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Abstract—This study tests an approach for identifying sets of
over-the-counter (OTC) thermometer products whose aggregate
sales correlate optimally with aggregate counts of emergency
department (ED) visits where patients have symptoms consistent
with Constitutional syndrome such as fever and chills. We
show that by using a distributed search engine alongside search
algorithms (Brute-force), we can quickly identify a minimum
set of OTC thermometer products whose sales are optimally
correlated to the ED data. We used the Pearson correlation
coefficient function to measure the degree of correlation between
OTC and ED time series. The optimal OTC product set—
comprising 9 thermometer products found by the Brute-force
algorithm—has a correlation coefficient value of 0.96. We believe
the approach used in this study can be used to efficiently identify
different optimal OTC sets for detection of different types of
disease outbreaks.

Index Terms—Distributed search, syndromic surveillance, out-
break detection, time series analysis.

I. INTRODUCTION

Syndromic Surveillance is a public health surveillance
methodology using individual and population health indicators
that are available before a confirmed diagnoses or laboratory
confirmation to identify outbreaks or health events and to
monitor the health status of a community [1]. Public health
surveillance systems have used various data sources as health
indicators, including over-the-counter (OTC) medication sales,
emergency department (ED) chief complaints, school absen-
teeism data, and web search queries [2], [3], [4]. Among these,
ED data generally serves as the core data source of many
Syndromic Surveillance systems such as BioSense [5] and
RODS [2]. Researchers have shown that common outbreaks
can be detected 1 to 2 weeks earlier with ED data than through
conventional disease reporting methods [6].

A common methodology employed in Syndromic Surveil-
lance systems is aggregating health-related temporal events
into time series that are analyzed algorithmically for detection
of outliers. For example, in an Syndromic Surveillance system
using OTC medication sales as an indicator to detect influenza
outbreaks, the epidemiologist would analyze a time series of
the daily sales of all cough syrup, thermometers, and fever
reducers in a specific geographic region. If daily sales of these
products exceed some threshold (e.g., 3 times the standard

deviation from a baseline value), that could indicate a disease
outbreak.

To provide epidemiologists ad-hoc data queries and analyses
on the fly, a Syndromic Surveillance system (a type of outbreak
detection systems) is in need of distributed computing to
meet the challenge of timely detection of disease outbreaks.
Given the increasing volume of monitored OTC products
sales in United States, it becomes a challenge for Syndromic
Surveillance systems to meet the near-real time requirements.
We previously employed data warehouse approach that allows
OLAP queries but the performance is not close to real-time
and it requires much larger data storage for storing the large
fact table and pre-computed statistics results [7]. One plausible
solution is to employ distributed computing, which means that
parts of query processing, e.g., filtering and aggregation need
to take place over collaborating computers, possibly in the
cloud, and as close to the generating sites as possible.

The selection of health indicators (such as specific
medications sold) to be used for the detection in Syndromic
Surveillance systems also require filtering and data
aggregation. Traditionally, this selection process has been
performed manually by public health experts but if we want
to accelerate this process and make it more accurate, then
we need an efficient distributed solution for processing large
volume of aggregated data and time series, similar to the
support required by a Syndromic Surveillance system for the
detection.

Contributions: In this paper, we propose a framework that
can work with a minimum set of OTC products whose sales
optimally correlate to ED visits and produce heuristic methods
that yield close to optimal results in much less time than Brute-
force method. The framework utilizes a distributed search
engine to efficiently generate time series of time-stamped
records (such as unit sales of certain OTC products). We
demonstrate this framework using OTC thermometer sales and
emergency department visit data.

Specifically, using our framework, we evaluate three
different search algorithm to identify a set of thermometer
products whose sales over time optimally or close to
optimally correlates with ED visits for symptoms (such
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as fever) consistent with Constitutional syndrome. The
three search algorithms are brute-force, greedy, and a
dynamic programming (Knapsack solution). To measure the
degree of correlation, we first obtained time series for the
unit sales of a set of thermometer products and ED visit
data. Then, we measured the correlation coefficient value
between these two time series using the Pearson correlation
coefficient function [8], [9]. Using a limited data set, our
results show that the Knapsack search exhibits the worst
performance whereas the greedy search is competitive to the
brute-force search, which produces the optimal OTC products.

Roadmap: Section II introduces our system environment,
including experimental datasets, and search/query techniques
we applied in the frame work, data filtering and our evaluation
process. Section III presents the experimental results for two
different data filtering methods and a comparison results of all
three search algorithms. Section IV includes our analysis of
the experimental results and Section V concludes with future
work.

