
Towards Secure Cooperation in Online Social
Networks

Youna Jung
ACIS, Department of Electrical and

Computer Engineering
University of Florida, Gainesville

FL 32611, USA
younajung@ufl.edu

Minsoo Kim
5065 NW 45th Road, #102

Gainesville, FL 32606, USA
minsoo.ai@gmail.com

James B.D Joshi
LERSAIS, School of Information Science

University of Pittsburgh, Pittsburgh,
PA 15260, USA
jjoshi@pitt.edu

Abstract—The rapid growth of online social networks (OSNs) has
brought a revolutionary change in the way geographically
dispersed people interact and cooperate with each other towards
achieving some common goals. Recently, some new ways of ad-
hoc cooperation have been demonstrated during the hurricane
Irene and the earthquake in Japan. In such emergency situations,
OSNs have already taken a significant role as alternative social
media that support altruistic information sharing and
cooperation among people. However, existing cooperation
approaches have not been well-organized and are highly
vulnerable to security threats such as a disclosure of users’
identities and the leakage of other private data due to the lack of
secure cooperation mechanisms. To support secure and effective
cooperation in OSNs, in this paper, we propose the Social
CRiBAC (Community-centric Role interaction Based Access
Control) model, which extends the existing CRiBAC model [1]
for use in OSNs to support cooperation among users. To verify
the feasibility of the proposed model, we have implemented a
prototype application on Facebook and demonstrate its
applicability with two working examples.

Keywords- Online Social Network, Community, Cooperation,
Anonymous Member, Temporal Sharing, Property-based Access
Control

I. INTRODUCTION

The rapid advances in networking technologies have
significantly enhanced the level of connectivity and
interactions among people around the world. It has resulted in
the explosive growth of online social networks (OSNs) such as
Facebook and Twitter. People advertise themselves, make new
friends, and maintain their relationships through OSNs.
According to Facebook’s statistics [2], 1 in every 10 people on
earth uses Facebook, with over 750 million users. Over 375
million of them (over 50%) log in every day and spend over
700 billion minutes per month there.

The rapid growth of OSNs has significantly influenced
human lifestyles, especially in the patterns of communication
and cooperation. Since OSNs can provide a huge pool of
manpower and support quick diffusion of information, they can
be a basis for immediate and effective cooperation among
people. These OSNs allow a large number of users who are
globally dispersed to connect to each other, thus, providing an
unprecedented opportunity to enhance the level of social
cooperation towards achieving some common goals. In fact,
several real cases support this claim. In some recent emergency

situations related to natural disasters, OSNs have provided
huge support for global level social activities. When Hurricane
Irene occurred and tsunami hit Japan, the OSN users shared
critical information about Irene’s path and evacuation plans,
and also warned residents about possible damages [3]. In the
immediate aftermath of the earthquake and tsunami in Japan,
most of the infrastructure was destroyed and mobile phones
were largely silenced. In such a disaster situation, OSNs such
as Facebook and Twitter took the place of traditional media and
communication infrastructure to report the updated news and
became the best link between worried family members and
their friends and loved ones [4]. To help the victims more
concretely and in an organized way, aid organizations also
rushed to use OSNs to be aware of real situations, let people
know what victims need, and recruit volunteers. As an
example, the Red Cross raised relief funds via Twitter to assist
tsunami victims around the Pacific Rim. In addition, it piloted a
new program to engage digital volunteers on Twitter to help the
victims with rescue and recovery efforts during Hurricane Irene
[5]. It posted the requirements and recruited volunteers through
these digital infrastructures. Thus, OSNs have played an
important role in emergency situations not only as an
alternative media that collects and spreads valuable
information, but also as an effective way to gather people and
encourage them to cooperate with each other to achieve a
common goal.

There are also several other application scenarios which
show us the usefulness of cooperation through OSNs. Recently,
many people are using Twitter to find their lost pets by
broadcasting information about them [6][7]. Another example
is from the healthcare domain where the use of an OSN
resulted in an immediate cooperation among people [8]: a
medical doctor who works for Emory Healthcare received a
tweet from a person named Matthew about an emergency
situation involving his grandmother. A medical team
communicated with Matthew via Twitter to instruct him to give
first aid while emergency transportation was being arranged.
The doctor said, “Without the quickness of social media, the
helicopter may have never been dispatched”.

As seen in the aforementioned examples, OSNs have an
enormous potential for helping people by supporting dynamic
and real-time cooperation among users. Although some real
cases show significant promise for success, it is not easy to
guarantee effective and secure cooperation in existing OSNs

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250707

due to the lack of a suitable cooperation model and an
appropriate security model integrated with it for ONSs. To
date, cooperation among OSN users has been achieved in an ad
hoc manner only. Without a cooperation model and OSNs’
systematic support, it is difficult to expect successful
cooperation in OSNs. Furthermore, the absence of suitable
security model for cooperation in OSNs can bring OSNs to a
serious security crisis. As an example, allowing accesses to
private information and resources during cooperation may raise
serious privacy and security/safety problems. To facilitate
immediate and secure cooperation in OSNs, in this paper, we
propose an access control model which meets the security
requirements for OSNs and support effective and secure
cooperation among users.

The paper is organized as follows. In Section 2, we present
our motivation using two examples and identify the security
requirements for secure cooperation in OSNs. In Section 3, we
propose a community-centric access control model for OSNs
called Social CRiBAC and present an OSN employing the
proposed model. To illustrate the feasibility and practical use of
the proposed model, in Section 4, we demonstrate a Facebook
application and show how it meets the security requirements
identified in Section 2. In Section 5, we discuss related work,
and finally, we present the conclusions and future work in
Section 6.

