
Social Team Awareness
Delfina Malandrino, Ilaria Manno, Alberto Negro, Andrea Petta, Vittorio Scarano, Luigi Serra

ISISLab, Dipartimento di Informatica, Università di Salerno
Via Giovanni Paolo II 132, I-84084, Fisciano (SA), Italy

Email: {delmal, manno, alberto, vitsca}@dia.unisa.it,{andrpet, luigser}@gmail.com

Abstract—Software that is meant to support collaboration is
mostly developed “ad hoc”, placing some additional overhead to
users, that are required to integrate the common work practices,
realized with the traditional software applications, with the new
collaborative features offered by the new application. It has been
argued that this is likely to inject lack of motivation on users,
jeopardizing the positive effects of collaboration in workplace,
since the time dedicated to collaboration is perceived as wasted.

In this paper we present a generic mechanism to provide team
awareness through the integration between a social platform
and a work environment. The integration mechanism is, indeed,
generic and the work environment potentially can be any kindof
application usually adopted by team members. We illustratethe
mechanism through the design and implementation ofSOCSVN,
a proof-of-concept example in the scenario of collaboration
support in software development. SOCSVN integrates a social
platform (Elgg, a well known open source social networking
engine) with SVN, a source code versioning system widely used
in software development.

We also abstract the mechanism provided and show how it
is easily generalizable to other software, providing a listof the
requirements and the amount of work to be integrated in the
architecture.

Index Terms—team awareness; CSCW; software development;
social platform;

I. I NTRODUCTION

So far, the Computer Supported Collaborative Work field
has been widely explored and has produced many software
systems oriented towards several aspects of collaboration:
providing team awareness, supporting discussions, decision
making, cooperative work, collaborative learning. However,
the adoption of such systems has been hindered by several
obstacles; one of the most relevant is the context switch
between the phases of individual work and collaborative prac-
tices due to the lack of integration between the collaborative
applications and the applications usually adopted in the work
flow; another important limiting factor in the spreading of
collaborative software is the lack of motivation by users:
often, the users that more actively participates in collaborative
practices are not those who benefit of relative results and,
therefore, the time dedicated to collaboration is perceived as
wasted [1], [2].

Nevertheless, the interest in computer supported collab-
oration has not decreased, as witnessed by a multitude of
Web-based tools supporting collaboration and social interac-
tions. Notable and not exhaustive examples are Google Apps,
Smartsheet, SlideRocket, Wikipedia, Delicious, Facebook; a

wide list of collaborative software is provided by Wikipedia1.
Some of them, as the social networks, tagging systems, wikis,
are well known and have a consolidated success in the
consumer context. Their success has suggested the idea of
using them to support collaboration in work setting [3]. Often,
indeed, this approach has not been successful due to poor
adoption by users [2], [4], [5]. In our opinion, these approaches
have not solved the initial issues of CSS: ‘disparity between
those who do the work and those who get the benefit’ and the
missing support for the context switch between personal and
group work [1]. From several studies another interesting point
has emerged: the success of Web 2.0 tools is based on the
participation of a critical mass which is difficult to involve in
a work context [4], [5], [6].

In spite of that, the idea of supporting collaboration through
Web-based tools offers a wide range of possibilities to in-
terconnect many different tools the users are familiar with
and therefore this approach could be more easily accepted.
Moreover it could reduce the friction between work and
collaboration phases through the integration of the collabo-
rative functions within the applications usually adopted by
workers. This idea is not completely new and several attempts
have been conducted with tools that are not web-based: Xia
et al. introduced collaboration features into MS Words [7],
Manno et al. introduced collaboration features into XMind (a
tool to creates mind maps) [8] and several studies introduce
collaborative features directly into a software development
environment [9], [10], [11]. These studies present the same
founding idea: the collaborative features are introducedinto
the work application and therefore, in some way, the scope
of the collaborative features is application-specific and does
not provide broad team awareness about the work goals, tasks
and members activities beyond the current task. Our idea is
to integrate work applicationswithin Web-based collaboration
features, so that users can collaborate through several work
applications and achieve a richer team awareness.

Indeed, we do not forget that a web based tool is not
magicand does not guarantee by itself a large adoption [3]: it
does not solve the issues related to users’ participation due to
skepticism, work-collaboration friction, lack of motivation and
of the critical mass to be reached (in case of Web-based tools).
Therefore, the adoption of collaborative features should be
stimulated and scaffolded. In literature, several studiespropose
rewarding mechanisms to stimulate users’ participation [12],

1http://en.wikipedia.org/wiki/Listof collaborative software

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254087



[4], [13]. Even if these approaches produce a larger adoption,
they often stress the competition among team members and
should be fine-tuned to avoid negative phenomena like rat-
races or bullying [4], [13]. Our idea to scaffold the adoption
of such tools is to provide users with a system which can lead
them beyond the initial slope by offering an automated mech-
anism able to create contents in a collaborative environment
starting from certain working activities.

In this paper we present a generic mechanism to provide
team awareness through the integration between a social
platform and a work environment. The integration mechanism
is, indeed, generic and the work environment potentially can
be any kind of application usually adopted by team members.

The proof-of-concept of our mechanism is based in the
scenario of collaboration support in software development.
This context appears particularly relevant, since the developer
teams often are world-wide distributed and need frequent
interactions, both synchronous and asynchronous, during the
design, development and testing of the software. Our proof-
of-concept is SOCSVN, the integration of a social platform,
Elgg [14], a well known open source social network engine,
with SVN, a source code versioning system widely used in
software development.

