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Abstract—In collaborative networks operating over a wireless
medium, to maximize connectivity of the network, two nodes
that are not directly connected may need to communicate with
one another through other nodes in the network. However in
such networks, not all nodes are reliable. Therefore it may
be necessary for legitimate users to monitor the behavior of
other nodes such that they can form a belief about whether
those nodes are potential attackers or not. These beliefs can be
studied precisely in game theoretic scenarios such as Bayesian
attacker detection games. These games are strategic games with
incomplete information for modeling the interaction between
nodes in wireless networks with channel uncertainty. However
these games do not normally consider the reasoning abilities
of agents. One solution is to use formal logics which allow for
modeling the reasoning abilities of agents as well as allowing
formal reasoning about certain properties of games such as
the Nash equilibrium. In this paper, we propose an epistemic
logic to study strategic games with incomplete information. In
this logic we can precisely describe what the requirements and
consequences of informative actions are. We can reason what
rational agents should do if they can choose between different
available actions. In addition, this language can be used as a
semantically well-defined query language for model checkers to
automatically verify the game descriptions with respect to their
intended specifications.

Index Terms—Bayesian games, epistemic logic, wireless net-
work security.

I. INTRODUCTION

Wireless networks cover a wide spectrum of architectures
such as wireless metropolitan mesh networks, sensor networks
and ad hoc networks [1]. Collaboration in these networks
improves the connectivity [2], for example with an ad hoc
network, the number of sensor nodes can collaboratively col-
lect information and then collaboratively send the information
back [3]. However since in these networks collaborative nodes
are responsible for all functions such as packet forwarding,
routing and network management, they are sensitive to the
misbehavior of nodes. The nodes’ misbehaviors that affect
these operations may range from simple selfishness or lack
of collaboration due to the need for power saving to active
attacks aiming at denial of service(DoS) [4]. Here we focus
on nodes that are attackers. While advanced cryptographic
techniques can be used, the security challenges, e.g., DoS
attacks, in wireless networks are not fully addressed because
of the distributed nature of the networks. Hence, it is desirable

that security schemes can be modeled from nodes’ perspective.
Wang et al [5] used game theory to capture and analyze the
interaction between an attacker and a regular node in wireless
networks. They modeled the scenario as Bayesian attacker
detection games, in which nodes have imperfect information
because the attacker can disguise as a regular node and
the actions are hidden because of the noise and imperfect
observation.

Games with incomplete information or Bayesian games
such as Bayesian attacker detection games provide a natural
and compelling model that enables understanding actions
of players under uncertainty. However these models do not
provide any mechanisms for players (nodes) to reason about
different situations in these models. One solution is to use
formal logics for these models. The positive aspects of logic
approaches are that we can specify the properties of agents
and multi-agent systems as logical axioms and theorems in the
language with clear semantics. Therefore there is no ambiguity
in the specification and everything is explicit. Furthermore,
properties, interrelationships and inferences are open to ex-
amination. In comparison to logic, computer programs need
implementation and control aspects within. Thus the issues,
which are to be tested, can often become confusing [6].

The aim of this paper is to represent and reason about
Bayesian attacker detection games using formal logics. We
develop a formal language for representing Bayesian games.
There are several approaches for considering uncertainty in
a logic that involves the quantification of uncertainty [7]. In
this paper, we use beliefs about uncertainty to model Bayesian
games. The logic for Bayesian games is the extension of the
epistemic logic for normal form games and our work has
been inspired from [8] and [9]. We introduce several special
propositions and axioms to model Bayesian games. We also
apply the extended logic to model a Bayesian game. We then
illustrate reasoning for the solution concept in this game.

The structure of this paper is as follows. First, we present
the syntax and the semantics of the extended epistemic logic
for Bayesian games. Next is modeling Bayesian attacker
detection games by this logic. Following, we use the logic for
reasoning about the solution concept of these games. The paper
concludes with a summary and discussion of future work.
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II. EPISTEMIC LOGIC FOR BAYESIAN GAMES

Bayesian games model those situations in which the game
being played is not common knowledge. Instead, some players
may hold a different payoff table or pure strategy set to be true.
In a Bayesian game a player’s beliefs include his knowledge
of the game description (payoffs, strategies), as well as the
probability distribution over the beliefs other agents may have.
The set of beliefs held by a player is known as his epistemic
type or simply type. The uncertainty is defined directly over a
game’s utility function. Therefore a Bayesian game is a tuple
(N,S,Θ, p, u) where:
• N is a finite set of n players, indexed by i.
• S = S1× ...×Sn where Si is a finite set of strategies of

player i.
• Θ = Θ1× ...×Θn, where Θi is the type space of player
i.