II. MOTIVATION

From ancient times, people have been cooperating with
each other to cope with difficulties. Recently, OSNs have
promoted cooperation among people as we can see in the real
cases mentioned earlier. In this section, we overview existing
cooperation approaches in OSNs using two example scenarios
and discuss its limitations and derive the security requirements.

A. Motivating Examples

For better understanding of our motivation, we describe two
motivating examples: Disaster Relief and Finding a Lost Child.
Both show emergent situations that require immediate, well-
organized, and secure cooperation among OSN users.

1) Disaster Relief: Many people need an immediate help
in disaster situations such as hurricanes, earthquakes, and a
terrorist attack. To rescue victims quickly and effectively, it is
required to provide well-organized and practical help
immediately. Let’s assume that a man is injured in a disaster
situation. He posts on an OSN using his mobile phone to ask
for help (D1). Many people who see the post spread it to let
more people know his urgent situation and some volunteers go
out to rescue him (D2). Shortly afterward, other victims
including a seriously injured woman also ask for help in many
different places simultaneously (D3). To rescue as many
victims as possible, the most suitable rescue team should be
organized for every victim. To do so, it is necessary to form a
cooperative group of volunteers who are close to a victim and
are capable of giving necessary aid including medical aid. If
volunteers flock to a few victims who have posted earlier,
other victims may not be rescued. Even though a victim has

many helpers, the lack of vital aid may lead to a failure in
rescue work.

2) Finding a Lost Child : As we mentioned earlier, there
several real-world examples where OSN users have
cooperated to find lost pets [6][7]. With regards to finding a
lost child, however, we must show proper discretion in posting
information of a lost child in public. Let’s assume a mother
has lost her daughter at a children’s festival held in a crowded
place in a city. She posts her daughter’s photo and identity on
an OSN to receive help while she is waiting for policemen to
arrive (F1). Some of OSN users who are near the place and see
the post may try to find the lost child (F2). If someone finds
the lost girl, he or she can take care of the girl and let her
mother know via the OSN (F3). Broadcasting the lost girl’s
information and photos may help to find her but it may cause
very serious security and safety problems also if the
information is seen by bad people.

B. Limitation of Existing Cooperation in OSNs

As can be seen in the examples above, the OSNs are able to
promote cooperation among users by spreading information
quickly. However, cooperation achieved in such OSNs seems
to be ad hoc in nature and support provided by OSNs for such
cooperation is limited. Furthermore, its vulnerability to security
threats is a barrier to further progress. In this section, we
identify the limitations of existing cooperation in OSNs as
follows.

1) Limited help: When a user posts an urgent message on
an OSN, the message is visible to only some users who are
connected to him, for examples, his friends, friends of friends,
and followers. If he opens the post to the public, more people
who randomly visit his page are able to see the posting, even if
they do not have any social relationships with him. However,
there is no way to let others who are not related to him and
also never visit his page know about his emergency situation.
In other words, he is unable to receive help from them, even if
one of them is the most suitable one who can give him some
vital help immediately. We therefore need to find a way to
make the best use of manpower in OSNs more effectively.

2) Naïve cooperation: As we pointed out in the Disaster
Relief example, the lack of cooperation mechanism may lead
to failure in cooperation. In the D3 situation, many victims
shall be confronted by death if rescue teams are not well-
organized based on helpers' locations and abilities. In addition,
in the F2 situation, the mother may be able to find her
daughter more efficiently if the search areas for each volunteer
can be assigned based on the volunteers’ locations. Therefore,
to ensure the success of a cooperation in an urgent situation it
is necessary to have a suitable cooperation model which
supports well-organized cooperation among OSN users.

3) Vulnerability of private information and data: In urgent
situations, a user seeking prompt help may rush to share
private information and data with unknown people without
configuring proper privacy settings. However, such
indiscriminate sharing may raise serious security and privacy
problems. For examples, in D2 situation, it may be

inappropriate to share the victim’s medical record with other
volunteers, except for a particular helper who can give medical
aid, due to the possibility of misuse. Similarly, it is risky as
well as useless to share the lost girl’s information with
bystanders. From the perspective of the volunteers, some of
them may not want to reveal their private information such as
location and participation. Their concern about privacy may
make them unwilling to help people. To remove such a
concern, a cooperative group should be formed with only
necessary and trustworthy users and sharing of their private
information should be properly controlled.

C. Security Requirements for cooperation in OSNs

As discussed above, the existing OSNs do not have support
for enabling a more structured, goal-driven cooperation among
users. Moreover, the ad hoc cooperation that occurs can have
severe security and privacy vulnerabilities that create barriers
to their practical use. Especially, their vulnerabilities create
concrete barriers to their practical use and effectiveness. In the
existing literature, many researchers have specified security
objectives for OSNs to protect users’ information [9][10], and
derived security requirements such as anonymity, personal
information/data protection, consistency between OSN users
and real-world users, high availability of services and data in
OSNs, and so on [10][11]. In this paper, we focus on the access
control requirements. Researchers have identified the unique
requirements for access control in OSNs as follows.
1) Consideration of social relationship [11, 12, 13, 14, 15] –

The access control models/systems must be able to control
accesses based on the social relationships among OSN
users.

2) Fine-grained control [11, 14, 15] – The access control
models should be able to independently provide a fine
granularity of control on personal information or data.

3) Individualized policies [16] – The access control models
should allow individualized policies for each user rather
than one system-wide policy.

4) Sticky policy with the users’ data [11][16] – The access
control models should allow specifying a sticky policy for
each data item.

5) Interoperability [11] – The access control policies should
be usable across multiple OSNs.