II. AWARENESS INSOFTWARE DEVELOPMENT TEAM

Large software development can be a world-wide dis-
tributed activity and therefore supporting collaborationand
team awareness is a widely recognized need: in spite of dis-
tances, team members need to share a clear idea of the project
and its goals, the identification of problems, definition of tasks,
respective activities and workplans, as well as interdependen-
cies between all these elements [15]. A smooth coordination
of the work leverages group awareness information, to provide
every one with an understanding of the current state of the
project and of required and expected next steps [16].

Over the years the interest in supporting team awareness in
distributed software development context is increased, together
with the available technologies, as witnessed by a wide and
recent review of state of the art presented by Steinmaker et al.
[17]. The authors have classified the papers on the bases of the
3C collaboration model [18], [19], [20] and of the Awareness
Framework presented by Gutwin et al. [21].

The 3C collaboration model defines three dimensions to
support team collaboration:
• Communication: the exchange of messages among people
to negotiate and make decisions;
• Coordination: the management of people, their activities and
their resources, in a manner that prevents loss of communica-
tion and of cooperation efforts;
• Cooperation: the joint operation of members of the group
in a shared workspace.

TheAwareness Frameworkpresented by Gutwin et al. [21]
defines four dimensions for the team awareness:
• Workspace Awareness: knowledge about others’ interaction
in a workspace and its artifacts;
• Group-Structural Awareness: knowledge about such things

as people’s roles and responsibilities, their positions onan
issue, their status, and group processes;
• Informal Awareness: in a work community, the general
sense of who’s around and what they are up to, the kinds of
things that people know when they work together in the same
office; informal awareness is the glue that facilitates casual
interaction;
• Social Awareness: information that a person maintains about
others in a social or conversational context, things like whether
another person is paying attention, their emotional state,or
their level of interest.

In their review, Steinmacher et al. [17] found that Coor-
dination and Cooperation (in the 3C model) and Workspace
Awareness (in the Gutwin’s Awareness Framework) are the
most supported aspects, while the aspects related to Commu-
nication (in the 3C model), Social and Informal Awareness
(in the Gutwin’s Awareness Framework) are less supported.
Indeed, the results of the classification on both models suggest
the same conclusion: so far most efforts have been focused on
supporting coordination and work activities. Less attention has
been dedicated to support, basically, the creation of relation-
ships in distributed teams. However, this is considered crucial
to create a shared context and a common knowledge among
the team members, to avoid misunderstandings and increase
opportunities for interactions, in other words to improve how
the team members works together. Our paper follows and try
to address this aspect, without modifying the current work
practices, adding a social layer to team activities.

To enhance contextual collaboration, that is allowing people
to use their core applications with collaborative capabilities
embedded within these tools, Hupfer et al. proposed Jazz
[9]. Their main goal was to embed collaborative components
and capabilities into the Eclipse application developmenten-
vironment. Supporting ad-hoc collaboration among software
developers has been explored also by Hedge and Dewan [22]:
they integrated in Visual Studio a set of tools to support
workspace awareness and team cooperation and coordination.

Among the works supporting team awareness, most are
application specific and provide support to users when they are
using a certain application in which social features have been
integrated. Lightweight solutions for supporting collaborative
software development include a work from Fitzpatricket
al. [23]. Their idea was to augment the Concurrent Version
System (CVS) with a lightweight notification system and a
tickertape tool on which developers can display CVS messages
and chat with one other to enhance timely interactions. Their
analysis showed that these communication facilities helped
developers to: (1) increase the length of messages entered
when making commit actions; (2) decrease the number of
commit with empty messages.

Calefato et al. [11], which explore the usage of social
network to support group awareness in distributed software
development teams. They developed an extension of Jazz,
to integrate social websites (leveraging FriendFeed, a social
aggregator) to speed up the establishment of shared context
and personal relationships. On one hand, their solution reduces



the friction between the social and work activities, on the other
hand, it is application specific (only for Jazz) and could cause
an overload of information in the CDE, as recognized even by
authors which developed filters to face this issue.

The idea to integrate social features into the CDE has been
explored also by Bani-Salameh et al. [24]. They developed a
Social Collaborative IDE (SCI) which offers several collabora-
tive features: presence, chat, notification about users activities
on workspaces objects as well as a 3D virtual environment
with users profiles showing working activities. Even in this
case the proposed approach is application specific and could
cause an information overload during working activities.

A. Our work

Based on our analysis of the current literature, supporting
Communication and Social and Informal Awareness appears a
key aspect to provide team awareness and group memberships.
At the same time, our idea is that integrating the collabo-
rative features into a specific application is in same way a
constrain: users can access to such features only through that
application, while the workflow often includes several phases
and applications. Our idea is to provide team awareness by
integrating social featureswith working applications instead
of into them: this allow us to implement the integration with
several applications (instead of being application specific)
and at the same time we avoid information overload into
the working application. In the consumer context, the social
networks (Facebook, Twitter) offer a rich awareness about
family and friends activities, plans, interests. However the us-
age of common public social networks is not recommendable
in a work context: for security and privacy policies sharing
information about the work in progress is not acceptable.
Moreover, often these networks are filtered in the work places.
Therefore, supporting team activities should leverages a private
internal social network. Among several social network soft-
ware, we chose Elgg2 [14]: an open source project with a wide
developer community. It offers almost 1800 extending Plugins,
and was downloaded almost 3 millions times; it is used as
private social network by (among the others) the NASA, the
Australian and British Governments, the Stanford University
and the Johns Hopkins University. As proof-of-concept we
have implemented SOCSVN the integration of Elgg with SVN
[25], a typical tool used in software development activities to
share and synchronize source code among distributed teams.