II. METHODS

In this section, we present our experimental dataset, system
setup, search algorithms, optimization function and evaluation,
as well as the filtering processes to reduce the impact of noisy
data.

A. Experimental Datasets

1) OTC Medication Sales: We obtained thermometer sales
data from the National Retail Data Monitor (NRDM). NRDM
is a public health surveillance tool that collects and analyzes
daily over-the-counter point of sale data to rapidly identify
disease outbreaks. NRDM was built by the RODS Laboratory
at the University of Pittsburgh in collaboration with the food
and drug retail industry, as well as state and local health
departments [10].

NRDM collects daily sales data from over 33,304 (30,820
active) stores from 15 (12 active) different retailers across the
United States and has been operational since 2003. NRDM has
a transactional database of 1.23 billion records for over 9,000
medications over a period of 9+ years. Each record contains
the product ID, Universal Product Code (UPC), date of sale,
total unit sales, promoted unit sales and store zipcode. We
obtained transactional sales data for Pennsylvania from 2009
to 2011 to load into our search engine.

2) ED Visit Data: We retrieved time series of daily ED
visits for Constitutional chief complaints for Allegheny County
for the year 2009 from the Pennsylvania RODS system. The
PA RODS System is a public health surveillance system for
the state of Pennsylvania that collects de-identified ED visit
data from 166 (111 active) hospitals since 1999. Emergency
department visits and daily aggregated number of different
syndrome categories were obtained from emergency depart-
ments. Hospitals send patient visit data including registered
chief complaint to RODS Laboratory from clinical encoun-
ters over virtual private networks and leased lines using the
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Fig. 1. Distributed computing Elastic Search scheme

Health Level 7 (HL7) message protocol. The data are sent in
real time. CoCo (Complaint Coder) automatically classifies
the registration chief complaint from the visit into one of
seven syndrome categories (Respiratory, Botulinic, Gastroin-
testinal, Neurologic, Rash, Constitutional, Hemorrhagic) using
Bayesian classifiers [2], [11].

The NRDM offers 23 OTC categories. We chose the
thermometer sales category as our indicator of the influenza
outbreak mainly because researchers found a strong correlation
(correlation coefficient is 0.91) between patients with Con-
stitutional syndrome visiting emergency departments (EDs)
and OTC thermometer sales in Pennsylvania in past influenza
seasons [12]. Villamarin et al. also demonstrated high cor-
relation (0.89) between actual and predicted ED visits using
thermometer sales data [13]. For our preliminary experiment,
we selected daily aggregated ED visits for the Constitutional
category because it generalizes complaints such as fever, chills,
or malaise.

B. System Setup

We constructed a distributed search engine for the OTC data
using Elastic Search. Elastic Search is a distributed search
engine built on top of a text search engine called Lucene
developed by Shay Banon [14], [15].

A distributed search engine is a system wherein data records
are stored over a network of computers (or nodes) which
act collaboratively to answer queries as well as to balance
the workload among them automatically and transparently.
These data records are indexed locally within each node,
which means there is no global catalog (hash table) of data
distribution but each node has partial catalog. Thus, data
retrieval topologically is not a star but rather a star-chain on
shown in Figure 1.

The Figure 1 is a simple scheme of distributed search engine
with three nodes. When a query is issued to the network
(distributed system), the query is directed to the most lightly
loaded node, Node 3 (Step 1 in Figure 1). Based on its
local catalog, Node 3 identifies which records stored locally



meet the query parameters and which nodes store records that
might meet the query parameters (Step 2). Then, the query is
forwarded to all the identified nodes with records which might
be part of the query result, Node 1 in our example (Step 3).
When Node 1 receives the request from Node 3, it carries
out the same steps as Node 3, identifying and forwarding the
query to Node 2 (Step 4). When a node, such as Node 2,
receives a query and is not aware of any other node in the
chain to further forward the query, it returns the records part
of the query result which are stored locally to Node 1 (Step
5). In turn, Node 1 appends its records which are part of the
query result to the ones received from Node 2 and sends them
to Node 3 (Step 6), which in turn, sends them to the Client
(Step 7).

We loaded three years of transactional OTC data for Penn-
sylvania (from January 1, 2009 to December 31, 2011) on a
three node search cluster. Each node was allocated 20 GB of
RAM and two CPUs. The data was distributed over 5 shards
with replicas (10 total shards) and comprised 18.5 million
records. The data occupied 6.2 GB.