• p : Θ 7−→ [0, 1] is a common prior over types.
• u = (u1, ..., un) where ui : S ×Θ→ R is a real-valued

utility (or payoff) function for player i.
The assumption is that all the above is common knowledge

among the players, and each agent knows his own type.
In this section we propose an epistemic logic for represent-

ing and reasoning about Bayesian games.
The logical symbols used are ¬ (negation), ∧ (conjunction),
∨ (disjunction), (implication), and ↔ (equivalence). The con-
junction (disjunction) of all sentences from a finite set Σ is
abbreviated by

∧
Σ (

∨
Σ), assuming commutativity. If the

ϕi enumerate Σ we may also write
∧
i ϕi (

∨
i ϕi). Before

we go through the propositions and axioms of the epistemic
logic, we should give a clear meaning for notation θni . This
notation denotes a set of types for player i, which means:
θni = {θi,1, θi,2, ..., θi,n}. In this definition θni says that
player i has n different types. The other critical notation
is θni,n(−i) that describes a set of types for player i in
combination with other players’ types. The language has a
knowledge operator Ki, one for each agent i ∈ N . Basic
propositions are:
• The proposition letters imθni stand for the statement ’i

plays his mth strategy in his θni type ’.
• The proposition ui(1k1 , ..., NkN , θni , θn(−i)) =

ri,1k1
,...,NkN ,θni ,θn(−i)

denotes that the utility for
player i with type θni , when the strategy profile
(1k1

, ..., NkN ) is played in combination with other
players types θn(−i) , equals the number r.

• R is a set of countably many symbols such as r. The
elements of R represent real numbers. In other words, R
is a countable subset of the set of real numbers.

• The proposition ri,1k1
,...,im,...,NkN�ri,1k1

,...,in,...,NkN

states that for player i his mth strategy is at least as
good as his nth strategy.

• The proposition rattypei denotes the rationality of player
i, in the sense that i is an expected utility maximizer.

We use the syntax introduced by [10] for probabilistic
expressions. Pi(.) = . represents i’s probabilistic belief of
player i’s type and arbitrary finite sums of such expressions

Pi(ϕ1).q1 + ...+ Pi(ϕn).qn ≥ q are allowed as long as they
are not mixed over players (as Pi(ϕ1).q1 + Pj(ϕ2).q2 ≥ q
would be for i 6= j), and obvious abbreviations use the Σ
notation. In this work ϕ represents the type of players and q
the payoffs.

To allow for probabilistic reasoning the Kolmogorov axioms
are essential.
• NonNeg: Pi(ϕ1) ≥ 0.
• True: Pi(>) = 1.
• False: Pi(⊥) = 0.
• Add: Pi(ϕ) = Pi(ϕ ∧ ψ) + Pi(ϕ ∧ ¬ψ).
• Dist: Pi(ϕ) = Pi(ψ) whenever ϕ↔ ψ is a propositional

tautology.
In order to ensure that probabilistic and non-probabilistic

beliefs are related in the right way, two additional axioms are
useful [9].
• Cons: Kiϕ↔ Pi(ϕ) = 1.
• KnProb: ϕ → Kiϕ for ϕ an i-probability sentence (the

sentence starts with Pi or Boolean combinations thereof).
Then there are specific axioms for Bayesian games.

∧
i

∨
m

imθni (G′1)∧
i

∧
m

¬(imθni ∧ inθni ) (G′2)∧
i

∧
m

(Kiimθni ↔ imθni ) (G′3)

ui(1k1 , ..., NkN , θni,n(−i)) = r→
Kiui(1k1 , ..., NkN , θni,n(−i)) = r (G′4)

(ri,1k1
,...,im,...,NkN ,θni,n(−i)

�

ri,1k1
,...,in,...,NkN ,θni,n(−i)

)∨

(ri,1k1
,...,in,...,NkN ,θni,n(−i)

�

ri,1k1
,...,im,...,NkN ,θni,n(−i)

) (G′5)

Axiom G′1 says that every player plays one strategy based
on his type in each state. And G′2 states that a player cannot
choose two strategies at each state. Axiom G′3 implies that
every player knows his own strategies likewise G′4 says that
every player knows its own utilities. The last axiom G′5 states
that the ordering of strategies is complete.