III. SOCSVN: SYSTEMS AND FEATURES

SOCSVN aims to provide team awareness about activities
on the repositories by augmenting SVN with the social features
provided by Elgg. Users work as usual with SVN and their
actions trigger notifications and produce comments on their
social network. We first describe SVN and Elgg, then we
present the functionalities offered by their integration.

2A comparison among several social software can be found wikipedia: http:
//en.wikipedia.org/wiki/Comparisonof social networking software

A. Systems

Apache Subversion [25] (i.e, SVN) is a software versioning
and revision control system distributed under an open source
license. It is used to maintain current and historical versions
of files such as source code, Web pages, and documentation.

Additionally, we used WebSVN [26] an online subversion
repository browser. Its main features include: showing sub-
version repositories, browsing the directory structure ofthe
repository, viewing different versions of the repository,view-
ing the content of a file, comparing revisions of files. Finally,
it provides RSS feed support for watching any resource.

Elgg [14] is an open source social networking engine that
provides a robust framework on which to build all kinds of
social environments. For each user, it offers a personal Wall
page, with personal posts and related comments of other users.
Moreover, it provides the possibility to manage bookmarks,
blogging, sharing files, create and sharing pages. Each of these
element can be commented. Furthermore, Elgg provides a
wide set of Plugins, that allow to add extra functionalities.
Among the available Plugins, we used the Calendar Plugin3,
which allows to add events on a calendar, and the Men-
tions Plugin4 that allows to tag users in order to generate
personal notifications (i.e.,@Alice to allow an automatic
notification to Alice). Exploiting this possibility offered by
Elgg, we developed a specific Plugin to integrate in a social
environment resources and notifications coming from SVN. In
our examples, we used a Facebook-like skin to improve the
degree of familiarity with the interface.

B. SocSVN Functionalities

SOCSVN provides team awareness to SVN by leveraging
the social features offered by Elgg. The integration between
SVN and Elgg has a twofold view: when a user works on SVN,
some of his/her actions are visible in Elgg as social events,but
when logged into Elgg, users can visualize and comment both
repository content (i.e. files and directories) and SVN actions
of other users. Each user has an account both on SVN and
Elgg, with a unique correspondence between these accounts.

Specifically, when a user commits a file on the repository,
the following events happen on Elgg:

• a synchronous notification is shown to all Elgg users
(which are his/her friends) logged in;

• an asynchronous notification is sent to all Elgg users
(which are his/her friends) in their News Feed pages
(something like the Facebook Timeline), shown in Fig.
1(a); if a user commits a file on SVN adding also a
comment, the comment is also reported on the noti-
fications, and if the user tags somebody in the com-
ment (i.e. something like “This should solve the
problem @Alice had yesterday”), the user is
personally notified.

• a notification associated with the commit is added on a
calendar, shown in Fig. 1(b);

3http://community.elgg.org/plugins/384926/0.84/event-calendar
4http://github.com/Elgg/mentions



(a) SVN commit notifications on Elgg (b) SVN commit notification on the Calendar

Figure 1. The commit on the SVN produce automatically eventson the calendar and post on Elgg which can be commented. The picture on the left shows
the interactions between Alice and Bob about a commit made byAlice; the picture on the right shows the SVN activities on the calendar.

(a) SVN resources visualized as tree-structure on Elgg (b) Comments on a SVN resource

Figure 2. The SVN resources can visualized and commented into Elgg. The figure on the left shows the tree-structure of resources on SVN and the
comments associated to a specific resource; the figure on the right shows the source code of file on the repository; on this file Alice and John discuss about
the implementation of a simple C++ exercise.

• a comment is added on the corresponding resource in
the repository (i.e., its tree-like structure representation),
shown in Fig. 2(b).

Additionally, we implemented a hashtag mechanism such
that, when a comment contains for example#developers,
the group in Elgg (if existing) is notified, persistently, onits
News Feed Page. Each user subscribed to that group will
be personally notified. We also added an automatic tagging

mechanism that allows easy team partitioning in subprojects:
each time a file is committed, the comment generated also
contains the hashtag of the directory of root where the file is
stored. If a group with such a name exists, it is notified.

When logged into Elgg, beyond the typical offered activi-
ties, a user can:

• visualize all the notifications triggered by the SVN ac-
tions;



• browse the repository, shown as a tree-like structure
inside Elgg; each item of the tree can be commented
(see Fig. 2(a));

• visualize the files and comments about them (see Fig.
2(b));

• visualize the events associated with commit actions on a
calendar; each event shows the name of the committed
resource and its SVN comment (see Fig. 1(b)).

C. SocSVN Use Cases

In this section, we outline some use cases of our proof-
of-concept system. We will discuss two different scenarios:
the first involving programmers working on the same project
while the second involving students studying together on
programming exercises.

