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Abstract—This work considers maintaining materialized view
in a distributed environment where the collaboration from highly
autonomous operational database management systems is limited
to granting read only access on a set of selected relational tables.
In addition, due to possibly large volumes of remote source
data involved in the view maintenance process, and consequently
enormous overhead associated with data transfer, efficiency issues
must been taken into the consideration. This proposal is based
on the observation that usually, there is a large amount of static
data in relational tables. It is proposed to use some statistical
techniques at data warehouse system to helps us understand the
essential characteristics of raw data at remote sites. Based on
the characteristics of raw data, some optimization techniques
are presented.

Index Terms—Delta Extraction, View Maintenance, Limited
Collaborative Environment.

I. INTRODUCTION

Large and multinational businesses often distribute their
operational database management systems over wide area
networks. Implementation of a data warehouse system that
integrates the distributed and highly autonomous operational
database systems must overcome many technical and orga-
nizational problems. Firstly, distribution and heterogeneity of
the operational database systems contribute to the transmission
problems and to syntax and semantic related data integration
problems. Additionally, the high level of autonomy exercised
by local business units of a large organization causes the prob-
lems with processing priorities, because the data warehouse
related applications are typically run at the lowest possible
priority level in order to maintain the highest throughput of
the local systems. Optimization of data transmission, i.e. the
lower transmission rates, can only be achieved by doing more
processing at the remote sites. On the other land, the lower
processing load at the remote sites requires transmission of all
needed data to an integrated data warehouse.

A materialized view is defined as a permanently stored
relational table which contains integrated data from other data
sources. It is an important technique in data warehousing.
When large volumes of data from multiple data sources are in-
volved in query processing, materialized view can significantly

accelerate the query processing. However, data sources change
over time. To keep the data up to date, a materialized view
must reflect these changes and this process is called materi-
alized view maintenance. In a distributed environment, view
maintenance by recomputing the view definition can incur an
enormous overhead associated with data transportation and
loading. To avoid this, we need to be able to detect changes
from remote data sources. However, the problem of detecting
and extracting these changes from highly autonomous systems
in a distributed environment is neither a straight forward
process nor an efficient one [5], [9].

At present, many proposed solutions to the problem of dis-
tributed materialized view maintenance have some similarities.
They all assume that remote sites involved are fully engaged
in the view maintenance process. Our work aims to highlight
an area important to the view maintenance problem that has
only received very limited research attention, namely, view
maintenance with a limited degree of collaboration supported
by a distributed environment.

We define a taxonomy of collaboration levels of view
maintenance that is based on the functionalities, resources,
distribution and control provided by the remote sites to the
data warehouse system. At the highest level, individual re-
mote sites take an active part in the view maintenance by
implementing the functions to detect the modifications of
their source relations, to validate whether the modifications
are applicable to the current view, to compute the minimum
change to the current view and to send the result to the data
warehouse system. The control over the interactions among
the functions mentioned above and resources are also handled
by the remote sites. The remote sites prepare all information
required to maintain a materialized view, but hide the low level
implementation details. The remote sites are a single image
thus transparent as viewed from the data warehouse system.

The next level is characterized by the loosely coupled
structure of remote sites. From the data warehouse system’s
point of view, in such setting, although remote sites are
logically interrelated over a computer network and participate
in a federation to make their local data sharable, they operate
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independently and are in fact separate systems. Individual
remote sites are engaged to the view maintenance process
by detecting the modification of their local data sources,
notifying the modifications to the data warehouse system or
exchanging information among other remote sites if required.
The implementation techniques may include deployment of
database trigger or writing the transaction file at a remote data
sources, etc. The functions and resources owned by remote
sites for view maintenance are all made accessible to the
data warehouse system. However, the data warehouse system
itself is responsible for coordinating the interactions among all
remote sites, computing the final modification and applying the
modification to the current state of view.

The lowest level is characterized by the isolation of remote
sites, where individual remote sites are stand alone DBMS,
which know neither the existence of others nor how to com-
municate with them, so can only exchange information with
the data warehouse system, but not with other remote sites.
Each remote site restricts its cooperation to granting read-
only access rights to the selected relational tables and imposes
limitations on the computational resource available to the
data warehouse related applications. Furthermore, individual
remote sites do not provide any function to support the view
maintenance process, for example, no triggers or transaction
files upon the data sources to detect and notify of the change
of data sources. With this limited degree of collaboration, the
data warehouse system not only has to coordinate the view
maintenance process, but also has to undertake the tasks such
as detecting modification upon data sources, validating the
applicability of modification to the current view and generating
final changes to the view.