The epistemic logic is a multi-modal logic with n operators
K1,K2, ...,Kn where for i = 1, ..., n, Kiϕ means that player
i knows that ϕ. On the semantic side we use Kripke structures
〈Ω,K1, ...,Kn〉 where Ω is a set of states or possible worlds
and for every i ∈ {1, ..., n},Ki is a binary accessibility
relation on Ω. For every w ∈ Ω and for every i ∈ {1, ..., n}
let Ki(w) = {w′ ∈ Ω : wKiw′}.

Given a game G = (N, {Si}i∈N , {Θi}i∈N , p, u) and a
Kripke frame F = 〈Ω, {Ki}i∈N 〉, a frame for G is obtained
by adding the following functions to F . These functions are
σi : Ω −→ Si(i ∈ N) satisfying that if w′ ∈ Ki(w) then
σi(w

′) = σi(w). It is necessary to have the notation σ−i(w)
which is the strategy profile of the players other than i. In



this logic we have the formula Pi(ϕ) ≥ b, which means that
”according to agent i, formula ϕ holds with probability of
at least b”, where b is an arbitrary rational number. From
probability theory [11] a probability space is a tuple (Γ,H, µ)
where Γ is a set called a sample space, H is a σ-algebra
of subsets of Γ, whose elements are called measurable sets,
and a probability measure µ is defined on the elements of H.
Without loss of generality we assume that Γ = H. Hence
the other type of functions is Pi which is a probability
assignment that assigns to each player i and state w ∈ Ω a
probability space P(i, w) = (σi,w, µi,w) where σi,w = σi(w)
and σi(w) : Ω −→ µ(Si)(i ∈ N). P(i, w) can be considered
as ∆(Ω) that denotes the set of probability distribution over
Ω. Therefore Pi : Ω −→ ∆(Ω). It means that Pi is the sets
{µ ∈ ∆(Ω) : µ(E) ≥ α} for all E ∈ σi(w) and rational
number α ∈ [0, 1].

Thus we extend the G-frame to FG =
〈Ω, {Ki}i∈N , {σi}i∈N , {Pi}i∈N 〉. G-model is also extended
by adding to FG the following valuation:
• w |= imθni, if and only if σi(w) = imθni, and
µi(σi(w)) = θni .

• w |= ui(1k1
, ..., NkN , θni , θn(−i)) =

ri,1k1
,...,NkN ,θni ,θn(−i)

if and only if u(σi(w), σ−i(w)) =

r and µi,w(σi(w), σ−i(w)) = θni,n(−i) .
• w |= Pi(ϕ) ≥ b if and only if µi,w(σi,w(ϕ)) ≥ b while
σi,w(ϕ) = {w ∈ σi,w|w |= ϕ}.

The proposition that captures the rationality of player i with
type θni is called rattypei. The axiom RATType which is the
formalism of utility maximization by considering a player’s
type is defined as the following equivalence:

rattypei ↔
∧
mΘi

((Ki

∧
1k1

,...,NkN

∑
1k1

,...,NkN

Pi(θni,n(−i))

ui(1k1 , ..., NkN , θi,ni , θ−i,n(−i)) =

ri,1k1
,...,NkN ,θni ,θ−n(−i)

∧ imθni )→∧
1ki

∑
m

pmθni .ri,1k1
,...,im,...,NkN ,θni,n(−i)

≥
∑
1ki

p1k1θni
ri,1k1

,...,ii,...,NkN ,θni,n(−i)
) (1)

The above axiom states that player i is a utility maximizer
whenever, if he decides to play his mθi th strategy in a
situation in which he has probabilistic beliefs Pi(θni , n(−i))
about utility (captured by the ri,k,l,θni ,θn(−i)

) then the mθni th
strategy is better than any other, given his beliefs.