6) Users and users’ policies as the target of control [14, 15,
16] – The access control models should be capable of
controlling the activities on other users and the accesses to
their policies.

7) OSN’s behavior control [16] – The access control models
must be able to control the OSNs’ behavior as well as
OSN users’ behavior.

So far, there, however, exists no approach that considers
cooperation among users. In this paper, we identify the
requirements for secure cooperation in OSNs as follows.
1) Organization of a community which consists of eligible

users only – To prevent unnecessary sharing of members’
private information and resources and follow the principle
of least privilege, a community must be organized with
only eligible users and the members’ resources should be
shared with only particular members who need the
resources to cooperate with other members.

2) Anonymous cooperation – The OSNs must guarantee
anonymous participation in a community of users, where
necessary, and also facilitate sharing of resources
anonymously for privacy protection.

3) Time-based control – All of shared resources and granted
permissions for cooperation must be valid only during
cooperation. When a community is disorganized or a
member is no longer available, all permissions for its
cooperation must be revoked immediately.

III. ACCESS CONTROL MODEL FOR EFFECTIVE AND SECURE

COOPERATION IN OSNS

To meet the requirements for secure cooperation in OSNs
including general security requirements, in this section, we
propose an access control model, called Social CRiBAC, which
allows well-organized and secure cooperation in OSNs and
provides two case studies based on the motivating examples
introduced in Section 2.

A. Preliminaries

Before we propose Social CRiBAC, we first introduce the
CRiBAC (Community-centric Role interaction based Access
Control Model) [1], as the proposed Social CRiBAC model
extends it into the domain of OSNs. CRiBAC aims to support
secure cooperation within a community, as well as interactions
between highly heterogeneous and decentralized agents. In
CRiBAC, a community is dynamically organized to achieve its
goal. It adopts the community computing model (CCM) [17] to
create a community with only eligible agents and also helps
facilitate efficient cooperation by employing a situation-aware
cooperation model. In addition, it incorporates interaction
permissions and community-related entities: such as society,
community, community role, and so on, in order to control
accesses to agents’ own objects, tasks, and agents themselves
during interaction and cooperation. Fig. 1 illustrates the basics
of the CRiBAC model.

USER SESSION

RH
COMMUNITY

PRMS

CR

SR

PA SPRMS

RPRMS

TPRMS

ROLE

SOCIETY

OPRMS

iPRMS

Figure 1. CRiBAC Model

In CRiBAC, an agent has its own resources, contexts, and
tasks. An agent’s resources are a set of objects which belong to
the agent and access to them is controlled by that agent. An
agent also has its own contexts that capture specific
information such as status and identification, and its own tasks
to show what kinds of work it can do. An agent can participate
in one or more communities by assuming various community
roles (CR). A community c consists of necessary CRs (CRc),
participating agents (Ac), and its context (CONTc) which
represents information related to c such as its type, creation
time, and information about members. A community type

specifies its goal, necessary roles (CR), and a set of policies to
assign agents to a CR (CRA). According to CRA policies, a
community invites suitable agents for each CR and then selects
the most appropriate agents based on their contexts and tasks.
After receiving an invitation, every agent must decide whether
it can participate or not. This decision is made by an invited
agent itself based on its ability and preference. If an agent
accepts the invitation and is finally selected, it assumes the
suggested CR and starts cooperation with other members. The
CR is revoked from a member agent when the community is
terminated or it leaves the community.

To control interaction and cooperation among agents as
well as accesses to objects, CRiBAC defines two types of
permissions: traditional object-oriented permissions (OPRMS)
and interaction permissions. The interaction permissions
include the resource-oriented permissions (SPRMS), the role-
oriented permissions (RPRMS), and the task-oriented
permissions (TPRMS). A sprms is a permission that allows
access to agents’ resources. An rprms is a permission that
allows a subject agent to carry out its task on another target
agent. A tprms is a permission that allows a subject agent to
command a target agent to perform a task of the target agent.
Interaction or cooperation among agents can be authorized only
if they have corresponding interaction permissions. Some
permissions are parameterized based on roles. The
parameterized permissions should be should be enabled based
on the parameter values associated with the real agents who are
assigned to the corresponding role, after the role assignment.

B. Social CRiBAC

Existing CRiBAC model does not fit OSNs due to the lack
of consideration for unique characteristics of OSNs, although it
has a definite advantage of ensuring secure interaction and
cooperation. To guarantee secure cooperation in OSNs, in this
paper, we propose a property-based access control model,
called Social CRiBAC, which meets the security requirements
identified in Section 2.

In Social CRiBAC, a user has four types of properties; 1)
contexts (u.CNT) which represent a user u’s status such as age,
sex, job, reputation, and social relationships; 2) tasks (u.TSK)
which u can carry out in an OSN such as data uploading and
posting messages, 3) resources (u.RSC) which u creates in his
private space in an OSN such as photos and postings, and 4)
policies (u.POL). The user policies have two types: the access
control policy (u.AC) and the filtering policy (u.FP). The
access control policy is to decide authorized users to his own
properties while the filtering policy is to filter unwanted
contents out from all of authorized contents using his
preferences.

A community is a mission-oriented cooperative group of
users who are eligible and willing to cooperate with other
members. As an occasion demands, a community is
dynamically created and terminated when its goal is achieved.
A community has five properties: 1) contexts (c.CNT) such as
community goal, 2) tasks (c.TSK) such as community creation
and termination, 3) resources (c.RSC) shared with members, 4)
a cooperation (c.COP) which describes cooperative process
among members using the situation-based cooperation model

[17] that describes members’ tasks according to a community’s
situation, and 5) policies (c.POL). A community has two types
of policies: the access control policy (c.AP) and the recruiting
policy (c.RCP). The access control policy is used to authorize
accesses to the properties of other members and the recruiting
policy specifies the eligibility rule for each community role.