When the collaboration is at the lowest level, many easy
options to detect and extract date changes are unavailable. One
possible way is to ship all data of interest from all remote
sites to a data warehouse system. Here the data from each
remote site is referred to as a data fragment. After all data
fragments are received, based on view definition, the data
warehouse assembles these data fragments and reload them
into materialized view. In the case of isolation among the
remote sites, there is no join operation performed between
remote sites, thus the fragments shipped to a data warehouse
may have a large amount of redundancy. Secondly, the amount
of data transmitted can be quite large and thus costly. The
large amount of data transportation may make this solution
impractical or too expensive

Our solution is to compare the data in the current view with
the data in remote source relations, derive the modification,
and generate the change to the view if applicable. Clearly,
both precessing costs and communication costs may incurred
during this process. Processing costs usually are evaluated in
terms of the number of disk accesses and CPU processing
time, while communication costs are expressed in terms of
total amount of data transmitted. The challenges are to reduce
the communication costs over the computer networks and to
optimize processing costs at remote systems. In this paper, we
are mostly concerned with geographically distributed computer

networks and propose a method to reduce the communication
costs at the expense of some additional data processing. With
the advent of more powerful processors and cheaper memory,
we believe the issue of data transportation of a large volume
of data will be highlighted.

The paper is structured as follows: In Section 2, we briefly
review some previous related works. In Section 3, we present
the preliminaries and system overview. In Section 4, we
formulate the our research problem. In Section 5, we define
a statistic model and present the optimization techniques. In
Section 6, we explain the process for delta extraction in details.
Finally, in Section 7, we summarize the proposed work and
discuss some future works.

II. PREVIOUS WORKS

To maintain a materialized view in a distributed environ-
ment, one of the critical issues is how to efficiently extract
the delta from the remote source systems, particularly if the
data volumes are large. The previous works in [4], proposed
their data structures and algorithms for the distributed view
maintenance, which is based on the assumption that the delta
can be accumulated from the transaction logs of the remote
source systems. We argue that this approach has its difficulties.
Firstly, because of system security and data privacy, the
administrators of remote source systems may not be willing to
provide such accesses. Secondly, the structure of transaction
log file may change over time, which in turn requires the
frequent changes of the view maintaining algorithm and data
structure used. Recently, many view maintaining algorithms
[8], [71, [2] all have the assumption that every remote data
source system is able and willing to send a message to
notify of the data changes. After receiving the notification
message, the data warehouse system issues a set of queries
to all other remote source relations involved. The result of
queries will be used to compute the update to the current
materialized view. This approach requires all remote sites
to implement database triggers upon the source relations to
notify data changes. Certainly, using database trigger is an
ideal way to capture delta from remote source relations.
However, some legacy source systems may not have such
trigger facilities at all. Even if there is one, because of extra
costs on application development and maintenance, for remote
systems, this may not always be an acceptable solution. The
environment of view maintenance with the assumptions listed
above, namely, using database trigger and access to transaction
log, is referred as a higher degree collaborative environment.
A higher degree of collaborations in a distributed environment
usually is preferred, however, sometimes it is unachievable in
reality.

Extracting delta by comparing a current data snapshot with
an earlier one is called the snapshot differential algorithms. To
address the problem of delta extraction for a data warehouse in
which some autonomous source system may be involved, the
works in [5] formally defined the snapshot differential problem
and proposed the algorithm by which snapshot differentials can
be computed. Basically, a snapshot denotes the a replica of a



selected portion of one source relation. However, many mate-
rialized views contain integrated data created by relational join
or set operations over multiple data sources, thus the snapshot
differential algorithm cannot be directly applied to the problem
of materialized view delta extraction. In addition, to deal effi-
ciently with large volume of data, [5] also recommended the
use of compressed data to perform the data comparison. The
work [6] proposed a method of delta extraction in a limited
collaboration environment by using a dictionary based data
compression technique. Data compression certainly can reduce
the volume of data transmission over long distance networks,
however, without distinguishing the different characteristics of
huge volume of data, compression techniques alone can only
achieve a very limited degree of optimization.