At this stage the valuation function for G-model satisfies
the following extra condition:
• w |= rattypei if and only if, for every siθni

∈ Si there
exists an w′ ∈ Ki(w) such that u(imθni , σ−i(w

′)) �
u(si, σ−i(w

′)) and µi,w(σi(w), σ−i(w)) = θni,n(−i) .
Proposition 1: The proposed epistemic logic is sound with

respect to the class of G-models.
Proof

• Axioms G′1 and G′2 are valid in every model because at
each state w there is a unique strategy imθni, ∈ Si such
that σi(w) = imθni, and µi(σi(w)) = θni by validation
rule w |= imθni, if and only if σi(w) = imθni, and
µi(σi(w)) = θni .

• Axiom G′3 because if w′ ∈ Ki(w) then σi(w) = σi(w
′)

and by using µi we have µi(σi(w′)) = µi(σi(w)) = θni .
• Axiom G′4 is valid because if if w′ ∈ Ki(w) then
σi(w

′) = σi(w) and then we have u(σi(w), σ−i(w)) =
u(σi(w

′), σ−i(w)) also by applying µi we have
µi(σi(w

′)) = µi(σi(w)) = θni and because
each σ−i(w) is unique and has unique type θn(−i)

µi,w(σi(w
′), σ−i(w)) = θni,n(−i) .

• Axiom G′5 is valid because for every state w there
is a unique profile strategies σ−i(w) of the player
other than i and the ordering of ui(1k1

, ..., NkN ) in-
duces an ordering of

∧
m u(im, σ−i(w)) and also because

each σ−i(w)) is unique and has unique type θn(−i)

µi,w(σi(w), σ−i(w)) = θni,n(−i) is unique and it does
not have any effect on the ordering.

• rattypei is valid. The proof is same as using reasons for
G′1 till G′5 . Besides we should deal with Pi(θni,n(−i))
and with respect to third valuation function it is straight
forward.

N
od

e
i
θ
i
=

1 Node j θj = 0
Monitor Idle

Attack −uA − cA −uA − uM uA − cA −uA
Cooperate −uC −uM −uC 0

Node j θj = 0
Mintor Idle

Node i θi = 0 Cooperate −uC −uM −uC 0

TABLE I
PAYOFF MATRIX OF AN ATTACKER DETECTION GAME [5]

III. BAYESIAN ATTACKER DETECTION GAME

Attacker detection games are proposed by Wang et al [5].
In this section we summarize this game and its analysis.

Attacker detection game [5]. These games model
the interaction between the potential attacker node i
and the regular node j. The regular node cannot tell
if node i is an attacker or not, instead it can only
detect the attacker through observations. Nodes can
have different types, and these types are their private
information.
Here as the game has two nodes (players), we have
two types namely θi for node i and θj for node
j. While θj = 0, i.e., always regular, θi can be
either 1 (attacker) or 0 (regular), depending on its
true type. This game is a Bayesian game as the
type of node i is hidden, and the observation is not
accurate due to noise. The strategies si of node i
are based on its type. For θi = 0, si={Cooperate}
that is, the only strategy available to a regular node
is cooperation. For θi = 1, si={Attack, Cooperate},
i.e., an attacker can camouflage as regular. Node j



Node j
Monitor Idle

Node i attack,cooperate p(−uA − cA)+(1-p)(−uC) p(uA − uM )+(1-p)(−uM ) p(uA − cA)+(1-p)(−uC) p(−uA)
cooperate,cooperate −uC −uM −uC 0

TABLE II
THE INDUCED NORMAL FORM OF BAYESIAN ATTACKER DETECTION GAMES

has the option to monitor or be idle regardless of
whether node i is attacking or not, thus node j has
two available strategies sj={Monitor, Idle}. Because
the scenario is modeled based on the game theory
approach we need a payoff matrix. For this purpose
the following values are assumed. uA is considered
as the payoff of an attacker node if it successfully
attacks. The cost associated with such an attack is
cA. The cost of monitoring is uM for the regular
node j and 0 if it is idle. Therefore, for the strategy
profile (si, sj)=(Attack, Idle), the net utility for a
successful attacker i is uA− cA, the loss for node j
is −uA due to the attack. Similarly, if the strategy
profile is (si, sj) = (Attack, Monitor), the attacker
node i loses uA + cA, and the net gain for node j
is uA − uM .
Nevertheless, if an attacker node chooses to coop-
erate, the cost is uC . Based on the types of node i
and node j and their strategies, the payoffs matrices
are shown in table I. In this work we also assume
that uA > um > uC > cA.
In this game by monitoring both nodes develop
knowledge about their opponent over time. Devel-
oping the knowledge is useful because it decreases
the costs for both players. For the regular node, it is
not optimum to monitor always due to the cost of
monitoring. It is also not suitable for attacker node
to attack all times because it increases the chance of
detection. While node j is monitoring, it acquires
a knowledge about node i on whether it is an
attacker or not. This knowledge is updated over time
whenever node i is observed to be an attacker. This
observation is possible from the attacker node’s point
of view. Despite of the fact that the uncertainty of the
wireless medium makes the observations inaccurate,
the more often the attacker attacks, the quicker node
j can develop knowledge about its attacker type. The
strategies adopted by node i is only determined by
the current state of the knowledge, i.e., when the
knowledge update process takes place. However, the
knowledge held by node j is its private information,
and node i does not have access to this information.
Thus, it is important for node i to develop its own
knowledge system.