We constructed an API using Java to facilitate the creation
of NoSQL queries for the search engine. This API returned
time series for a set of product IDs aggregated over days,
weeks, months, years or any time period.

C. Algorithms

We implemented the three search algorithms—Brute-force,
greedy, and dynamic programming (Knapsack algorithm)—
using the Java programming language.

1) Brute-force Search Algorithm: Using Brute-force search
or exhaustive search, we generated every possible combi-
nation of thermometer products that was queried from our
(distributed) search engine and computed the correlation co-
efficient value of each set. We retained the set with the
highest correlation value. The advantage of this approach is
that it is optimal, i.e., it searches the entire space of available
thermometer product sets. The disadvantage is that its time
complexity is proportional to the number of candidate solu-
tions. Specifically, the time complexity of brute-force search is
O(2N ) [16] where N is the number of thermometer products.

2) Greedy Search Algorithm: We designed a search algo-
rithm by using a greedy strategy that started the computation
from an initial set of all thermometer products, and iteratively
the product from the set that, when removed, would improve
the correlation value the most. This algorithm is not guaranteed
to find an optimal subset of products, but the output result
in this case was close to the optimal result. Also, its time
complexity was less than that of the brute-force search. The
time complexity of this type of greedy search is O(N2).

3) Knapsack Algorithm: The Knapsack algorithm is a dy-
namic programming method for solving optimization prob-
lems. For this approach, we computed the solutions to the sub-
problems once and stored the solutions in a table so that they
could be reused later. This algorithm, like the greedy search,
shows a reduced time complexity of O(N2) [16]. It reduced
time complexity at the expense of memory. The Knapsack

solution selects one OTC product at each step, and adds it
to the knapsack. If adding this OTC product to the subset
of OTCs in the knapsack increases the correlation value of
the subset of OTC products with ED visits, it remains in the
Knapsack. Otherwise, the OTC product is discarded (is not
kept in the knapsack) and move to the next OTC product in
the list. Once an OTC product is eliminated from the knapsack,
it does not have another opportunity to cluster with the subset
in the Knapsack. By performing in this way, the knapsack
solution eliminates some of the possible combinations that
may actually include the optimal subset. Thus, the order of the
input set determines the output set. Although it is known that
it is an expensive operation (i.e., almost behaves like Brute-
force) to find out which order of the input set gives an optimal
set, we decided to use this algorithm as a kind of low boundary
in our evaluation.

D. Optimization Function

We used the Pearson correlation coefficient function [17]
to compute correlation values between the two time series:
a set of OTC product weekly sales and weekly ED visits.
The Pearson correlation coefficient equation is written as
Equation 1:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(1)

In Equation 1, r is a measure of the correlation coefficient
(linear dependence) between two variables (time series) X and
Y written as xi and yi (where i = 1, 2, ..., n), n is the sample
data size, and x̄ and ȳ are the mean values of two samples
from the data.

E. Evaluation

We evaluated the three search algorithms by comparing the
correlation coefficient values (CCVs) computed by the Pearson
correlation coefficient function and run time. In our evaluation,
we generated time series of thermometer sales for Allegheny
County, Pennsylvania for the year 2009. To reduce the impact
of noisy data, we applied two different filtering processes in
our search queries.

1) Product Level Filtering: The product level filtering
excluded thermometer products that had less than a specific
number of days of sales over the study period. For example, fil-
tering at the threshold 10 days, we generated a dataset (Dataset
1) that included 28 OTC thermometer products. By varying the
threshold from 10 to 70 days, we generated additional datasets
with 26 OTC thermometer products (Dataset 2 with threshold
20 days), 25 OTC thermometer products (Dataset 3 with
threshold 30 days), 23 OTC thermometer products (Dataset
4 with threshold 50 days), and 20 OTC thermometer products
(Dataset 5 with threshold 70 days). The filtering at threshold
40 and 60 days generated same datasets with Dataset 3 and
Dataset 4 respectively. The results obtained those different
datasets will be further discussed in Section III-A.
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Fig. 2. Weekly OTC Thermometer sales and ED visits for Constitutional syndrome of Allegheny county, PA in 2009