III. PRELIMINARIES
A. Data Warehouse Environment

A wide range of transaction scenarios have been considered,
however, in this paper, we focus on the PSJ materialized view
which is defined by using project II, select o and join <, i.e.
PSJ expressions over source relations. We assume that either
unique attributes or primary key attributes of source relation
are included in the view definition. Also, the read-only access
to the remote source relational table is granted, and a standard
hash function is available at the remote database systems. This
assumption is realistic because of ready availability of source
code implementations. Finally, multiple interactions between
data warehouse system and remote sites are allowed.

A distributed data warehouse environment £ = (V, S, £),
where each V; € V is a materialized view to be maintained,
S = {51,85:,...8,} is a set of remote sites involved and
L = {ly,la,...1,} is a set of communication links between
individual remote sites and the data warehouse system. Each
link I; € £ is described by the pair of nodes it connects, its
capacity and unit cost. At the lowest level of collaboration
environment, the link only exists between data warehouse
system and individual remote site, but not among remote sites.
Materialized view contains the integrated data from the set
of source relations R = {R1, Ra, ..., R,,}, which spread over
the remote sites. Each source relation R; € R is located at
one remote site S; € S and each S; consists of at least one,
possibly more source relations.

B. Motivation

It is common that in a relational table, some portion of data
may not be changed once or may only infrequently be changed
after being created. This portion of data is called static data.
For example, a table called student-personal-details in an
university, when a person is enrolled in any course provided
by the university, a data entry is created in the table, which
records this student’s first name, middle name, last name,
title, date of birth, country of origin, contact phone number,
physical address, mailing address..., etc. The records in this
table are updated for many reasons. Some records in the table
are frequently updated because students change their addresses
or contact phone numbers. On the other hand, some records

are relatively static after being created. Furthermore, year after
year, many students complete their degree, but their records are
still kept in this table for historical-reference purposes. These
records will remain unchanged unless students register a new
course. The proportion of this kind of data in the table will be
incremented gradually, in other words, this table may include
a significant amount of static data. If there is a large amount
of static data in a source relation, it is inefficient to treat static
and frequently changed data in the same way. In this work, a
simple statistical model is used at the data warehouse system
to monitor the frequency of records updating in the remote
source relation. In order to optimize the data transmission over
long distance networks, based on the statistics gathered, we
also propose a hash function based approaches to deal with
different categories of data, namely, static data and frequently
changed data.

IV. PROBLEM OF DELTA EXTRACTION

A. View Decomposition

As we mentioned before, the data modifications of remote
source relations are identified by comparing the current view
with the data held by the current state of remote source
relations. Thus two sets of data have to be established to
compare against one another. As far as the data in remote site
is concerned, according to the view maintenance environment
specified above, we consider to decompose the view definition
into a set of subqueries ¢ = {@1, @2, ..., P, } as a preliminary
step. Unlike the works in [12], that was designed for central
database query processing and the query was proposed to be
decomposed into in a sequence of irreducible queries, i.e.
single variable queries. The view definition decomposition in
this work aims to find the data that is relevant to the current
materialized view at each remote site, thus the granularity of
the decomposition is at the individual remote site, rather than
each single source relation. The process of view definition
decomposition is firstly, detaching the source relations of
each single remote site from view definition, then push a
select restriction and local join conditions ¢ into the detached
source relations, whenever possible. Finally, assigning the
projection operator to ensure that only attributes « either in
the list of view definition or involved in some global join
condition are included in the projected attribute list. After the
decomposition, each decomposed subquery ¢; can be directly
evaluated by a single remote site. Also, each decomposed
subquery ; consists of either a single source relation or
multiple joinable source relations. Regarding to this, a simple
rule is that at each remote site, a decomposed subquery @;
consists of multiple source relations if they are joinable, or
@; only consists of a single source relation if it is not. Let
R;...R,, be a set of the source relations located at the remote
site S;. A decomposed subquery ¢; from the view definition
is of the form:

©; = { o] (g (Ri)) R; not joinable

M, ..., (04 (R;... < ... Ryy,))  R;...R,, joinable



Apparently, another set of data is from the current material-
ized view. For each decomposed subquery ¢;, its counterpart
@} at the data warehouse system can be acquired by assigning
a projection operator to the materialized view and making the
projected attribute list identical to one that the subquery @;
holds, that is ¢; = II[e;](V). Each ¢ represents the data
fragment being included as the part of current materialized
view and has the identical schema as ;. In the following
sections, @; denote a decomposed query and ¢/ denotes the
snapshot of @;. Snapshot projection is to generate a set of
snapshots corresponding to each of decomposed subqueries.