A society represents an OSN supporting secure
cooperation, and it also has four properties: 1) contexts (CNTs)
such as the number of users, 2) Tasks (TSKs) that represent an
OSN’s services to promote social activities among users such
as displaying of friends who are online and notifying friends’
recent news, 3) resources (RSCs) that are available to all the
users, and 4) policies (POLs) that are enforced on all users; for
example, users who are under age are prohibited to access to
the contents tagged ‘adult only’. A permission consists of an
operation and one or more objects. In Social CRiBAC, various
properties can be a target object. According to the types of the
object, the permissions are categorized into five types: context-
oriented permission (CP), tasks-oriented permission (TP),
resources-oriented permission (RP), policies-oriented
permission (PP), and users-oriented permission (UP). A user
can have a permission through the permission assignment (PA).
A community member who participates in a community can
have the required permissions to cooperate with others by
taking a community role (CRA) because all necessary
permissions are assigned to the CR through the CPA
assignment. The formal definition of Social CRiBAC is shown
in Table I.

U SS

C
P

S
CNT
TSK
RSC
POL

CNT
TSK
RSC
POL

COP
TSK
RSC
POL

CNT

CNT

TSK

OPS

U

POL

RSC

1: N relationship
has Relation

Figure 2. Social CRiBAC

Social CRiBAC meets the security requirements for access
control in OSNs, which includes not only general access
control but also cooperation control. We present how the
proposed model satisfies the requirements described in Section
2 in details.
1) Consideration of social relationship – In Social CRiBAC,

interpersonal relationships are represented in a user’s
contexts and also used for making decisions on access
requests as one of the criteria.

2) Fine-grained control – Each property items including
private information and resources can be separately
specified and controlled at a fine-grained level.

3) Individualized policies – Each user has his own policy
(user policy).

4) Sticky policy with the users’ data – The access control
policy of a user is used for specifying sticky policies on the
user’s own properties.

5) Interoperability – Social CRiBAC can be used in many
different OSNs since it considers not only social graph but
also diverse properties which users and communities have.

6) Users and users’ policies as the target of control – To
control the accesses to other users and their policies, Social
CRiBAC uses the user-oriented permissions and the
policy-oriented permissions.

7) OSN’s behavior control – A user can control an OSN’s
service and control behavior by having own filtering
policy and the task-oriented permissions for OSN’s tasks.

8) Organization of a community which consists of eligible
users only – Using the recruiting policy, a community can
have only eligible users.

9) Anonymous cooperation – Social CRiBAC allows a user to
participate in a community under an alias to protect
members’ privacy (Anonymous participation). In addition,
members share their private information and resources by
posting/uploading them on a community space which only
authorized members can access. By doing this, members
do not need to establish social relationships between them
to share their resources so it is hard to identify the real
owners of the community resources (Anonymous resource).

10) Time-based restriction – All permissions on a
community’s properties is valid only while the community
is alive and an authorized user is available.

TABLE I. FORMAL DEFINITION OF SOCIAL CRIBAC

 Definition Description
CNT CNTs ∪ CNTC ∪ CNTU The set of all possible contexts which represent an OSN (CNTs), communities (CNTC), and users (CNTU). e.g., in Facebook,

CNTU ={ Basic-Info, Friend, Family, Edu, Work, Philosophy, Arts, Sports, Activities, Contact, …}
TSK TSKs ∪ TSKC ∪ TSKU The set of all tasks that an OSN (TSKs), its communities (TSKC), and users (TSKU) can carry out within an OSN.
RSC RSCs ∪ RSCC ∪ RSCU The set of all resources that a society (RSCs), its communities (RSCC), and users (RSCU) own in an OSN. A resource can

have a set of attributes and we use dot notation to represent attributes associated with a resource (rsc.att). Formally, RSCC =
{ ci.RSC| 1 ≤ i ≥ m where ci ∈ C} , RSCU = { uj.RSC| 1 ≤ j ≥ n where uj ∈ U}. e.g). In Facebook, RSCU ={ Wall-posting,
Photo, Video, Note} , uj.RSC.Photo={Photok| 1 ≤ k ≥ p where Photo.att= (Date, TaggedPerson)} ,
uj.Photok.TaggedPerson=”Jane”

POL POLs ∪ POLC ∪ POLU The set of all policies of an OSN (POLs), communities (POLC), and users (POLU).
u <u.CNT, u.TSK, u.RSC,

u.POL>
A user u in U has own contexts (u.CNT ⊂ CNTU), tasks (u.TSK ⊂ TSKU), resources (u.RSC ⊂ RSCU), and policies (u.POL ⊂
POLU). Formally, u.POL= u.AP∪ u.FP is a set of access control policies for a user. u.AP is a set of access control policies
on a user u’s properties. Formally, u.AP: condu� PAu where condu is a property-based user predicate. u.FP is a set of
filtering policies of u, formally, u.FP: condc � hide(contents) where contents ={ CNT|RSC|TSKs} and (u,contents) ∈ PA.

CR The set of all community roles in an OSN. Each user participating in a community has to take one or more CRs, but all CRs
should be revoked from members when the community is terminated. CRc is the set of CRs involving in a community c.

Uc Uc ⊆ U The set of users who participate in a community c, called community member.
Ucr Ucr ⊆ U The set of users taking a community role cr.
OBJ OBJCNT ∪ OBJTSK ∪

OBJRSC∪ OBJPOL ∪ OBJU
The set of all target objects of OPS, which should be protected from unauthorized access.