2) Store-Product Filtering: The store-product filtering not
only excluded sales data from any store that had less than a
specific number of days of sales over the study period as a
threshold, but also excluded the products stated in the product
filtering process. For example, by setting each store sales
threshold at 60 days (found 118 stores out of 208), and single
product sales threshold at 10 days, we generated a dataset
with 26 OTC thermometer products. By varying the store
sales threshold from 60 to 100 and product sales threshold
from 10 to 50, we generated additional datasets with 25 OTC
thermometer products (Dataset 2 with store threshold 70 and
product threshold 20 days, 96 stores found out of 208), 22
OTC thermometer products (Dataset 3 with store threshold 80
and product threshold 30 days, 86 stores found out of 208), 21
OTC thermometer products (Dataset 4 with store threshold 90
and product threshold 40 days, 75 stores found out of 208), and
17 OTC thermometer products (Dataset 5 with store threshold
100 and product threshold 50 days, 49 stores found out of
208). The result obtained with those different datasets will be
further discussed in Section III-B.

III. EXPERIMENT RESULTS

We conducted our evaluations on an Apple iMac computer
(3.06 GHz Intel dual cores CPU, 4 GB RAM). The iMac
computer served as a client computer that queried the dis-
tributed system described in Section II-B. The time cost of
each search algorithm was measured by excluding the querying
and filtering process. In this section, we report results for each
of the two filtering processes: (1) product-level filtering, and
(2) store-product filtering.

A. Product Level Filtering

The parameters we used for querying a total 596 of OTC
thermometers in the distributed system include:

• Query period: from Jan 1, 2009 to Dec 31, 2009

1,900

1,800

1,700

1,600

1,500

1,400

1,300

1,200

1,100

1,000

900

800

700

600

500

400

300

200

100

0

N
um

be
r o

f O
TC

 s
al

es
/E

D
 v

is
its

Jan-2009   Feb-2009   Mar-2009    Apr-2009    May-2009    Jun-2009    Jul-2009    Aug-2009    Sep-2009   Oct-2009  Nov-2009  Dec-2009

Date

ED visits

OTC sales

The 3rd week of October
(Oct 15-22)

Fig. 3. Weekly time series of an optimal set of 9 OTC thermometer
sales and ED visits for constitutional syndrome of Allegheny County,
PA in 2009. The optimal OTC product set was obtained from product
level filtering and the Brute-force search.

• Geographic area: Allegheny County, PA
• Aggregate time level: Daily
• Breakdown by: product ID, i.e., Universal Product Code

(UPC)
After applying the product-level filtering, we identified a

set of 28 (from 596) OTC thermometer products. We further
aggregated daily data to weekly data as shown in Figure 2.
We then evaluated the 3 search algorithms in terms of optimal
output results and how they performed based on the results of
the Pearson correlation coefficient function. The correlation
value of aggregated time series of 28-product set with ED
visits for Constitutional syndrome was 0.91, and the both time



TABLE I
THE LIST OF OTC PRODUCTS IN OPTIMAL SET OF 9 (OUT OF 28) AND

THEIR INDIVIDUAL CCVS

Individual OTC Product Correlation coefficient value
Product 4 0.9414
Product 9 0.0967
Poduct 10 0.8715
Product 11 0.7744
Product 14 0.1244
Product 16 0.5624
Product 18 0.9381
Product 19 0.8854
Product 24 0.9140

TABLE II
COMPARISON OF THE THREE ALGORITHMS WITH DIFFERENT OTC

PRODUCT SETS BASED ON THE PRODUCT LEVEL FILTERING (CCV?:
PEARSON CORRELATION COEFFICIENT VALUE; SIZE†: SIZE OF THE

OPTIMAL OUTPUT SET WITH A CORRESPONDING SEARCH ALGORITHM)

Input Dataset Brute-force Greedy search Knapsack search
search
output output output

Number
of
OTCs

CCV? Size† CCV? Size† CCV? Size†

Dataset1 28 0.9592 9 0.9592 9 0.9586 11
Dataset2 26 0.9592 9 0.9583 9 0.9592 10
Dataset3 25 0.9589 7 0.9589 7 0.9285 15
Dataset4 23 0.9589 7 0.9589 7 0.9567 11
Dataset5 20 0.9586 6 0.9586 6 0.9565 9

series peaked the 3rd week of October (Oct 15-22), 2009, as
shown in Figure 2b. The red (top) line in Figure 2b is the
ED visit time series, while the blue (bottom) line is 28 OTC
thermometer sales aggregated time series.