B. Operations that Cause Data Inconsistency

In relational model, three basic types operations on source
relations cause the data inconsistency between source relations
and their snapshots. Based on the key constraints, these three
types of inconsistency are interpreted as follows: let ¢, be a
decomposed query and ¢/ be its corresponding snapshot:

- insertion, denoted by t;‘, that is 3t; € @;,Vt; € @] such
that tj.k 7é t;k

- deletion, denoted by ¢, that is 3t; € ¢}, Vt; € ¢; such that
tik #t).k.

- update, denoted by tji, that is 3t; € @, Eit;- € @} such that
tj.k = t;k and tj.’U 7£ t;’U

C. Differential File

A differential file A(R;, R}) refers to the differences from
relation R] to relation R;. A differential file A(R;, R}) has
following properties: 1). both R; and R} are query expressions
that have identical relation schema; 2). a differential file
consists of a pair of relations

A(R;, R}) = (AT (R;, R}), A™ (R;, Ry))

where AT (R;,R}) = R; — R, and A~ (R;,R;) = R, — R;.
3). the the query R; can be computed as follows:

Ri = (R;UA™(R;, Ry)) — A™ (R, RY)

This process is referred to as data synchronization of R; and
R]. Regarding materialized view maintenance, the expression
A(@;, @)) represents a differential file of a query result @,
at remote system and its corresponding snapshot ¢’ projected
from materialized view. A differential file does not only reflect
the inconsistency between the current state of materialized
view and the data residing in operational databases, but
also can be used to refresh the materialized view. When no
handy options are available, differential files are inferred by
comparing each query result ¢@; to its corresponding snapshot
@}. We call this problem as delta extraction.

V. OPTIMIZATION TECHNIQUES
A. Overview

In this work, a group hash method is proposed, which
requires less data transmission to generate a differential file.
By using this method, the delta is extracted by examining the
differences between groups of tuples, rather than comparing
each individual tuple. Let n; C @y, and k; be all keys of ;.

Also let m; C ¢}, and K} be all keys of nj. If n; and n
are about to compare against each other, then 1; and n;- are
referred to as peer groups. If 1; and n; have a set of identical
keys, i.e. k; = K/, then n; and n;- are referred to as matched
groups, represented by {n; : n;}. Group n; and n’; are the
matched group of each other. Being matched groups implies
that n; and 1/, have the same cardinality, i.e. [n;| = [n’|, and
there is a one to one correspondence between k; and K.

The basic idea of delta extraction is as follows: the hash
value of 1, denoted by h(n’), along with its key set ’; are
sent to the remote site where ¢; is located. Provided that the
matched groups {n; : m}} can be established, and in case
of h(n;) = h(n}), the matched groups are referred to as an
identical groups, represented by {n; : #n’}. To explain the
benefits of using group hash method, assuming that a group
n;- contains 20 tuples, the average tuple size is 100 bytes, i.e.
800 bits, the average key size is 10 bytes, i.e. 80 bits, and @y,
is 160 bits. For the delta extraction, in case of h(n;) = h(n}),
i.e. the identical groups can be established, we can expect
800 x 20 — (80 x 20 4 160) = 14240 bits saving on data
transmission, and the saving ratio is ghr=i0s = 89%.

Using group hash method, the benefits result from the
successful identification of the static data existing in remote
source relations or say decomposed queries. The greater the
amount of static data can be identified, the smaller the amount
of data is required to complete the data synchronization. To
gain the benefits as the example above, the necessary and
sufficient condition is that the matched groups are also the
identical groups, i.e. h(n;) = h(n}). This condition implies
that the matched groups must be able to be established in the
first place. However, deletion to a decomposed query causes
the failure of establishing the matched groups. Hence, at the
data warehouse system, a group selection strategy must be
developed to ensure that any selected group from the snapshot
has a better chance to find its matched group in the decom-
posed query. Furthermore, even if the matched groups could
be established, any update occurred in a group also makes the
matched groups no longer an identical group. In short, deletion
causes the failure of establishing matched groups, and update
causes the failure of establishing the identical group even if the
matched groups have been established. Deletion and update to
a decomposed query are two important factors that should be
addressed by the group selection strategy.

