
Computation Integrity in Mobile Cloud: Running
Probabilistically Checkable Proof on Android

Clinton Walker
Southern Polytechnic State University

Marietta, GA 30060
cwalker6@spsu.edu

Qijun Gu
Texas State University
San Marcos, TX 78666

qijun@txstate.edu

Terry Penner
LeTourneau University
Longview, TX 75607
TerryPenner@letu.edu

Abstract—Mobile cloud computing is a viable collabora-
tive computing paradigm for the Internet of Things (IOT)
to strengthen the synergy of mobile devices. The security of
such collaborative computing needs much attention. This paper
explores how to use Probabilistically Checkable Proof (PCP) on
Android devices to verify if offloaded computation is correctly
executed by remote devices. The paper shows that PCP could
be viable for use in a mobile cloud environment. However, PCP
may incur a significant overhead due to the low data throughput
of the wireless network used by Android devices. The cost of
overhead may outweigh any gains from verifying computation
on remote Android devices. We conducted various experiments
utilizing PCP in a mobile network of several Android devices
and showed where PCP is beneficial and where improvements
could be made to create an efficient and practical system.

Index Terms—Probabilistically Checkable Proof, Android, Mo-
bile Cloud

I. INTRODUCTION

As the availability and capabilities of mobile devices con-
tinue to grow, mobile devices are offering rich computing
capability with context and social awareness to the Internet
of Things (IOT). Many recent works have studied various
ways to create mobile cloud among mobile devices to har-
ness their computing power [1], [2], [3]. The cloud provides
a collaborative mobile computing environment by enabling
partitioning, offloading and execution of applications among
mobile devices. This new computing paradigm is expected
to reduce overall power consumption and execution time of
mobile devices.

The integrity of offloaded computation is a main security
concern in mobile cloud. Malicious mobile devices may not
execute the offloaded code completely or correctly and may
forge arbitrary results. Nevertheless, it is a very challenging
problem to validate that remote devices have performed the
offloaded computation correctly. The validating process is in
general modeled as an interaction between a pair of devices
called verifier and prover. The verifier challenges the prover
with some randomly picked data sets. The prover computes a
response based on the data sets and sends the response back. If
the response matches the expectation of the verifier, the prover
and the offloaded computation are integral.

Recently, Probabilistically Checkable Proof (PCP) [4], [5]
was proposed as a practical solution to validating offloaded

computation. Different from other methods, such as remote
attestation [6], [7], [8], PCP directly verifies computation
instead of code. Hence, PCP better ensures the integrity of
computation and is promising to be applied to secure compu-
tation in cloud. A main merit of PCP is that it can significantly
reduce the computation of verification to make verification
practical. It is critical that any verification must take less
computation time than performing the original computation
locally. Otherwise, it is not worth performing verification
remotely.

However, to the best of our knowledge, PCP is still backed
by high-end clusters in earlier studies [4], [5], even though
its computation is already greatly reduced. It is questionable
if PCP is feasible to mobile devices that have less comput-
ing power. Therefore, the main purpose of this work is to
investigate how PCP can be utilized in mobile cloud. This
work contributes in the following aspects. (i) The core of PCP
was implemented in Android devices to carry out preliminary
experiments. The implementation has the complete sequence
of offloading, execution, and verification. (ii) Various experi-
ments were conducted to collect the data involved in offloaded
computation and verification. It helps to show the main factors
that influence the overall performance of PCP.

In the remainder of the paper, we will first describe how
PCP is implemented and executed on Android devices in
Section II. Then, we will discuss the experiments and findings
of running PCP on Android devices in Section III. The related
work on computation integrity is summarized in Section IV.
The paper is concluded in Section V.

II. RUNNING PCP ON ANDROID DEVICES

A. Background on PCP

Fig. 1 shows a general diagram of computation offloading
and computation verification in mobile cloud. The complete
process is modeled as four steps. A pair of devices are involved
in the process: verifier and prover. The first two steps are
for performing mobile cloud computing. The verifier offloads
its computation C and the associated data x to the prover.
Then, the prover executes the computation C(x) and returns
the result y. In the next two steps, the verifier wants to verify
if the computation is correctly executed by the prover. The
verifier sends a random query γ, which is computed based on
the offloaded computation {C, x, y}, to the prover. The prover

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254081



Verifier Prover

C, x

y = C(x)

γ

r = P(γ)

Offloading

Verfication

Fig. 1. Diagram of Offloading and Verification

computes a response r = P (γ) and sends it back. The verifier
verifies the result of the offloaded computation by evaluating
the correctness of the response r.