OBJCNT OBJCNT ⊆ CNT The set of all contexts that can be accessed by users.
OBJTSK OBJTSK ⊆ TSK The set of all tasks that can be a target object of a task-oriented permission.
OBJRSC OBJRSC ⊆ RSC The set of all resources that can be accessed by users.
OBJPOL OBJPOL ⊆ POL The set of all policies that can be accessed by users.
OBJU OBJU ⊆ U The set of users that can be an object of a user’s operation.
OPS The set of all applicable operations on OBJ.
CP OPS × OBJCNT The set of all context-oriented permissions. CPc is a set of all CPs whose target contexts are the contexts of a community c.

Formally, CPc= OPS×c.CNT where c.CNT ⊂ OBJCNT. CPu is a set of all CPs whose target contexts are the contexts of a user
u. Formally, CPu= OPS×u.CNT where u.CNT ⊂ OBJCNT.

TP OPS × OBJTSK The set of all task-oriented permissions. TPc= OPS× c.TSK where c.TSK ⊂ OBJTSK and TPu= OPS×u.TSK where u.TSK ⊂
OBJTSK.

RP OPS×OBJRSC The set of all resource-oriented permissions. RPc= OPS×c.RSC where c.RSC ⊂ OBJRSC and RPu= OPS×u.RSC where
u.RSC ⊂ OBJRSC.

PP OPS×OBJPOL The set of all policy-oriented permissions, called User Admin Permission, which allow users to admin other users’ policies.
PPc= OPS×c.POL where c.POL ⊂ OBJPOL and PPu= OPS×u.POL where u.POL ⊂ OBJPOL.

UP OPS×OBJU The set of all user-oriented permissions which allows a user to carry out its operation on a target user. UPc= OPS×Uc where
Uc ⊂ U and UPu= OPS×u where u ⊂ U.

P CP∪TP∪RP∪PP∪UP A set of permissions in an online society.
PA { CPA∪TPA∪RPA∪PPA

∪UPA} ⊆ U×P
A many-to-many user to permission assignment relationship, where CPA ⊆U×CP, TPA ⊆U×TP, RPA ⊆U×RP, PPA
⊆U×PP, and UA ⊆U×UP. PAc= CPc∪TPc∪RPc∪PPc∪UPc is a set of PAs whose target objects are a community c’s
properties. PAu= CPu∪TPu∪RPu∪PPu∪UPu is a set of PAs whose target objects are a user u’s properties.

CRA A many-to-many user to community role assignment relationship, where CRA⊆ U×CR. CRAc= U×CRc.
SS The set of all sessions created for users in an OSN.
S <CNTs,TSKs,RSCs,POLs,

C, U, PA>
A CS-OSN s represents an OSN and it has a set of society contexts (CNTs⊂ CNT), a set of society tasks (TSKs⊂ TSK) a set
of society resources (RSCs ⊂ RSC), and a set of society policies (POLs ⊂ POL), a set of communities (C), a set of users (U),
and a set of permission assignment relationships (PA).

c <c.CNT, c.TSK, c.RSC,
c.COP, c.POL, c.CRA>

A community has a set of community contexts (c.CNT⊂ CNT), a set of community tasks (c.TSK⊂ TSK), a set of community
resources (c.RSC⊂ RSC), a cooperative process (c.COP), a set of user assignments to CRc (c.CRA=CRc×Uc.), and a set of
community policies (c.POL={ c.AP ∪ c.RCP} ⊂ POL). c.AP is the set of access control policies for a community c’s
properties. Formally, c.AP: condu� PAc. c.RCP is the set of recruiting policies for c. Formally, c.RCP: condu � CRAc
where CRAc ∈ CRA. c.COP is specified as a partially ordered set of community members’ tasks (Uc.TSK⊂ TSKU). Formally,
c.COP = { Si: (Uc.TSK, ≤)| 1≤ i ≤ n} .

C. Secure Cooperation-supporting OSN (SeCON)

A SeCON is an OSN which supports prompt and secure
cooperation among users by employing Social CRiBAC. In a
SeCON, every user who is willing to give and/or take help
through communities must let the system know his availability
and preferences by setting his corresponding properties such as
location, job, online status, and access control policies in
advance of actual cooperation. Fig. 3 presents the overview of a
SeCON.

: User : Social Relationship : Community

Figure 3. Overview of SeCON

If a user needs help, he has to inform a SeCON of his
situation and desire. To help him, the system first creates a
community space and then recruits the most eligible and
suitable users based on their properties according to a
community’s recruiting policies (c.RCP). After having all
necessary members, a SeCON grants the required permissions
to each of the members according to a community’s access
control policies (c.AP) to ensure successful cooperation. To
achieve a common goal, all the members undertake given tasks
and cooperate with each other according to a cooperative
process (c.COP). After achieving the goal, the community is
dissolved and all permissions which relate to the cooperation
are revoked. By employing Social CRiBAC, a SeCON is able
to guarantee the security and privacy protection requirements
not only in ordinary cases but also during cooperation by
supporting organization of a trustworthy community with only
eligible users while supporting anonymous cooperation and
time-based sharing.

D. Case Studies

In this section, we describe two communities by using Social
CRiBAC based on the motivating examples.