1) Brute-force Search Results: The Brute-force search al-
gorithm identified an optimal set of 9 (out of 28) OTC products
with the best correlation value at 0.9592. Table I shows the
individual correlation coefficient values (CCVs) for each of the
9 OTC products with ED visits for constitutional syndrome.
The individual product CCVs ranged from 0.0967 to 0.9414.
Figure 3 shows the aggregated time series of the optimal set of
OTC (9) thermometer products obtained from product filtering
and ED visits for Constitutional syndrome. Both time series
peaked the 3rd week of October (Oct 15-22), 2009.

2) Comparison between three Search Algorithms: Table II
shows the results for the three search algorithms using different
OTC product sets with aggregated sales of 28, 26, 25, 23,
and 20 products. The relationship of those 5 input datasets in
Table II is a smaller dataset is the subset of a larger dataset, and
they were generated using the product-level filtering method
introduced in Section II-E1. The smaller output set may not
necessarily be the subset of larger output set.

In Table II, the 1st column represents the input datasets and
the 2nd column has the number of OTC products (size) in each
dataset. The 3rd, 5th, and 7th columns have the correlation
coefficient value of output product set computed respectively
by the three different algorithms, while the 4th, 6th, and 8th
columns show the size of those different output sets.

TABLE III
THE LIST OF OTC PRODUCTS IN OPTIMAL SET OF 8 (OUT OF 26) AND

THEIR INDIVIDUAL CCVS

Individual OTC Product Correlation coefficient value
OTC 4 0.9425
OTC 9 0.1316

OTC 10 0.8723
OTC 11 0.7921
OTC 12 0.8673
OTC 14 0.1242
OTC 16 0.3949
OTC 24 0.9120

B. Store-Product Filtering

The store-product filtering applied store-level filtering in
addition to the product-level filtering. During the experiment,
we found 118 stores out of 208 qualified for store-level
filtering criteria (stores with sales data >= 60 days). The total
number of thermometer included in this study as a result of
the filtering process was 26 out of 596 products. Figure 4a
shows the time series of each of the the individual 26 OTC
products, while Figure 4b has a time series of ED visit for
constitutional syndrome and a aggregated time series of 26
OTC thermometer sales.

1) Brute-force Approach Results: The Brute-force search
algorithm identified an optimal set of 8 (out of 26) OTC
products that had a best correlation value of 0.9612. Table III
shows individual correlation values (CCVs) for each of the
8 products with ED visits for Constitutional syndrome. The
individual product CCVs ranged from 0.1316 to 0.9425.
Figure 5 shows the aggregated time series of the optimal set
of OTC (9) thermometer products obtained from store-product
filtering and ED visits for Constitutional syndrome. Both time
series peaked the 3rd week of October (Oct 15-22), 2009.

2) Comparison among the three Search Algorithms: Ta-
ble IV shows the results for the three search algorithms using
different OTC product sets with aggregated sales of 26, 25,
22, 21 and 17 products, respectively. The relationship of those
5 input datasets in TableIV is a smaller dataset is the subset
of a larger dataset, and they were generated using the store-
product filtering method introduced in Section II-E2. The
smaller output set may not necessarily be the subset of larger
output set.

In Table IV, the 1st column represents the input datasets
and the 2nd column lists the number of OTC products (size)
in each dataset. The 3rd, 5th, and 7th columns have the
correlation coefficient values of optimal product set computed
respectively from the three different algorithms, while the 4th,
6th, and 8th columns list the size of those different output sets.

Table V shows the run-time comparison between 3 algo-
rithms with Dataset 1 that has 28 OTC products shown in
Table II.

IV. DISCUSSION

By limiting our study dataset to (1) the geographic area
of Allegheny County in PA; (2) a subset of OTC products
(596 out of 9,000+); (3) a specific ED visit for Constitutional
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Fig. 4. Weekly 26 OTC thermometer sales and ED visits Constitutional syndrome of Allegheny county, PA in 2009
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Fig. 5. Weekly time series of an optimal set of 8 OTC Thermometer
products and ED visits for Constitutional syndrome of Allegheny
County, PA in 2009. The optimal OTC product set was obtained
from store-product filtering and the Brute-force search.

syndrome category, we provided a framework for an effective
search of optimal OTC product sets that correlate with ED
visit data, which could facilitate disease outbreak detection.

The Brute-force search serves as a gold standard for optimal
OTC product sets that correlate with ED visits. Since this
approach is computationally intensive, that makes the scal-
ability is limited. Thus, we need a better approach which
is computationally less expensive and can so overcome the
scalability issue.