PCP models the offloaded computation C as an arithmetic
circuit and maps the signals on the circuit to the data used
in computation. Then, it creates a set of constraints over the
circuit. It verifies the results of the offloaded computation
by evaluating if the constraints are satisfied by the signals.
Following the study in [4], we use the same offloaded com-
putation, i.e. matrix multiplication, where the data x is of two
matrices A and B and the computation C is C = A ·B. The
constraints for the arithmetic circuit of matrix multiplication
are below, where i, j are the subscript indices of matrix
elements and z is a vector of circuit signals satisfying all
constraints.

Qa
i,j = zai,j −Ai,j = 0

Qb
i,j = zbi,j −Bi,j = 0

Qc
i,j = Ci,j −

m∑
k=1

zai,kz
b
k,j = 0

The satisfiability of the circuit is expressed as below,
where v is a random vector selected by the verifier, and
γ =< γ0, γ1, γ2 >.

P (γ) =
∑
i,j

vai,jQ
a
i,j +

∑
i,j

vbi,jQ
b
i,j +

∑
i,j

vci,jQ
c
i,j

= γ0 + γ1 · z + γ2 · z ⊗ z

The prover holds z and z ⊗ z, which are determined by A
and B. The verifier randomly generates γ and then sends γ
to the prover for computing P (γ). Upon a matching response,
the computation is accepted as valid. Readers can find more
detailed information about PCP in [4].

B. Implementation with Android

The implementation of PCP in an Android environment
uses two Nexus 7 tablets. One acts as the verifier and the
other acts as the prover. The Wi-Fi Direct service in Android
is used to create a peer-to-peer network for the two tablets.
An Android application is developed to transmit data and
control over the network between the two tablets as well
as perform offloaded computation and verification. A testing
computer is used to capture and consolidate data from the

TABLE I
IMPLEMENTATION CONFIGURATION

Android: Nexus 7 Tablets
Testing computer: Macbook Pro
Android IDE: Eclipse Android SDK
Java Testing: NetBeans7.3.1 IDE

events using the Android SDK and Eclipse. The summary of
the implementation configuration is in Table I.

Both tablets were loaded with testing programs that were
designed to time stamp the major events in the offloaded
computation and the PCP verification. These measurements
are taken in both the verifier and the prover. The complete
process includes the following eight steps.

• Step 1, Data Transmission: The verifier transfers matrices
A and B to the prover.

• Step 2, Matrix Multiplication: The prover performs the
matrix multiplication.

• Step 3, Result Transmission: The prover sends the result
back to the verifier.

• Step 4, Query Generation: The verifier computes γ ran-
domly.

• Step 5, Query Transmission: The verifier sends γ to the
prover.

• Step 6, Proof Computation: The prover computes the
proof P (γ).

• Step 7, Proof Transmission: The prover sends the proof
back to the verifier.

• Step 8, Proof Check: The verifier checks the proof against
the satisfiability.

Note that the first three steps complete the process of
computation offloading in Fig. 1. A subtle difference from a
mobile cloud is that the code of the offloaded computation is
already loaded as an Android application in the two tablets in
our implementation. The reason of having this implementation
is that the transmission of the code does not contribute
observable overhead to the whole process. The remaining
five steps represent the process of PCP verification in Fig. 1.
Because steps 7 and 8 take a small constant amount of time,
they are not studied in later experiments.

III. EXPERIMENTS AND FINDINGS

We conducted experiments on offloaded matrix multiplica-
tion and PCP verification in the mobile computing setting.
The analysis on the experiment results will help us to identify
(1) what are the most time-consuming steps in offloading and
PCP, (2) what is the difference between the time of PCP and
the time of executing the original matrix multiplication locally,
and (3) which processes need to be improved.

A. Experimental Settings

In experiments, the matrix multiplication was executed over
square matrices of 100× 100, 300× 300, and 600× 600. Two
sets of data were collected to study the overhead and perfor-
mance. One is the computation time for matrix multiplication
(step 2), query generation (step 4), and proof computation (step

2



TABLE II
COMPLEXITY ANALYSIS

Steps Computation Transmission
1. Data Transmission O(n2)
2. Matrix Multiplication O(n3)
3. Result Transmission O(n2)
4. Query Generation O(n2)
5. Query Transmission O(n2)
6. Proof Computation O(n2)
n× n is the matrix size.

6). The other is the transmission time for data transmission
(step 1), result transmission (step 3), and query transmission
(step 5). The results described in this section are data collected
from 25 runs of matrix multiplication for each matrix.