IV. REASONING BY EPISTEMIC LOGIC

Due to the uncertainty in Bayesian games, a Bayesian game
is modeled as a set of games that differ only in their payoffs,

and a common prior defined over them. For Bayesian games
the counterpart of the Nash equilibrium is called the Bayes-
Nash equilibrium. This equilibrium for agent i is a mixed
strategy profile which is the best response to a mixed strategy
profile of the other player. The Bayes-Nash equilibrium may
seem conceptually complicated. However, the solution is to
construct a normal form representation that corresponds to a
given Bayesian game. This representation is called an induced
normal form. We now reason why we should transform the
Bayesian games to their induced normal forms. The pattern of
reasoning here is adopted from [12].

For the attacker detection games with two players, attacker
and regular nodes, if the current state is a member of the
equivalence states (the states that are connected by an ac-
cessibility relation in the Kripke models) that the attacker
node currently considers as possible states, it also might
consider many possibilities for what the equivalence states of
the regular node might be. Thus, the attacker node must take
into account what the regular node is likely to do in all of
these circumstances. But regular nodes choice depends on the
states it considers possible, and it may consider a state possible
that is not in the actual equivalence states of the attacker node.
And so on. We therefore have to take into account all reachable
states, that is (because our model is connected) all states in
the model. This means that the attacker node has to know
what the regular node might do in any of the states in the
model, independent from his (regular node) actual state, and
similarly for the attacker node. This explains why strategies
are formulated as contingencies for every state in the model,
i.e., as functions from every state to a choice of strategies in
that state. These strategies and their expected payoffs define
normal induced games for Bayesian games as our case here
the attacker detection games. Payoffs are computed by taking
the average over all states in the model. It is clear that it
does not suffice to look only in the current state, as each
agent also might consider other states possible. But why not,
then, compute a players payoff by taking the average over all
the states that that agent considers possible, i.e., that agents
equivalence class? We cannot, because the strategic game must
be common knowledge, in order for solution concepts such as
the Nash equilibrium to make sense.

Here for the game from table I we have two players and
two games. To model the scenario based on the logic from II
we consider the attacker node as 1 and the regular node as 2.
The players do not know which game is about to be played.
Therefore we represent the game as an induced normal form
game. The assumption is that θi = 1 = θ1 with probability p
and θi = 0 = θ0 with probability 1-p. ’co’ is the abbreviation



of cooperate and ’att’ is the abbreviation of attack. For the
first normal game the logical notation for attacker node’s
strategy profile is (1co, 1att). Note that in the Bayesian game
the attacker node has three possible pure strategies. These
pure strategies are derived from the two types and the two
actions of the player. Then the attacker’s three strategies in a
Bayesian game can be labelled ”the first action in first type”
(attθi = 1) ”the second action in first type” (coθi = 1) and
”the second action in second type” (coθi = 0). The logical
notations respectively are 1coθ1 , 1attθ1 and 1coθ0 .

The regular node has only one type and two pure strategies
2monitor and 2idle. Now we have a 2 × 2 normal form game
in which the utilities are the ex-ante expected utilities in the
individual games, given the agents’ common prior belief. The
ex-ante utility is an expected utility in which players know
nothing about the other players actual type. The payoff matrix
for this attacker detection game is constructed which is the
induced normal form of this game. It is given in table II.