B. Statistical Tables

The group selection means which tuples should be com-
bined together as a group and which tuples should not. The
group selection strategy is a part of the overall optimization,
which generates a grouping plan that contains a set of disjoint
groups, that is A = {n},ny,...,n;,} where n; N7 = ¢ and
@; = n) Unb,...,Un,. We have listed the two factors that
the group selection strategy should consider of, i.e. deletion
and update to a decomposed query, while in this section, we
answer questions: what information is required by the strategy
and how to acquire that information.



The deletion frequency and the update frequency of remote
data are two important parameters for the group selection
decision making process. Certainly, having more information
at hand about the remote data may lead to a more efficient way
of differential extraction. However, in a limited collaboration
environment, we cannot expect that all relevant information
is ready to be used. To be able to obtain the necessary infor-
mation, for each decomposed query ;, the data warehouse
system maintains a pair of statistical tables: w,, wzi, which
monitor the data pattern of the remote source relations that
contain a large volume of data.

A statistical table wijE is to monitor the tuples’ update
frequency in a the decomposed query ;. cuii is described
by (tid, tno, uno), where tid represents an identifier of a
tuple. Note that the tid can consist of either single or multiple
attributes. tno represents the total number of times the view
has been maintained since this tuple was included in the
materialized view, and uno represents the number of times
that this tuple has been updated so far.

The maintenance of the statistical table w:" is simple. For
example, when a tuple ¢; in the decomposed query is first
included into the materialized view, a new entry is created
in wf as follows: tid; = t;.k, tno; = 1 and uno; = 1.
After that, it will incremented tno by one every time the
data synchronization is completed until ¢; is excluded from
the materialized view. Whether ¢; was updated or not there
are always two possible outcomes: {upd(t;), ~upd(t;)}, where
upd(t;) means the update has occurred on ¢;, and —upd(t;)
means no update has occurred on ¢;. Only if upd(t;), then it
increments uno; by one.

For the next time, whether or not the tuple t; € @; will
be updated, there are two possible outcomes: {=+t;, t; }, here
{%t;} denotes ¢; will be updated, and {xt;} denotes the
contrary to {+t;}, i.e. ¢; will not be updated. Clearly, the
actual outcome is not known until the synchronization is
complete. If the sampling dataset is large enough, then the
following formula:

uUno;

P({1}) =

tno;

not only represents the frequency of upd(¢;) in the past, but
also represents the probability of {£¢;} in the future. By their
definition, it holds that

P({£t;,xt;}) = P({xt;}) + P({xt;}) =1

Another statistical table w; aims to monitor the deletion
pattern of a decomposed query ¢,. Unlike w;ft which keeps
track of the individual tuples, w; only records the average
deletion ratio of every single snapshot synchronization. w;
is described by tno,dno, where tno represents the total
number of tuples in a snapshot before the synchronization,
and dno represents the number of tuples being deleted af-
ter the synchronization. For a particular synchronization j,
a; = dnoj/tno; represents its deletion ratio. The deletion
ratio by considering the overall synchronizations rather than a

single synchronization can also be calculated

|y |
P = o 2

The value P({—t;}) is interpreted as the tuple’s deletion
probability. In addition, P({: t;}) is used to represent the
contrary of P({—t;}), i.e. the probability of a tuple not being
deleted, then it has

P{~t;},{:t;) = PU{=4;1) + P({: t;}) = 1

Symbols Description

1: wii monitor update frequency

2wy monitor deletion frequency

3 : upd(t;) tuple ¢; was updated

4 : —upd(t;) tuple ¢; was not updated

5: {£t;} tuple ¢; will be updated

6 : {xt;} tuple ¢; will not be updated
7:{—t;} tuple ¢; will be deleted

8:{:t;} tuple ¢; will not be deleted

9: {£n;} at least one tuple in 1 ;will be updated
10 : {*n;} no tuple in 1; will be updated

11: {-m;} at least one tuple in n; will be deleted
12: {:n;} no tuple in 1; will be deleted

13: {n; :nj} matched pair

14 : {n; : *nf} identical group

TABLE I
STATISTICAL TABLES AND EVENTS

C. Properties of Group

For the next synchronization, at least one t; € n; will be
updated has two possible outcomes {+n;, *1);}, where:

1). {£n;} is understood as: at least one tuple in this group
will be updated, that is 3¢, € n;, such that {+£t;};

2). {sm;} is understood as: no tuple in this group will be
updated, that is =3¢; € n;, such that {£t,}.