B. Analysis of Results

1) Complexity Analysis: Before discussing the experimen-
tal results, we first show the expected complexity in Table II
regarding the two metrics: computation time and transmission
time. It is noted that the computation time of matrix multiplica-
tion is one order of magnitude higher than other computation
times, which justifies that PCP takes less computation time
than performing the original computation. However, besides
computation time, performing PCP also requires to transmit a
large amount of data over the Wi-Fi network and store the data
in Android devices. In mobile cloud, the wireless bandwidth
is typically limited. Hence, it is necessary to find out how the
network factor may affect the overall performance of PCP.

2) Decomposed Time Analysis: Fig. 2 shows the decom-
posed time, including both computation and transmission, for
the first six steps of offloading and PCP. The itemized analysis
on the time of these steps is detailed below.

a) Step 1, Data Transmission: This step involves trans-
mitting two n×n matrices and results in O(n2) transmission
time. The transmission of a 100×100-element matrix takes 150
milliseconds in average, while the transmission of a 600×600-
element matrix needs 5.9 seconds.

b) Step 2, Matrix Multiplication: The prover performs
the computation in this step, which needs O(n3) multiplica-
tions. This significant amount of computation is the reason that
a device would want to offload the computation to another
device in the cloud. In Fig. 2, we can observe that the
greater the size of the matrix, the greater the gain obtain from
offloading the computation.

c) Step 3, Result Transmission: The result of matrix
multiplication is a single n × n matrix. Being half as large
as the data set in step 1, the transmission time of this step
was seen to be approximately half of the time in step 1.

d) Step 4, Query Generation: In this step, the verifier
generates a random query. The size of the query is proportional
to the size of the matrices. The generation time is thus O(n2).
For 600 × 600-element matrix multiplication, the generation
needs only 224 milliseconds. This is a prime indication
that, if considering computation time alone, PCP could be a
viable verification solution for mobile devices in mobile cloud.

Fig. 2. Decomposed Time for Offloading and PCP

However, the computation time of PCP is significantly smaller
than the transmission time in other steps.

e) Step 5, Query Transmission: According to the funda-
mental theory of PCP, the size of γ is the same to the number
of signals z in the arithmetic circuit. For matrix multiplication,
the set of signals are made of the two matrices A and B.
Hence, the number of signals is proportional to the size of the
matrices, and thus the size of γ and the transmission time of γ
are O(n2). Observing Fig. 2, it is easy to see that transmission
of the query is the most time-consuming step. Therefore, the
transmission of the large amount of data in queries becomes
the dominant factor in determining the overall performance of
PCP.

f) Step 6, Proof Computation: This step executes the dot
product of γ and z. So, the computation time is O(n2). Similar
to step 4, this step of PCP does not incur much overhead. For
600× 600-element matrix multiplication, this step only needs
73 milliseconds.

3) Findings: The results of the collected data show where
the strength and the weakness are in PCP. The strength lies in
the reduced amount of computation time of generating the
query and computing the proof. However, the overhead of
transmitting the query creates a situation where PCP may be
too intensive to warrant verifying computation with remote
devices.

a) Advantage of PCP: Fig. 3 shows the PCP’s compu-
tation time for query generation and proof computation in
comparison to the time of matrix multiplication. Obviously,
PCP uses much less computation time than executing the ma-
trix multiplication locally. In addition, the complexity analysis
in Table II also shows that PCP’s complexity is one order
of magnitude smaller than matrix multiplication. Hence, the
desirable computational feature of PCP is well captured by
the analysis and the experimental results.

b) Lags in Mobile Network: Unfortunately, Fig. 3 shows
that the query transmission time is significantly greater than
the computation time of PCP, and dominates the overall
performance of PCP. For 600 × 600-element matrix, it needs
9.55 seconds for completing the PCP process, but only 6.85
seconds for matrix multiplication. Hence, in our experimental
setting, performing the original matrix multiplication locally
to verify the result is better than using PCP. Such a significant

3



Fig. 3. Comparison of PCP and Matrix Multiplication

transmission overhead of PCP is due to the low throughput
of the Wi-Fi connection, which was less than 4.7Mbps in our
measurement.

c) Turning Points of PCP: Based on our experiments and
analysis, PCP can be beneficial to mobile cloud in either of
the two scenarios in practice. In the first scenario, the network
throughput should be sufficiently high so that the transmission
time is comparable to or smaller than the computation time.
Based on our experiments, this will require the throughput to
be greater than 100Mbps. Such a high throughput wireless
network is only achievable with IEEE 802.11n currently.