1) Finding a Lost Child:
c1 = [(goal, Finding a lost child),{createCom, terminateCom},
{ childIdentity, childPhoto, helperlocation, searchArea, search
Result}, { S1, S2, S3, S4}, { AP1, AP2}, { RCP1, RCP2}, {(parent,
Alice’s mom), (police, P1), (helper,{H1, H2, H3, H4})], where

− S1: parent.createRSC(c1.RSC.childIdentity & c1.RSC.child
Photo) & helper.createRSC (location, c1.RSC.helperlocation)

− S2: police.createRSC(c1.RSC.searchArea)
− S3:helper.createRSC(c1.RSC.searchResult)
− S4: searchResult= “Found”� Termination
− AP1: has_cnt(us.CRs ∍c1.parent)�

RPA(us,(write, c1.childIdentity&childPhoto&searchResult)) &
TPA (us, (request, c1.terminateCom))

− AP2: has_cnt(us.CRs ∍ c1.police) �
RPA(us,(read, c1.childIdentity&childPhoto&helperlocation))&
RPA(us, (execute, c1.searchArea)) &
TPA (us, (request, c1.terminateCom))

− AP3: has_cnt(us.CRs ∍ c1.helper) �
RPA(us, (read, c1.childIdentity&childPhoto& searchArea)) &
RPA (us, (write, c1.helperlocation&searchResult))

− RCP1: has_cnt(us.affiliation=”Police”) � CRA(us,c1.Police)
− RCP2: has_cnt(us.location= the place where a mother lost a

child) & has_cnt(us.reputation ≥ the required reputation) �
CRA(us, c1.helper)}

2) Disaster Relief:
c2=[(goal, Rescue a patient who has cardiac disease),
{ createCom, terminateCom}, { patientMedicalHistoty,
patientLocation, patientMedicalSituation, firstaidInstruction,
rescueSituation}, { S1, S2, S3, S4}, { AP1, AP2, AP3,}, { RCP1,
RCP2}, {(parent, P1), (cardiologist,D1), (helper,{H5,H6})],
where

− S1: patient.createRSC(c2.RSC.patientLocation& patient
MedicalSituation)

− S2: helper.createRSC(c2.RSC.patientMedicalSituation)
− S3: cardiologist.createRSC(c2.RSC.firstaidInstruction)
− S4: rescueSituation =”Rescued” � Termination
− AP1: has_cnt(us.CRs ∍ c2.patient) �

RPA(us, (write,c2.RSC.patientLocation& patientMedical
Histoty) & TPA (us, (request, c2.terminateCom))

− AP2: has_cnt(us.CRs ∍ c2.helper) �
RPA(us, (read, c2.patientLocation)) &
RPA(us, (write, c2.patientMedicalSituation)) &
TPA (us, (request, c2.terminateCom))

− AP3: has_cnt(us.CRs ∍ c1.cardiologist) �
RPA(us, (read, c2.patientLocation&patientMedicalHistoty&
patientMedicalSituation) &
RPA (us, (read&write, c2.firstaidInstruction))

− RCP1: has_cnt(us.affiliation=”Cardiologist”) �
CRA(us,c1. cardiologist),

− RCP2: has_cnt(us.location= the place closed to a patient) &
has_cnt(us.reputation ≥ the required reputation) �
CRA(us, c2.helper)}

IV. IMPLEMENTATION

In this section, we demonstrate a SeCON application in
Facebook, called SeCON app, and present how it supports
efficient and secure cooperation among users by using the
working example based on the ‘Finding a lost child’ scenario.

A. Facebook Application of SeCON

We have implemented a prototype of SeCON app which is
a Facebook application that guarantees secure cooperation
among the Facebook users. As a test bed for evaluating our
work, we chose Facebook to take its advantages. As the most
popular OSN, first, Facebook allows the SeCON app to have a
huge pool of potential collaborators so a user is able to easily

get necessary help by using the abundant human resources in
Facebook. Second, Facebook supports rich interaction and
cooperation among users through wall postings, messages, and
group organization. By using such communication methods, we
can promote cooperation among Facebook users. Third,
Facebook provides many useful APIs to the public for
developing applications on Facebook, hence it helps us to
reduce the time and efforts to implement an application. In fact,
the SeCON Facebook Application (in short, SeCON App) is
developed as a web application and utilizes several Facebook
APIs, as follows. For social plug-in, we use Like Button,
Comments, Wall Postings, and Activity Feeds; for
Authentication, we use Login and Registration. The main page
of the SeCON App introduces the objectives of the application
and available community services. This page is opened to the
public but a user should register with the SeCON app to use
community services. When registering, a user needs to allow
the app to access the user’s private information in Facebook
such as profile, check-ins, online status, and location. Getting a
user’s context is essential for the SeCON App to select suitable
members for a particular community.

The architecture of the SeCON App and the SeCON engine
is presented in Fig.4. A Facebook user accesses the SeCON
App to ask other users for help. After creating a community,
members send requests to the SeCON engine to access the
community’s properties and other members’ properties. The
SeCON engine deals with accesses according to the defined
Social CRiBAC policies. The request created by the user is sent
to the Policy Enforcement Point (PEP). The PEP Module then
delivers the request to the Policy Decision Point (PDP) with
information about the member and his request. The PDP
Module decides whether or not to grant the required
permission. In order to do so, the PDP fetches the
corresponding policies from Policy Repository that has Social
CRiBAC policies created by the system administrators, and
evaluates them by using the relevant properties retrieved from
the Property Repository. After making a decision, the PDP
conveys the result to the PEP, and the PEP performs
authorization by granting the requested permissions. If
necessary, the PEP in the SeCON engine can collaborate with
the PEP of Facebook to control accesses to particular properties
of Facebook users, such as wall postings, photos, and
messages.

Facebook
SeCON APP

PEP

PAP

PDP

Administrator

Define Policies

Access
Request

refer

Authorization Policy
Repository

store
policiesForward

Request
Response

Property
Repository

Evaluate

SeCON Engine

Facebook
User

Figure 4. Architecture of SeCON App and SeCON engine

B. Cooperation in the SeCON Application

In this section, we minutely describe a cooperation process
of the SeCON App in the perspective of users.