We are more interested in the second one, because it helps
to better identify the static portion of the remote data. The
outcome is not known in advance, i.e. before the data syn-
chronization is complete. However, what we can know is its
probability, denoted by P({xn;}).

The derivation of update probability at the group level is
based on each individual tuple’s update probability in this
group. A group’s update probability is understood as the
likelihood that: Vt; € m;, such that {«¢;}. Since the each
tuple’s update probability can be obtained from the statistical
table, i.e. P({+£t;}), its complement is:

P({xti}) =1 - P({£t:})

Based on the understanding of the group update probability,
it has

P({sm;}) = P({sta}) N P({#t2}) N ... 0 P({*tn})

In a relational database, the fact that update occurred on a tuple
t; gave us no information about whether the update occurred



on a tuple t; where i # j, therefore updating a tuple is an
independent event and P({+n;}) can be equally transformed
as:

P({xm;}) = P({sta}) x P({#t2}) x ... x P({*tn})

Regarding deletion, for each individual tuple, it also has two
possible outcomes for the next synchronization:

1). {—m;}: at least one tuple will be deleted from this group,
that is 3¢, € n;, such that {—t;};

2). {: m;}: no tuple will be deleted from this group, that is
—3t; € ny, such that {—¢;}.

From the value of deletion probability, it is easy to get value
of its complement, i.e. P({: ¢;}) =1 — P({—t;}), then

P({:m;})=P{: t:})"

In the process of snapshot synchronization, for any peer
groups, only if there was no deletion occurred in the group
at the remote site, this peer groups can be classified as the
matched groups. For any matched groups, only if there is no
update occurred in the group at the remote site, this matched
groups can be classified as identical groups. In other words,
if peer groups 1; and n; are identical groups, i.e. {n; : n’},
then both {: n;} and {+n;} must be true, and its probability
is

P({n; :=}}) = P({:n;}) N P({x;})

Symbols Description
1: P({£t;} The probability of updating tuple ¢;
2: P({*t;}) The probability of not updating tuple ¢;
3: P({-t;}) The probability of tuple ¢; being deleted
4: P({:t;}) The probability of tuple ¢; not being deleted
5: P({£n;}) The probability of having update in n;
6: P({xn;}) The probability of no updating in 1 ;
7:P({-m;}) The probability of having deletion in 1 ;
8:P({:m;}) The probability of having no deletion in 1 ;
9: P({n; : *n%} The probability of 1; remains unchanged
TABLE II
PROBABILITIES

D. Cost Model

In this subsection, we will formulate the basic costs and
benefits for our method. Let @, be the average tuple size, Oy
be the average key size, |n,;| be the cardinality of a group 1,
i.e. how many tuples in 7;. If the synchronization method is
simply to transfer all data, then the data transmission for the
group 1; is:

sz(n;) = D¢ x ny

When using the group hash method, in order to compare the
groups 1; and n;, the amount of data required to be transfered
to the remote site is:

hz(nj) = @ x [n;| + Py

In the case that identical groups could be established, i.e. {n; :
*n}}, by using the group hash method, the expected benefit
for synchronizing groups 1; and n; is formulated as:

nny) = sz(n;) — hz(n;) = (O — @) x ;[ — Op

By considering the probability of establishing the identical
groups, i.e. P({n; s1’:}), the expected benefit can be
formulated as:

ES;) = w; x P({n; : =}})

In addition, update or deletion all causes the failure of estab-
lishing identical groups. In this case, hz(n;) is considered
to be the data losses, represented by a negative number,
i.e. —hz;. The chance of data losses is the complement of
the chance that identical groups can be established, that is:
1—P({n; : #n’;}). When the data losses are taken into account,
then the formulated expected benefits would be:

EB(n;) = ES(n;) — hz(n;) x (1 = P({n; : sj}}))

The group selection process for a snapshot is to generate
a set of selected groups A; = {nj,...,n,,}. By using group
hash method, the overall expected benefits gained from the
data synchronization is formulated as:

EB(p) = Y EB(,)

The value of EB(¢;) relies on the frequency interpretation of
probabilities, which is not interpreted as the reduction in data
transmitted from a particular data synchronization, but rather
as the average outcome over the long run.