Implicit work synchronization: Bob is working on
the Java classUser.java and knows that it is re-
lated to other classes (via the UML Class Diagram), such
as Behaviour.java and Library.java. Suddenly,
through the social stream, he sees that Alice has just com-
mitted Behaviour.java. He can quickly comment on the
activity and discuss with Alice what changes have occurred
and if they do impact or not on his current work. When
potential conflicts are settled, Bob can continue his work
and finish it, committing to the SVN repository the file
User.java (see Fig. 1(a)).

Hours later, when Bob and Alice are offline (e.g., out for
a meeting), John begins his work onLibrary.java. He
was not online during the comments exchanges between Bob
and Alice (as often is the case, in large development teams,
cooperation may occur across different timezones), but he is
aware of the dependencies and sees (from the Calendar Plugin,
shown in Fig. 1(b)) that Bob and Alice committed when he
was not connected. By accessing to the social network, and
checking theirs News Feed Pages (i.e., timelines), he is quickly
briefed and can proceed to commit or can further comments,
if more synchronization of the modifications is needed.

Work collaboration: Alice and John, students of the
first year of a Computer Science programming course are
studying together on a simple C++ exercise. Alice develops a
simple program to count the number of uppercase characters
available in a string, and when finished, she commits the
file on the SVN. Bob receives a synchronous notification
and click on the name of the corresponding file starting,
therefore, a discussion with Alice (see Fig. 2(b)). The topic
was about the knowledge of a new C++ expression (i.e.,
Lambda Expressions, anonymous function that maintains state
and can access the variables that are available to the enclosing
scope). By also using the provided chat John is able to explain
to Alice how it can be used.

IV. SOCSVN DESIGN

In this Section we describe in detail how we have integrated
Elgg and SVN to implement the functionalities offered by
SOCSVN. The overall system (shown in Fig. 3) consists of
three Components (additionally, there is a repository of xml
files), whereas each of them is composed by several modules.

A. The Teamwork Environment Component

The Teamwork Environment Component includes the SVN
Server module an the modules responsible of getting SVN
resources, (i.e. the SVN Remote Data Interface and the SVN
Web UI modules) and producing notifications (i.e the Hooks
Manager). We used the standard SVN Server without making
any change to its architecture. The Hooks Manager module
uses thepost-commithook (a shell script) provided by SVN,
to intercept the events. Next, a PHP script notifies the commits
performed on the repositories to the Notification Server. The
SVN Remote Data Interface and the SVN Web UI modules
are part of the WebSVN software [26]. The SVN Remote Data
Interface represents the access point to the resources on the
SVN repository. It makes these resources available through
a standard HTTP request. We used this mechanism to get
a JSON representation of the data. From the SVN Web UI
module we have extracted (i.e. copy-pasted) the part of HTML
and CSS code to render the data in the interface of the users
logged into Elgg.

B. The Bridge Component

The Bridge Component includes the modules responsible of
transferring resources (the Work Environment Caller module)
and notifications (the Notification Server module) toward the
social environment.

The Notification Server, implemented in PHP, listens for
notifications from the SVN Server and forwards them to all
connected clients on the Elgg Component.

The Work Environment Caller module acts as an intermedi-
ary between the Teamwork Environment and Elgg. It receives
the requests for resources from the Bridge Caller and gets the
corresponding responses from the SVN Remote Data Interface.
These responses are finally delivered to the Bridge Caller.

C. The Teamwork Description Repository

The Teamwork Description Repository contains the XML
file(s) that describes the resources available in the Teamwork
Environment(s). This file is used both by the Elgg Component
(by the Bridge Caller, described later in this Section) to know
the available resources and by the Bridge Component (by
the Work Environment Caller) to know which communication
mechanism is required to get each resource. Details about this
file are shown in Section V.

D. The Elgg Component

Elgg, as described in Section III, is a powerful open source
social networking engine. From the technical point of view,
Elgg is written in PHP language and uses MySQL to manage
the persistence. It also runs on the LAMP stack (Linux-
Apache-MySQL-PHP). Specifically, we have developed an
Elgg Plugin, that includes the module responsible of managing
resources (the Bridge Caller module), notifications (the Noti-
fication Manager module) and of managing the user interface
(the UI Management module).



Figure 3. How modules of the Teamwork Environment and Elgg interact with each other.

The Notification Manager registers itself as client for the
Notification Server. It receives the synchronous and asyn-
chronous notifications of the SVN actions to create entities
which can be managed by the UI Management module.

The Bridge Caller (implemented in PHP language) asks
for specific SVN resources to the Work Environment Caller.
This approach allows the Bridge Caller to ignore the specific
mechanism required to get the resource from the Team Work
Environment, so it can ask any resource (available in the
XML file) without implementing the related communication
mechanism. Once received the resources, the Bridge Caller
makes them available to the UI Management Module.

The UI Management Module integrates into the Elgg user
interface the Elgg entities corresponding to the requested
resources and the produced notifications. This module can be
written from scratch or can leverage an existing Web user
interface of the Teamwork Environment resources. In our case,
WebSVN provides part of the user interface for SOCSVN.

The information flow exchanged among all these compo-
nents and modules is described in the next Section.

V. SOCSVN INFORMATION FLOW

The communication between the Teamwork Environment
and the Elgg components is realized through two different
interaction mechanisms (shown in dotted boxes in Fig. 3):
the Resource Delivery Serviceand theNotification Service.
The Resource Delivery Service is responsible to get the
content requested by users through Elgg from the Teamwork
Environment. The Notification Service sends notification from
the Teamwork Environment to Elgg, to synchronously notify
some events (i.e. commits, lock of files, etc.). In the following
we describe the implementation of such mechanisms.