1) Request for a community service: A user who wants to
receive a certain community service pushes the ‘Community
Creation Request’ button on the app and then selects the most
appropriate community template and specifies requirements
for cooperation. Note that we assume that this app possesses
sufficient templates of communities, which have information
about cooperation and policies in order to reduce the time to
create a community.

2) Creation of an online community: When the SeCON
app receives a request for a community creation, then it
creates a space for a community and invites the suitable
candidates for each community role by using the context
information of registered users, such as sex, age, work,
location, and reputation. To invite a user, the SeCON app
posts an invitation on the user’s wall and then he can accept or
reject the community role offered.

3) Orchestration of cooperation among members: After all
members have been recruited, they start to cooperate with each
other to achieve a common goal. A community manager
created by the app facilitates cooperation by sending
messages to the members the tasks that each member has to
perform according to the community’s situation. Each member
performs the assigned tasks and posts the results on the
community’s wall. The community manager also controls
accesses to the community’s resources using the community’s
policies during cooperation. It distributes the community
policies to members to let the members control the accesses to
their own properties from other members. To illustrate the
situation-aware cooperation process let’s consider the ‘Finding
a lost child’ scenario in detail. In S1, the SeCON app sends a
message to the mother of a missing girl to let her upload her
daughter’s identity information and a photo as the
community’s resources with a proper role-oriented permission,
RP(write,c1.childIdentity & childPhoto). At the same time, all
the helpers who have RP(write, c1.us.location) can write their
location in the community’s location. In S2, the SeCON app
sends a message to a policeman to arrange the search areas for
each helper using the members’ location information and then
lets all the helpers read the assigned search area by accessing
the community resource. In S3, each helper needs to post a
search result. If someone finds the lost girl, the community’s
situation is changed into S4 and a policeman can ask the
SeCON app to terminate the community (as the goal has been
met) with a permission, TP (request, c1.terminateCom).

4) Community dissolution: Once the community’s goal is
achieved, all community roles are revoked from members and
the permissions related to community roles are consequently
revoked. Finally, the community manager deletes the space for
the community in the SeCON App.

For better understanding, we present example cooperation
in SeCON app based on the ‘Finding a lost child’ scenario. (1)

A mother who lost her daughter requests a cooperative help
through the SeCON app by selecting a community template of
‘Finding a lost one’. (2) The SeCON app gets information of
community roles from the template and then finds suitable
candidates for each role based on the users’ context
information. All the members who are eligible and willing to
participate in the community can be assigned to one or more
community roles. (3) After a community is created, its
members can access the community’s resources such as a lost
girl’s identity and photo. For efficient searching, P1, a
policeman who is in charge of this mission, assigns a search
area to each helper. To do so, P1 can access the location
information of all helpers. Each member posts the search result
on the community wall that is visible to members only. If a
member finds the lost child, he reports it and the initiator (in
this case, the mother of a lost child) informs the community
manager. (4) Then, the community is dissolved and all
permissions that were assigned to members for this cooperation
are revoked. It means that the members are no longer able to
access the community resources and other members’
properties. Finally, the community space is deleted from the
SeCON App. The working example of a ‘Finding a lost child’
community in SeCON App is presented in Fig. 5.

Figure 5. Example of a ‘Finding a lost child’ community in the SeCON
Application

V. RELATED WORK

To encourage many users to cooperate with each other in
OSNs, we should be able to guarantee the security and privacy
[18]. In fact, security is one of the most challenging issues in
the social computing research. To protect a user’s private
information and online properties, an OSN needs an
appropriate access control model. Many researchers have
recently proposed access control models for the OSNs. Most of
the proposed models have been focused on the social
relationships among users and/or between users and users’ own
resources in OSNs [11, 12, 13, 14, 15].

Gates [11] has emphasized importance of interpersonal
relationship to control accesses in OSNs and propose the
relationship-based access control (ReBAC). Fong et al. have
focused on the expressiveness of the ReBAC policies and
proposed several policy languages. Those models employ the
social relationships among users as the basis for authorization
decisions and their policy languages are based on modal logic
[12] and/or hybrid logic [13] to express complex policies.

Carminati et al. [14] have proposed a relationship-based
access control model for OSNs. In this model, three types of
security policies are proposed: 1) access control policy to
control the accesses to resources including the users’ resources,
2) filtering policy to specify how resources have to be filtered
out when a user fetches his page, and 3) admin policy to decide
who is authorized to specify policies. For the flexibility and
interoperability of the access control model for OSNs, the
proposed model uses semantic web technologies. The social
network knowledge base (SNKB) is used to model users’
profiles and actions, relationships between users and resources
as well as relationships among users, and resources. The
security policies are modeled using OWL and SWRL. For
practical use of the model, authors present enforcement
architecture and experimental results in [15].

For the fine-grained and systematic access control in OSNs,
Park et al. [16] have proposed the activity-centric access
control model for social computing (ACON). The ACON
introduces a new term, activity which refers to the behaviors of
users and a social network system. By using activity, ACON is
able to control a system’s automatic and administrative services
as well as users’ actions. An activity consists of action(s) and
target(s), and users can be a target as well as resources. In
addition, ACON allows individuals to have their own policies
to specify privacy preferences and multiple sessions
concurrently with different policies and attributes. This model
is a relationship-independent access control model and it can
capture more diverse aspects of OSNs using the attributes of
users, administrators, a social network system, resources, and
sessions. Many existing access control models mentioned
earlier have tried to meet the security requirements of OSNs
but there is no work that considers interactions and cooperation
in OSNs. We present a comparison with existing models and
Social CRiBAC in Table II.

