead, we take an unconventional approach, in-place
computing model to address the issues raised by big volume
and high valence. BigObject is an in-place computing system
designed for storing and computing multi-dimensional data.
It focuses on ’squeezing’ (i.e., scaling in) computing perfor-
mance out of the CPU’s of a single machine by trading space
(complexity) with time (complexity). The general availability
of 64-bit architecture makes this possible and triggers revisits
to many software areas to rethink alternatives for potential
performance leap.

By building a collaborative planning application based on
BigObject, we are able to study the behavior of the in-place
computing system and evaluate its performance against the
traditional approach. In the application, BigObject demon-
strates with significant performance gain and well-organized
complexity in both data structure and behavior. Our experi-
ment shows that the application takes seconds to compute one
hundred millions of data records using one core, one CPU
and one machine. In-place computing approach outperforms
the approach based on traditional computing model in two
orders of magnitude.

As part of the result from the experiment, we have learned
the comfort zone for in-place computing. Fig. 12 shows a spec-
trum of computing power and the corresponding computing
models on today’s commodity machines. In-place computing
model is capable of delivering computing power between
million operations per second (mega-operations) and billion

operations per second (giga-operations). It is feasible and
practical to process data up to one billion of records (or low
terabytes of raw data) within a reasonable timeframe using one
commodity machine with multiple cores and multiple CPU’s.
When processing data more than billions of records, it will
require a distributed approach. In-place computing offersan
affordable solution for processing data with high valence and
volume up to one billion of records.
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