A. Resource Delivery Service

The Resources Delivery Service manages the interactions
needed to get the resources, requested by users through Elgg,
from the Teamwork Environment. These interactions happen
among the Bridge Caller Module (in the Elgg Plugin), the
Work Environment Caller Module (in the Bridge Component)
and the SVN Remote Data Interface Module (in the Teamwork
Environment Component).

1) The Bridge Caller Module:it asks for the required
resources to the Work Environment Caller. The Bridge Caller
achieves the information to locate the desired resource by ac-
cessing to a Work Environment Resource Definition XML file
(i.e., WERD) saved in the Teamwork Description repository
(shown in Fig. 3). This file (a fragment is shown in Listing 1)
contains two different sections:

• the < bridge handler configuration > section, used
exclusively by the Bridge Caller Module, that defines the
information to create the communication channel with the
Work Environment Caller (i.e., its endpoint reference);

• the < resources > section that defines how to get re-
sources on the Teamwork Environment; from this section
the Bridge Caller uses the information defined by the
< service > section, which defines the operation to get
the resources on the Teamwork Environment.

<?xml version=”1.0” encoding=”utf−8”?>
<werd>
<bridge handler configuration>
<bridge handler url reference>
http://172.16.15.43/SVNBridge/bridgehandler.php
</bridge handler url reference>
</bridge handler configuration>
<resources>
<resource>
<communicationchannel>
<communicationchannelclass reference>



SVNCommunicationChannel
</communicationchannel class reference>
<communicationchannel params>
<location>http://172.16.15.88/websvn</location>
</communicationchannel params>
</communicationchannel>
<service>
<name>getContent</name>
<description>File content</description>
<params>
<param><name>content location</name></param>

</params>
</service>
</resource>

</resources>
</werd>

Listing 1. The WERD file used by both the Bridge Caller Module and the
Work Environment Caller Module.

When received the response from the Bridge Component
(e.g., JSON, XML, binary format), the Bridge Caller processes
it to build an object (regardless of the original response format)
understandable by the UI Management Module, which makes
the resource available into the Elgg user interface. Finally, this
object will be used by a widget defined by the Elgg Plugin
to enrich the content with social dimensions (i.e., discussion,
sharing, collaboration and so on).

2) The Work Environment Caller Module:The Work En-
vironment Caller Module acts as an intermediary between the
Teamwork Environment and the Bridge Caller. It provides a
specific module, named Bridge Handler, that is responsible of
managing requests received by the Bridge Caller.

It must be emphasized that, for each resource available in
the Teamwork Environment exists a corresponding service
in the Bridge Component. To each service corresponds a
specific communication channel (RESTFul, Standard HTTP,
SOAP, and so on). Note that more services can use the
same communication channel. Specifically, for each available
resource, the Work Environment Caller uses from the WERD
file the following information:

• a reference to the implementation of the communication
channel (channel communication class reference),
with corresponding parameters.

• information about the service: name, description and
parameters (if any).

3) SVN Remote Data Interface:The SVN Remote Data
Interface defines the access point to the contents of the Team-
work Environment. The access points can be implemented in
any technology (RESTful, HTTP, SOAP, plain sockets, etc);
obviously, the same technology should be used to implement
the communication channel on the Bridge Component. The
SVN Remote Data Interface is WebSVN, that is a client SVN
which provides a Web user interface. It offers access to the
resources through the HTTP protocol.

B. Notification Service

The Notification Service manages the notifications about
specific SVN events (i.e. commit, lock/unlock of files). It
involves the following modules: the Hooks Manager (in
the Teamwork Environment), the Notification Server (in the

Bridge Component) and the Notification Manager (in the Elgg
Plugin).

When specific actions happen in the repository, the Hooks
Manager executes a custom program that sends a notification
to the Notification Server. The Notification Server receivesthe
notification and forwards it to all the Notification Managers
registered as listeners. The Notification Manager has to register
itself as listener on the Notification Server, and thereforeit will
receives all the notifications about the events happening on
the Teamwork Environment. Such notifications will be made
available for the integration in the social user interface.

1) The Hooks Manager:The SVN server offers a hook
mechanism to trigger notifications by executing a script when
some specific events happen. The script can receives as param-
eters information such as version number, name of the changed
resource, and so on. This script executes a PHP program
which creates a communication channel (a client socket) with
the Notification Server and sends information about the event
occurred on the repository.

2) Notification Server:The Notification Server receives the
updates about the SVN events and sends the corresponding no-
tifications to all Notification Managers registered as listeners.

3) Notification Manager: The Notification Manager re-
ceives updates from the Notification Server about the events
occurred on the Teamwork Environment (e.g. on the SVN
server). It interacts with the UI Management Module to
provide feedback to the users. In our proof-of-concept, the
communication channel between the Notification Manager and
the Notification Server is implemented through Web Sockets.

VI. T HE GENERALIZATION OF THE MECHANISM

SOCSVN is a proof-of-concept of a mechanism which is
indeed, enough generic: the idea that working activities can
trigger comments/events on a social network and that one
can socially browse (comment, discuss etc.) shared resources
is applicable to Teamwork Environments besides SVN. In
the overall system, some modules are generic and do not
require changes, while other ones are application-specific. The
abstraction of the mechanism is depicted in Fig. 4, where
the application-specific modules are shown with a dotted-line
border.