The greedy search method provided fairly good results, and
was both efficient and easy to implement. We also assume we

TABLE IV
COMPARISON OF THE THREE ALGORITHMS WITH DIFFERENT OTC

PRODUCT SETS BASED ON THE STORE-PRODUCT FILTERING (CCV?:
PEARSON CORRELATION COEFFICIENT VALUE ; SIZE†: SIZE OF OPTIMAL

OUTPUT SET WITH THE CORRESPONDING SEARCH ALGORITHM)

Input Dataset Brute-force Greedy search Knapsack search
search
output output output

Number
of
OTC

CCV? Size† CCV? Size† CCV? Size†

Dataset1 26 0.9612 8 0.9612 8 0.9522 12
Dataset2 25 0.9595 10 0.9595 10 0.9581 11
Dataset3 22 0.9569 9 0.9569 9 0.9569 9
Dataset4 21 0.9561 7 0.9561 7 0.9501 7
Dataset5 17 0.9480 8 0.9480 8 0.9433 7

TABLE V
RUN TIME COMPARISON AMONG THE THREE SEARCH ALGORITHMS WITH

SET OF 28 OTC PRODUCTS

Brute-force
Search
(seconds)

Greedy
Search
(seconds)

Knapsack
Approach
(seconds)

CPU Time 150 < 1 < 1

are able to scale it to large dataset. The results for greedy
search, such as those shown in Table II and Table IV were the
same as those for the brute-force search result.

The Knapsack solution was as efficient as the greedy search
in terms of run time, but more complex to implement. It
also returned fairly good results, however, because of the data
property of time series the output result is not reliable. The
Knapsack solution guarantees to find the optimal solution if
adding an item into the knapsack either increases or decreases
value not depending on the subset in the knapsack. If we add
one OTC each time and correlate with ED visits, we may



get an increased CCV for a subset in the knapsack but may
get a decreased one for another subset. With this behavior,
the Knapsack solution will not necessarily yield an optimal
solution.

Although the greedy search and Knapsack search algorithms
may not be able to identify such a compact set of OTC
products that has optimal CCV as shown in the result, the
result of greedy search is more close to the Brute-force search
result Setction III-A and Section III-B, and indicates it is
more reliable than the Knapsack search algorithm for solving
our specific problem. In terms of time complexity, these two
algorithms required much less run-time (< 1 second) than the
brute-force search (150 seconds) as shown in Table V. Run-
time is computed on the client by excluding the data retrieval
process.

The results demonstrate the need for the search for an
optimal product set. The CCV from the initial OTC set
comprising 28 products through the product-level filtering was
0.91 whereas the CCV from the compact set that comprised 9
products obtained from the Brute-force search was 0.9592. We
found that store-product level filtering increased the CCV over
the product level filtering. The difference between the CCVs
of optimal product sets from product level filtering and store-
product filtering was 0.002. Although adding more filtering
criteria had a small amount of improvement for our current
data set, it still be necessary for scaled dataset.

V. CONCLUSIONS AND FUTURE WORK

Syndromic Surveillance system is an outbreak detection
system that uses various individual and population health
related temporal data to identify disease outbreaks or health
events, and to monitor the health status of a community.
Selection of large volume of health care indicators traditionally
been done manually, and the performance of such Syndromic
Surveillance system is not efficient enough to detect the
outbreak real-time. In order to provide epidemiologies efficient
data selection and enable them to perform data processing and
computational analysis on a distributed system is the main
purpose of this work.

Identifying an optimal set of OTC products that correlates
with ED visits facilitates disease outbreak detection. With the
leverage of an in-memory search across multiple machines (or
nodes), Elastic Search allows fast and ad-hoc queries from a
large data set, which is an ideal setup for a surveillance system
and machine learning algorithms. Our large NRDM dataset
comprising 1.2 billions records would serve as a good resource
for machine learning experiments using Elastic Search.

Our results demonstrate that using a distributed search
engine, a search algorithm and an optimization function could
facilitate the identification of optimal sets of health-related
events from large sets of collaboratively obtained public health
data. The proposed approach filters the noisy OTC products
and identifies optimal product sets to facilitate more timely
and accurate detection of disease outbreaks.

For future work, we would like to improve our search
algorithms that can output optimal results even with scaled

dataset, in a reasonable amount of time. Also, we would like
to apply larger, such as statewide or nationwide, datasets with
different OTC products and ED syndrome categories using the
proposed framework.
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