In the second scenario, the computation time of matrix
multiplication should be significantly larger than the PCP
time. According to the complexity analysis in Table II, the
complexity of matrix multiplication is one order of magnitude
higher than PCP. If the size of matrix grows enough, the
time of matrix multiplication will surpass PCP eventually.
Using regression, we have the following estimation based on
the experimental results. The time of matrix multiplication
is approximate to 0.00003193n3, and the time of PCP is
approximate to 0.0262n2. Therefore, in our experiments, if
the matrix size n grows above 820, the time of matrix
multiplication will be greater than the time of PCP. However,
the computation on such a big matrix crashed in the device,
because its memory need exceeded the heap limit in Android.

IV. RELATED WORK

To ensure the integrity of remote computation, several ideas
were studied in the past. One is remote attestation [6], [8],
[7], in which the status of remote devices and the integrity
of their code are verified. The core ideas are to randomly
send time-bounded probes to the remote devices and request
them to return the content of the probed code memory. If
the remote devices can respond timely with correct memory
content, they are considered intact. Such remote attestation can
only work with pre-determined code memory space, and thus
will not work in mobile clouds, because receptors allocate
the storage of the offloaded code at run time. Another type
of remote attestation relies on physical unclonable functions
(PUF) in remote devices [9]. It computes PUF-based hardware
signature. The verifier challenges the prover with a random
computation. The prover embeds the signature with the result
of the computation in response. The verifier can believe the

result if the embedded signature matches the signature of PUF.
This remote attestation is not applicable in cloud as well,
because it asks the originator to have the signature of the
physical unclonable functions of other devices in advance.

A recent development is PCP [4], [5]. Different from remote
attestation, PCP verifies computation instead of code and does
not rely on any special hardware feature. It is promising to
apply PCP in mobile cloud, although PCP may be limited
in a few aspects for mobile cloud. One is the computation
overhead, which is determined by the complexity of the
arithmetic circuit of the offloaded computation. When the
computation is complicated, the corresponding circuit size will
grow significantly, which results in a demanding overhead.
Another limitation is its applicability to arithmetic operations.
So far, PCP is still costly to inequality comparisons and branch
[5]. Our study shows that beside its computation overhead, the
network overhead shall be considered as well if using PCP in
mobile cloud.

V. CONCLUSIONS

In this work, we implemented and experimented PCP on
Android devices to test the feasibility and limitation of PCP
in a mobile cloud setting. We found that, given the scale of
computation that the Android devices can accommodate, the
gain from the PCP’s computation reduction may be offset by
the overhead of transmitting the data (namely, query γ) used
in PCP. Using PCP in mobile cloud will only be beneficial to
mobile cloud if either the wireless network has a sufficiently
high bandwidth to reduce the transmission time, or the device
can accommodate more demanding computation to surpass the
transmission overhead.

ACKNOWLEDGMENT

This research is funded by the NSF award #1156712 that
is co-funded by the DoD.

REFERENCES

[1] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for
mobile devices,” in Proc. of ACM Workshop on Mobile Cloud Computing
Services, 2010, pp. 1–6.

[2] M. Satyanarayanan, “Mobile computing: the next decade,” in Proc. of
ACM Workshop on Mobile Cloud Computing Services, 2010.

[3] E. Miluzzo, R. Cáceres, and Y.-F. Chen, “Vision: mClouds - computing
on clouds of mobile devices,” in Proc. of the ACM workshop on Mobile
cloud computing and services, 2012, pp. 9–14.

[4] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish, “Making
argument systems for outsourced computation practical (sometimes),” in
Proc. of NDSS, 2012.

[5] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish,
“Taking proof-based verified computation a few steps closer to practical-
ity,” in Proc. of USENIX Security, 2012.

[6] A. Seshadri, A. Perrig, L. v. Doorn, and P. Khosla, “SWATT: SoftWare-
based ATTestation for Embedded Devices,” in Proc. of IEEE Symposium
on Security and Privacy, 2004, pp. 272–284.

[7] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim, “Remote Software-
Based Attestation for Wireless Sensors,” in Security and Privacy in Ad-
hoc and Sensor Networks in LNCS. Springer, 2005, pp. 27–41.

[8] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente, “On the
difficulty of software-based attestation of embedded devices,” in Proc.
of ACM CCS, 2009, pp. 400–409.

[9] S. Schulz, A.-R. Sadeghi, and C. Wachsmann, “Lightweight remote
attestation using physical functions,” in Proc. of ACM Wisec, 2011, pp.
109–114.

4