This mechanism allows to enrich with Elgg-based team
awareness any (Web-based) Teamwork Environment; more-
over, it allows to integrate multiple Teamwork Environments
with the same Elgg istance: for example to achieve notification
on Elgg both about SVN and individual working activities on
other applications.

Currently, we are working to apply the same mechanism to
provide Elgg-based team awareness to Galaxy, a web-based
platform for data intensive biomedical research [27].

In the following we are going to illustrate the modules
which require some customization and the requirements of the
Working Application.

A. WERD files

The WERD files are application-specific since they contains
information to locate the resources available in the Teamwork



Figure 4. Generalization of the mechanism to enrich web-based Teamwork Environments (on the left side) with social-based team awareness (Elgg component,
on the right side). Only the modules with dotted-line borderare specific for the working application and require ad-hoc customization.

Environment. The complexity of such files depends on the
complexity of the working application to integrate with the
social platform.

B. The Hooks Manager

In general terms, the hooking mechanism is any technique
to intercept events generated by an application during its
normal usage. The purpose is to handle such intercepted
events to augment the application behavior. In our case, the
hooking mechanism is implemented in the Hooks Manager;
it is application specific because it depends on whether the
application offers an hooking mechanism or do not.

In SOCSVN we used native SVN hooks to trigger a PHP
script able to communicate to the Notification Server informa-
tion about SVN events. However, if the Team Working Envi-
ronment does not provide an hook mechanism, it is possible to
develop a proper system to intercept relevant events, depending
on the nature of the application. For instance, you can use
a polling system to retrieve information from the output of
the application and then call a module (i.e., our PHP hook
manager) to generate a notification. This kind of approach
can be adopted in a number of scenarios. You can use the
output of afile system change monitorto create a notification
when a user works on some files or directories; you can run (at
regular intervals) a command line output analyzer to retrieve
information about system usage (CPU, disk, processes, etc.)
and send a notification if certain events happen (i.e. if the disk

usage percentage exceeds a threshold).

C. The Remote Data Interface

The Remote Data Interface module is application dependent
since it allows to get the data from the Working Applica-
tion, and, of course, each application has its own mecha-
nisms. In SOCSVN we used a web based tool, WebSVN,
to achieve data from SVN through Web requests (Standard
HTTP). In the other prototype based on Galaxy (currently
under development), the Working Application already offers
the possibility to get data through Web requests (Standard
HTTP and RESTful Services). In general terms, a Web-based
Working Application is expected to offer methods to get data
through Web (HTTP requests). Therefore, the work required
to specialize the Remote Data Interface module for a certain
Working Application often is limited to identify the methods
provided by the application to get the data.

D. The Elgg Plugin

The Elgg Plugin is composed of several modules, whereas
some of them do not require any modification for different
Working Applications, while others require specific customiza-
tion. In particular, the Bridge Caller and the Notification Man-
ager can be used without changes for any Working Application
(except that for optional customization of the notifications
visualization). Some specific intervention is required to install
the Plugin, to register the pages of the Plugin into Elgg.



The most relevant application-specific module is the UI
Management module, since the integration of data in the user
interface depends on data type. The development of this mod-
ule is simplified if the Working Application is implemented by
following the Model View Controller pattern and already offers
a Web-based UI: in this case, the UI Management module can
leverage on the View component of the Working Application.
In SOCSVN the UI Management module leverages the UI
of WebSVN for the visualization of the tree of resources in
Elgg. Conversely, the integration of notifications in the News
Feed page, on the Calendar, on the groups and the synchronous
advises are developed ad-hoc. Similarly, in the other prototype
based on Galaxy, some part of the UI Management module
leverages the Web UI provided by the application itself, while
other parts require specific development.

Obviously, the development of the UI Management module
can be more complex if the Working Application does not
provide a Web user interface or if the data to visualize are very
complex. In SOCSVN the parts of the Elgg Plugin developed
ad-hoc for SVN integration can be quantified in less than one
hundred code lines.

E. Requirements on Teamwork Environment

We summarize here the requirements on the Teamwork
Environment to apply the generic mechanism just described.
The Teamwork Environment must adopt open standards for
communication and offer publicly accessible API for data
access. Moreover, to be easily integrated with Elgg, it should

• be Web-based: if not, some amount of work is required
if one wants to show the content of the Teamwork
Environment in the social network;

• be open-source: it should be possible to “take out” (part
of) the WebUI of the Teamwork Environment and bring
it in the Elgg plugin;

• follow MVC pattern: this facilitates the work of the
designer, by easily identifying the components that are
involved in visualization and data model;

• provide the Visualization part exclusively on the client
side: some architectures have their Visualization layer that
is partly based on server-side widget/components, which
makes more complicate the integration in Elgg, that is
facilitated, on the contrary, if a client-side Visualization
layer is offered, e.g., with a combination of JavaScript
and HTML5;

VII. C ONCLUSIONS AND CURRENT AND FUTURE WORK

The goal of our paper was to present a generic mechanism
to provide team awareness through the integration between a
social platform and a Teamwork Environment. Our proof-of-
concept prototype, SOCSVN, has been described in details
and, then, we explained how the mechanism can be imple-
mented with other Teamwork Environments. SOCSVN will
be soon released as free and open source software. We will
provide ready-to-deploy solutions, but we will also offer Elgg
Plugin templates to integrate additional Teamwork Environ-
ments. SOCSVN provides heterogeneous social awareness:

teams (i.e. Elgg groups) may be created, that are interestedto
different aspects (such as developers and system management)
within the same social platform. It is dynamic and flexible
since Elgg users may belong to different groups at once, and
notifications are persistent within the group and can be easily
accessed at any time.