TABLE II. COMPARISON WITH EXISTING MODELS

 Fong
et al.

Carminati et
al.

ACON
Social

CRiBAC

Target objects Resources Resources
Policies

Resources
Users
Attributes
Policies

Resources
Users
Contexts
Tasks
Policies

Authorization Relationship-
dependent

Relationship-
dependent

Relationship-
independent

Relationship-
independent

Interaction control No No Limiteda Yesb

Cooperation
control

No No No Yesc

a. Able to control the role-oriented interactions.
b. Interaction Permissions: the role-oriented permission and task-oriented permission.

c. Cooperation model, anonymous cooperation and temporal privilege.

VI. CONCLUSION

The incredible growth of OSNs has promoted rich
interactions and dynamic cooperation among users in
emergency situations. However, support for cooperation in
existing OSNs is still in its infancy due to lack of an effective
cooperation mechanism and a security model. To overcome the
limitations, we have identified the security requirements for
efficient and secure cooperation in OSNs and have proposed an
access control model, called Social CRiBAC, which meets the
requirements. We summarize the major contributions of this
paper as follows.

• We have identified the security requirements for efficient
and secure cooperation among users in OSNs.

• We have proposed Social CRiBAC to control unauthorized
accesses to the properties of users, communities, and an
OSN such as context information, tasks, resources, and
policies. The proposed model enables OSNs to guarantee
efficient organization and secure cooperation of
communities.

• We have proposed a Secure Cooperation-Supported OSN
(SeCON) that employs Social CRiBAC and have
presented two case studies.

• We have implemented a Facebook application, called the
SeCON app, to show the feasibility of Social CRiBAC and
SeCON based on an example case study, Finding a lost
child. Through the implementation, we have demonstrated
the potential of the proposed work.

To guarantee more reliable and dynamic cooperation in
OSNs, some future research directions include the following:

• An administration model to facilitate administration of the
social CRiBAC policies.

• Security analysis on the social CRiBAC model.

ACKNOWLEDGEMENT

The work of James Joshi has been supported by the by the US
National Science Foundation award IIS-0545912.

REFERENCES

[1] Y. Jung and J. B. D. Joshi, “CRiBAC: Community-centric role

interaction based access control model”, Computers & Security, vol. 31
No.4, 2012, pp. 497-523

[2] Facebook Statistics, http://www.facebook.com/press/ info.php?statistics

[3] Fox News, http://www.myfoxdfw.com/dpps/news/people-react-to-irene-
on-facebook-and-twitter-dpgoh-20110829-fc_14765896

[4] ABC News, ‘Japan Earthquake and Tsunami: Social Media Spreads
News, Raises Relief Funds’, http://abcnews.go.com/ Technology/japan-
earthquake-tsunami-drive-social-media-dialogue/story?id=13117677

[5] Volunteer on Twitter to Help with Hurricane Irene and Other Disasters,
http://hope140.org/blog/?p=209

[6] Lost dog found on Twitter, http://twitter.com/#!/ TheLDFBand

[7] Fidofinder on Twitter, http://twitter.com/#!/fidofinder

[8] Can Twitter Help Save Lives? A Health Care Social Media Case Study-
Part I, http://advancingyourhealth.org/highlights /2011/04/27/can-
twitter-help-save-lives-a-health-care-social-media-case-study-part-i/

[9] L. A. cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-preserving
online social network leveraging on real-life trust”, IEEE
Communications, Vol. 47, No. 12, Dec 2009, pp. 94 - 101

[10] C. Zhang, J. Sun, X. Zhu, and Y. Fang, “Privacy and security for online
social networks: challenges and opportunities”, IEEE Network, vol 24,
No. 4, July-August 2010, pp 13 - 18

[11] Carrie E. Gates. Access Control requirements for Web 2.0 security and
privacy. In IEEE Web 2.0 privacy and security wjorkshop (W2SP’07),
Oakland, California, USA, may 2007

[12] Philip W.L. Fong and Ida Siahaan, 2011. Relationship-Based Access
Control Policies and Their Policy Languages. In Proceeding of the 16th
ACM symposium on Access control models and technologies
(SACMAT’11). ACM New York. 51-60

[13] Glenn Bruns, Philip W. L. Fong, Ida Siahaan, Michael Huth.
Relationship-based access control: its expression and enforcement
through hybrid logic. In Proceeding of the 2nd ACM Conference on
Data and Application Security and Privacy (CODASPY 2012), San
Antonio, USA, February 7-9, 2012. 117-124

[14] Barbara Carminati, Elena Ferrari, and Andrea Perego. 2009. Enforcing
access control in Web-based social networks. ACM Transactions on
Informationand System Security (TISSEC). Vol. 13, No. 1, Article 6,
November 2009, 1-38

[15] Barbara Carminati, Elena Ferrari, Raymond Heatherly, Murat
Kantarcioglu, Bhavani Thuraisingham. Semantic web-based social
network access control. Computers & Security, Vol. 30, No. 2-3. (08
March 2011), pp. 108-115

[16] J. Park, R. Sandhu, and Y. Cheng, “ACON: Activity-Centric Access
Control for Social Computing”, the 6th International Conference on
Availability, Reliability and Security (ARES), 22-26 Aug. 2011, pp. 242
- 247

[17] Y. Jung and M. Kim, “Situation-Aware Community Computing Model
for Developing Dynamic Ubiquitous Computing Systems”, Journal of
Universal Computer Science, Vol. 16, No.15, 2010, pp. 2139-2174.

[18] M. Parameswaran, “Social computing: An overview”, Communications
of the Association for Information Systems, Vol.19, 2007, pp.762-780.