E. Group Selection Strategy

Different group selection strategies generate different group
selection plans, and different group selection plans yield
different results of expected benefits. Among all the possible
plans, let max(F B) represent the maximum expected benefits
that can be achieved. The group selection strategy manages to
find the best possible plan, such that the expected benefits is
approximately equal to max(FEB), that is:

EB(¢;) =~ max(EB)

The characteristics that each individual group has made group
selection an interesting problem. For an individual group, to
decide its proper size, one option is to use the group cardinality
as the selection criteria. If using larger cardinality, i.e. having
more tuples in this group, then it would lead to a larger value of
expected benefits in the case the identical groups could be es-
tablished. However, at the same time, the increased cardinality
also implies the less chance of establishing identical groups
and greater chance of data losses. Another option is to use
the probability of identical group as the selection criteria. If
we decide to choose a greater probability of identical groups,
it would increase the chance of data saving, but it would
also leads to a smaller cardinality of group thus the smaller
value of expected benefits in case the identical groups could



be established. The cardinality of group and the probability
of identical groups are two correlated variables in the group
selection problem. To resolve its inherent dilemma, we propose
an algorithm that provides an optimized solution to the group
selection problem.

Before presenting the details of the algorithm, we define
two functions. Firstly, fu : m; — mMj41, referred to as the
group inclusion function, 7,41 is produced by adding one
more tuple into a group m;. Secondly, the sorting function
is defined as: fy, : (R;) — {;, where 7 is an attribute
or a derived value of R;, ¢; is a list of tuples sorted by
7 in descending order. In the algorithm, a snapshot
is sorted as follows: fyp(rse)(H[A1, ..., An](@] > wi)),
where P({%t}) is a tuple’s update frequency, and Ay, ..., A,
is the set of all attributes in ¢@}. The input to the algorithm
includes: the snapshot @/, and the statistical tables wli, w; .
The output from the algorithm is an optimized grouping plan
A; = {n},mb, ...,n,, }. The guideline for group selection is to
always find the group with the maximum expected benefits
from the current set of tuples. The algorithm details is listed

in algorithm 1;

Algorithm 1 Group Selection Algorithm

1: procedure GROUPSELECTION(¢}, w}, w;)
2: j—1

3 1+— 1

4 Tltmpl — Q)

5 Ntmp2 < 0

6 L — fupaey T[A1, oo Ap](@f 20 )
7. while j < |¢;] do

8 Nemp1 < foMempr,t; € £i)

9: if EBM¢mp1) < 0 then
10: exit

> Terminates the process
11: end if
12: Ntmp2 < f&)(ntmplatj+1 S él)
13: if EB(Mmp1) > EB(MNgmp2) then
14: i < Ntmpl > Output: group selected
15: 1—i+1
16: ntmpl — @
17: else
18: T]tmp2 — @
19: end if
20: je—j+1
21: end while

22: end procedure

There are two circumstances that cause the algorithm to
terminate. Firstly, when the expected benefits of the new
selected group is negative, the algorithm terminates. If the
current selected group has negative value for expected benefit,
then all following groups can only have negative values for
expected benefit. Secondly, if all tuples are processed and are
allocated into different groups.

VI. PROCESS OF DELTA EXTRACTION

Delta extraction is a process to generate a differential file
A(@;, @L), where @; denotes a query result at a remote site,
and @} denotes the corresponding snapshot projected from a
materialized view. A differential file A(q;, @) consists of
two relations: A*(@;, @;) and A~ (@;, @}). To generate a
differential file, the process includes three steps:

1). data preparation at the data warehouse system;
2). identification of the insertion and deletion at remote sites;
3). identification of the update at remote sites;