Conversely to other works [7], [10], [9], [10] which integrate
collaboration into working application, we offer team and
working awareness into the collaborative environment. We aim
to smooth the context switch between the individual work
and the collaborative phases through the automatic integration
into Elgg of news (post, calendar events, notifications) about
team activities. This approach has two main advantages: on
one hand, there is no work overload on the users (since the
news on Elgg are generated automatically); on the other hand
it is not intrusive in the individual work phase. Moreover,
when users switch to collaborative phases they found on Elgg
useful news: this is crucial to scaffold users’ participation,
since a system with few contents is not attractive, and the few
contributors are further demotivated as they feel that nobody
else is contributing [4].

Moreover, the usage of a social network enriches the aware-
ness and collaborative dimensions which is less explored by
current literature (see [17]): the Communication (in the 3C
model), the Informal and Social Awareness (in the Gutwin’s
Awareness Framework). The Communication is supported
asynchronously via posts and comments and synchronously
through the chat provided by Elgg. These communication
channels allow users to express theiropinion in contextualized
conversation (comments on SVN actions and SVN resources);
these conversations, built around a topic or a post, implicitly
provide awareness about theinterest levelof users involved.
Chances ofinformal communicationand sharing ofemotional
feelings are offered by typical social network interactions.
Additionally, the system offerspresence indicationin the chat;
providing presence indication in Elgg and not in the work-
ing environment implicitly provides also information about
user’savailability to collaborate. All these elements (opinions,
interest levels, informal communication, emotional feelings,
presence, availability, etc.) are the aspects which define the
Informal and Social Awareness.

Several aspects of our research deserve further investigation.
Of course, we have to conduct some experiment to evaluate
effectiveness and acceptance of our system among users.
Potential problems could arise for the information overload
that could be generated by aggregating diverse and different
Teamwork Environments into a single social interface that
could generate information that could easily overcome the
skills of the users, if not accurately trimmed down and care-
fully configured. It would be necessary to support the designer
so that easy configuration of the amount of notifications to be
delivered to the social interface is provided to designer/user.

Another aspect that requires our attention is the authentica-
tion service. When numerous components are to be integrated,
the user account management could easily become compli-
cated. Indeed, in the actual implementation each system has



its own user management mechanism and their integration has
been one of the challenges faced during the development. Cur-
rently, each user has the same credentials on both the sytems.
Of course we should make improvements to provide users
with a unique access mechanism which automatically maps
users identities between the integrated systems. Further future
work will consider including secure authentication schemes,
to ensure the scalability of the solution with respect to the
number of Teamwork Environments and the number of users.
This aspect will be complemented by the need of secure com-
munication, actually non supported in our proof-of-concept
prototype. For SOCSVN our idea is to adopt symmetric
encryption algorithms, and specifically, the Kerberos protocol
[28], since it provides a secure channel over an insecure
network. We plan to integrate our system and Kerberos by
adding the Key Distribution Center on the Bridge Component.
The Work Environment Caller and the Remote Data Interface
represent the Service Servers (SSs) components in our system
enhanced with Kerberos. If the Remote Data Interface already
provides a security mechanism for data access, then we can
use it and avoid to consider this module as Service Server
of the Kerberos protocol. The adoption of Kerberos allows to
manage users so that each SVN and Elgg user is mapped into
a unique Kerberos account. This support scalability respect to
the number of Teamwork Environments and the number of
users. Of course, the authentication and security layer based
on Kerberos can be easily generalized as in Sec.VI.

The mechanism we described is generic enough and we
illustrated via a working proof-of-concept prototype, butwe
are currently working on its application in another context,
integrating social awareness for a well known bioinformatics
collaborative environment, Galaxy [27]. Some other proto-
types are also planned, such as integrating phpmyadmin as
Teamwork Environment for facilitating the management of
complex MySQL databases. Other examples that are planned,
involve the monitoring of complex clusters and heterogeneous
distributed computational environments as well as a set of
personal applications.

REFERENCES

[1] J. Grudin, “Why CSCW applications fail: problems in the design and
evaluation of organizational interfaces,” inProc.of the 1988 Conf. on
Computer-Supported Cooperative Work. New York, NY, USA: ACM,
1988, pp. 85–93.

[2] L. J. Holtzblatt, L. E. Damianos, and D. Weiss, “Factors impeding wiki
use in the enterprise: a case study,” inCHI ’10 Extended Abstracts on
Human Factors in Computing Systems. New York, NY, USA: ACM,
2010, pp. 4661–4676.

[3] M. Prilla and C. Ritterskamp, “The interplay of web 2.0 and collabora-
tion support systems: Leveraging synergies,” inFrom CSCW to Web2.0:
European Developments in Collaborative Design. Selected Papers from
COOP08, D. Randall and P. Salembier, Eds. Springer, 2010.

[4] S. Dencheva, C. Prause, and W. Prinz, “Dynamic Self-moderation in a
Corporate Wiki to Improve Participation and Contribution Quality,” in
Proc. of the 12th European Conf. on Computer Supported Cooperative
Work, Aarhus Denmark. Springer London, 2011, pp. 1–20.