As we assume that uA > um > uC > cA we have uA −
cA > uA − uM > 0 > −uC > −uM > −uA > −uA − cA.
We now specify the axioms for the attacker detection game:
• 1coθ1 ∨ 1attθ1 ∨ 1coθ0
• 2monitor ∨ 2idle

The above formulae mean that each node should choose one
strategy at each state.
• (1coθ1 → ¬(1attθ1 ∨ 1coθ0 )) ∧ (1attθ1 → ¬(1coθ1 ∨

1coθ0 )) ∧ (1coθ0 → ¬(1coθ1 ∨ 1attθ1 ))
• ¬(2monitor ∧ 2idle)

These formulae say that each node can not choose more than
one strategy at each state
• K11coθ1 ↔ 1coθ1

It says that attacker node knows his own strategies which here
is cooperation with type θ1.
• u1(1co, 2monitor, θ1) = −uA − cA →
K1u1(1co, 2monitor, θ1) = −uA − cA

It says that attacker node knows its own utility at this state.
• r1,1co,2monitor,θ1 � r1,1att,2monitor,θ1

It shows that the ordering of strategies are complete.
• rattype1 ↔ K1((P1(θ1)u1(1att, 2monitor) ∧

P1(θ0)u1(1co, 2monitor)) = r1,1att,1co,2monitor,θ1,θ0 ∧
(P1(θ1)u1(1co, 2monitor) ∧ P1(θ0)u1(1co, 2monitor)) =
r1,1co,1co,2monitor,θ1,θ0 ∧ (1coθ1 ∧ 1coθ0 )) →
p1coθ1

∧ p1coθ0
r1,1co,1co,2monitor,θ1,θ0 ≥ p1attθ1

∧
p1coθ0

r1,1att,1co,2monitor,θ1,θ0
The above axiom states that player 1 is a utility maximizer

whenever, if he decides to play his (1coθ1 ∧1coθ0 ) or (1attθ1 ∧
1coθ0 ) strategy in a situation in which he has probabilistic
beliefs P1(θ1) ∧ P1(θ0) about utility then the (1coθ1 ∧ 1coθ0 )
strategy is better than the other, given his beliefs. This pattern
is reasoning can be continued to find the best response for
both nodes. The result is the Bayes-Nash equilibrium.

Now we can have an axiom for detection of attack.
detect attack↔ K2(P1(θ0)1coθ0 ) ∧ P1(θ1)1attθ1 ) ∧ ¬2idle

says that the regular node can detect the attacker node
when it develops knowledge about strategies and forms a
probabilistic belief about the performance of the attacker node
and when it is not idle. The axiom is correct because the
regular node develops the knowledge about the strategies of the
attacker node and its types which means that in any state that
the regular node considers possible and by the accessibility
relation is related to equivalence states if at those states its
strategy is not idle, the regular node can detect attack.

In this section we have transformed the Bayesian attacker
detection games into the induced normal form then and we
model the game based on the epistemic logic developed in
section II. We show that if the nodes are rational they try to
maximize their own utilities. And also we show that in which
state the regular node can detect the attacker.

V. CONCLUSION

Because of an increasing number of applications of wire-
less networks with collaborative nodes, the security of these
networks has been receiving increasing attention among re-
searchers in recent years. However, little has been done so
far in terms of the definition of security needs specific to
different types of scenarios that can be defined for wireless
networks. One approach is to model attacker detection with
uncertainty of node types as a Bayesian game in the game
theoretic scenario.

However the conceptual study of Bayesian game-playing
situations cannot be used to derive stable results as long as
no appropriate formalism is available to model the situation.
The main purpose of this paper was to show that a formal
tool, namely epistemic logic for normal form games can be
used to represent and reason about Bayesian games. However,
special propositions and axioms are introduced to model the
uncertainty of players about payoffs in Bayesian games. We
show that this language provides reasoning about the Bayes-
Nash equilibrium in Bayesian games. By using the language
for representing and reasoning about Bayesian attacker de-
tection games, an example application of this language is
provided. Although we show the use of the extended language
to verify some specifications of Bayesian games such as the
solution concept, these verifications for these games can also
be performed through model checking. In general, model
checking allows us to test whether a defined model or system
meets a given specification. The inputs into a model checker
are the description of a system to be analyzed and a number of
properties, often expressed as formulae of one kind of logic. In
the future, we plan to develop a model checker that supports
the epistemic logic for Bayesian games.
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[12] T. Ågotnes and H. P. van Ditmarsch, “What will they say? - public
announcement games,” Synthese, vol. 179, no. Supplement-1, pp. 57–
85, 2011.