At the data warehouse system, step 1 takes the group

selection plan A; = {n1, 72, ...,m,} as its input. The function
fr + mi — u; transforms each n; € A; into a data unit wu,.
Each w; is a 3-tuple (uid;,n;.k,h(n;)), where uid; is the
identifier of group n;, 1;.k is a set of all keys of group 7,
and h(;) is the group hash value. The output of this step are
all transformed data units {uy, ..., u, }, which will be sent to
the remote site where the ¢; is located.
Step 2 aims to identify all tuples that were added into the
decomposed query, i.e. t*, and all tuples that were remove
from the decomposed query, ie. ¢, since the last synchroniza-
tion. Let @;.k and ¢}.k represent all keys in the current state
of the decomposed query and the snapshot respectively. The
operation to identify the insertion at remote site is: @;.k—@/.k.
As the result of this operation, it has:

tt={t|tke g, kntk¢ @)k}

The operation to identify the deletion is: ¢}.k — @;.k. As the
result of this operation, it has:

t—={t|tke oikNtk ¢ .k}

Unlike the identified insertion t1, a full set of values of
each tuple are required to send to data warehouse system to
complete the synchronization. For the identified deletion ¢~
only the key value itself is required. However, the deleted
tuple from the decomposed query makes the received data
units that contains these tuples are no longer able to find its
matched group. In this case, for the affected data units, uid
together the key values of deleted tuples are sent to the data
warehouse to be regrouped. Regroup here means the deleted
tuple is removed from the original data unit and then the
remaining tuples are used to compute a new data unit.

At this step, the major operation at the remote site is
limited to the key comparison. The identified insertion is a
subset of the differential file, i.e. t+ C A1 (@;, @}). Similarly,
the identified deletion is a subset of the other part of the
differential file, i.e. t— C A~ (@;, @}).

Step 3 aims to identify the update of tuples t* in the
decomposed query since the last synchronization, by using
the group hash approach. After step 2, all the remaining data
units plus the regrouped data units have resolved the problem
of group mismatch and they are all qualified to have their
matched groups at the remote site. The function to locate the
matched group of a data unit is: n; < 0¢.keu,.x(Pi). By
using this function, the algorithm to identify the update is
represented in algorithm 2.



Algorithm 2 Group Comparison Algorithm
procedure IDENTIFYUPDATE(@;, u)

2: i1
Ntmp < [Z)
4: tt 0
while ¢ < |u| do > the number of all data units
6: Mtmp < G(p.kEui.k((pi)
if h(Mmp) # ui-h(n) then
8: tF — tF Uiy
end if
10: 1+—1+1
end while

12: end procedure

The outcome of the algorithm above is the identified update
that is the subset of a differential file, i.e. t* C A*(q;, @!).
In addition, when all steps of deleta extraction are compelte,
a differential file is generated and represented as:

A (@i, @7) =17 C @ Ut C @;

3

A (@i, @) =t~ C@jUt™ C o]

7
VII. SUMMARY AND FUTURE WORKS

In this paper, we defined the taxonomy of collaboration
levels of view maintenance in a distributed environment, in
which the differences in terms of functionalities, resources,
distribution and control are highlighted. We claim that the
problem of maintaining a materialized view in a distributed
environment only with limited degree of collaborations is fun-
damentally different from the conventional one over distributed
databases. Thus the existing assumptions and optimization
techniques must be re-examined.

In a limited collaboration environment, the differential files
are inferred by comparing decomposed queries to its corre-
sponding snapshots. The decomposed queries represent the
current state of data at remote sites. The snapshots that have
identical schema as their corresponding decomposed queries
represent the current state of data in the materialized view. Our
optimization objectives is to reduce the communication costs
over the computer networks when extracting the differential
files.

Based on the observation that usually there is a large
amount of static data in relational tables, the statistic tables
were proposed to be created at the data warehouse system,
which represent the history of data change frequency at remote
sites. Certainly, maintaining statistical tables incurs some extra
costs at the data warehouse system, but it provides a simple
statistic model that helps us to gain some knowledge about
remote data. The essential characteristics of data reflected
by the statistical tables in turn creates some possibilities of
optimization, which underpin the objectives we are trying
to achieve. By using the statistical tables, we proposed an
approach for the delta extraction, which includes a cost-
driven group selection strategy and the group hash method. An
example was given to show that by our approach over long run,

an expected saving on data transmission could be achieved. We
also explained in details that how delta extraction process is
completed and how the differential files are generated.

We are not going to claim that this proposed work is the
best solution to the distributed view maintenance problem.
However, we believe that it is complementary to some other
approaches, because it creates a possibility to maintain a
materialized view when the higher level of collaborations are
not easily available.
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