[5] L. Nelson, G. Convertino, H. Chi, and R. Nairn, “Studyingthe Adoption
of Mail2Tag: an Enterprise2.0 Tool for Sharing,” inProc.of the 12th
European Conf. on Computer Supported Cooperative Work, Aarhus
Denmark. Springer London, 2011, pp. 41–60.

[6] C. Dugan, W. Geyer, and D. R. Millen, “Lessons learned from blog
muse: audience-based inspiration for bloggers,” inProc.of the SIGCHI
Conf. on Human Factors in Computing Systems, ser. CHI ’10. New
York, NY, USA: ACM, 2010, pp. 1965–1974.

[7] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen, “Leveraging single-
user applications for multi-user collaboration: the coword approach,”
in CSCW ’04: Proc.of the 2004 ACM Conf.on Computer Supported
Cooperative Work. New York, NY, USA: ACM, 2004, pp. 162–171.

[8] I. Manno, F. Belgiorno, D. Malandrino, G. Palmieri, D. Pirozzi,
and V. Scarano, “Introducing collaboration in single-userapplications
through the centralized control architecture,” inCollaborative Comput-
ing: Networking, Applications and Worksharing (CollaborateCom), 2010
6th International Conference on, 2010, pp. 1–10.

[9] S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson, “Introducing Collab-
oration into an Application Development Environment,” inProc.of the
2004 ACM Conf. on Computer Supported Cooperative Work, ser. CSCW
’04. New York, NY, USA: ACM, 2004, pp. 21–24.

[10] F. Belgiorno, I. Manno, G. Palmieri, and V. Scarano, “Argumentation
tools in a collaborative development environment,” inProc. of the 7th
Int. Conf. on Cooperative Design, Visualization, and Engineering, 2010,
pp. 39–46.

[11] F. Calefato, D. Gendarmi, and F. Lanubile, “Embedding social network-
ing information into Jazz to foster group awareness within distributed
teams,” inSoSEA ’09: Proc.of the 2nd Int. Workshop on Social software
engineering and applications. NY, USA: ACM, 2009, pp. 23–28.

[12] B. Hoisl, W. Aigner, and S. Miksch, “Social rewarding inwiki systems,
motivating the community,” inOnline Communities and Social Comput-
ing, ser. LNCS, D. Schuler, Ed. Springer Berlin Heidelberg, 2007, vol.
4564, pp. 362–371.

[13] R. Farzan, J. M. DiMicco, D. R. Millen, C. Dugan, W. Geyer, and
E. A. Brownholtz, “Results from deploying a participation incentive
mechanism within the enterprise,” inProc. of the SIGCHI Conf.on
Human Factors in Computing Systems, ser. CHI ’08. New York, NY,
USA: ACM, 2008, pp. 563–572.

[14] Elgg, “Open Source Social Networking Engine,” http://www.elgg.org/.
[15] R. E. Kraut and L. A. Streeter, “Coordination in software development,”

Commun. ACM, vol. 38, no. 3, pp. 69–81, Mar. 1995.
[16] C. Gutwin, R. Penner, and K. Schneider, “Group awareness in distributed

software development,” inProc. of the 2004 Conf. on Computer Sup-
ported Cooperative Work. NY, USA: ACM, 2004, pp. 72–81.

[17] I. Steinmacher, A. Chaves, and M. Gerosa, “Awareness support in
distributed software development: A systematic review andmapping of
the literature,”Computer Supported Cooperative Work (CSCW), vol. 22,
no. 2-3, pp. 113–158, 2013.

[18] C. A. Ellis, S. J. Gibbs, and G. Rein, “Groupware: some issues and
experiences,”Commun. ACM, vol. 34, no. 1, pp. 39–58, Jan. 1991.

[19] H. Fuks, A. Raposo, M. A. Gerosa, M. Pimental, and C. J. P.Lucena,
Encyclopedia of E-Collaboration.Hershey: IGI Global, 2008, ch. The
3C Collaboration Model, pp. 637–44.

[20] U. M. Borghoff and J. H. Schlichter,Computer-supported cooperative
work: introduction to distributed applications. Springer, 2000.

[21] C. Gutwin, S. Greenberg, and M. Roseman, “Workspace awareness in
real-time distributed groupware: Framework, widgets, andevaluation,”
in People and Computers XI, M. Sasse, R. Cunningham, and R. Winder,
Eds. Springer London, 1996, pp. 281–298.

[22] R. Hegde and P. Dewan, “Connecting programming environments to
support ad-hoc collaboration,” inProc. of the 2008 23rd IEEE/ACM Int.
Conf. on Automated Software Engineering, ser. ASE ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 178–187.

[23] G. Fitzpatrick, P. Marshall, and A. Phillips, “CVS integration with
notification and chat: lightweight software team collaboration,” in Proc.
of the 2006 Conf.on Computer supported cooperative work, 2006, pp.
49–58.

[24] H. Bani-Salameh, C. Jeffery, and J. Al-Gharaibeh, “A social collabo-
rative virtual environment for software development,” inCollaborative
Technologies and Systems (CTS), 2010 Int. Symposium on, 2010, pp.
46–55.

[25] “Apache Subversion,” http://subversion.apache.org/.
[26] WebSVN, “Online subversion repository browser,”

http://www.websvn.info/.
[27] Galaxy Project. [Online]. Available: http://galaxyproject.org/
[28] Kerberos. [Online]. Available: http://www.kerberos.org/


