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Abstract—In Collaborative WSNs, sensing devices are owned
and operated by different stakeholders with incentive to preserve
the confidentiality of their individual sensors readings while
contributing to statistics computed by the group. In such systems,
in-network data processing presents high efficiency for energy
and bandwidth, but unfortunately introduces several challenges
related to data security and fault tolerance.

In this paper, we present and analyze a new protocol that
allows for confidentiality-preserving in-network aggregation for
collaborative WSNs in the face of intermittent link-level failures.
Our protocol makes use of a symmetric-key, homomorphic
cryptosystem to maintain the confidentiality of individual sensor
readings while still permitting a trusted sink node to recover
the correct aggregate value. The encrypted sensor readings are
then combined using a multipath aggregation protocol that is
capable of detecting and recovering from a variety of failure
scenarios while carefully handling duplicate sensitive aggregates.
We prove the security and correctness of our protocol, and we
conduct simulation studies to understand its data transmission
and energy consumption overheads.

Our results show that both confidentiality and fault tolerance
can be achieved in representative network configurations, while
incurring an increase of 7.1% in the average message size and
3.6% in the average energy consumption. In the unlikely scenario
that 100% of the sensor nodes participate in an aggregate query,
the average energy consumption showed at most a 25% increase.

Keywords-Collaborative wireless sensor networks, fault-
tolerance, in-network aggregation, confidentiality, homomorphic
encryption

I. I NTRODUCTION

A wireless Sensor Network (WSN) is a collection of
tiny devices capable of sensing, computing, and wirelessly
communicating to monitor and control events of interest in
a distributed manner. WSN applications span various do-
mains such as environmental and building monitoring and
surveillance, pollution monitoring, agriculture, health care, and
energy management. Through collaboration, wireless sensors
owned and operated by different entities and stakeholders can
be used to collaboratively sense and detect phenomena of
shared interest.

In Collaborative WSNs (CWSNs), in-network data aggre-
gation has been adopted as an energy-efficient process that
allows each node along the routing path to aggregateall
values received from its children into asingle response value
(thereby avoiding the transmission of messages from each
sensor to the data sink). However, different schemes for in-
network aggregation impose different challenges.Tree-based
in-network aggregation provides the minimal communication

overhead by using a spanning tree across all sensor nodes, but
a single link failure in this model leads to the loss of all data
from the subtree connected by that link. Given that WSNs
are characterized by high rates of communication failures (up
to 30% loss rate [1]), this approach can lead to large errors
in the average case.Multipath-basedin-network aggregation
approaches add robustness to the traditional tree structure
by taking advantage of the broadcast medium, but must be
carried out carefully to avoid overcounting when computing
aggregates.

In addition to achieving the goal of reliably executing
the aggregation process, CWSNs require that the confiden-
tiality of individual sensor readings be preserved. Without
such a guarantee, different sensors’ stakeholders could gain
useful information from the confidential sensor readings and
adversaries within the proximity of the network could in-
filtrate the network, eavesdrop, and gain useful information
as well. Unfortunately, existing mechanisms for carrying out
confidential in-network aggregation either require the use of
expensive cryptographic primitives that are unsuitable for use
in resource-limited sensor environments (e.g., [2]), or assume
perfectly reliable communication links (e.g., [3], [4]).

Motivating Application: One example ofCollaborative
Sensing over Shared Infrastructure (CSSI)applications is for
office buildings that are equipped with a sensing infrastructure
that is shared among many stakeholders. In some situations,
different stakeholders may not want to share information about
the occupancy of individual rooms, although they might want
to contribute in computing statistics about the occupancy of
regions within the building in order to make better decisions
about heating/cooling, public safety, facilities surveillance,
and traffic monitoring. Sensors managed by individuals or
departments within the building could measure statistics like
occupancy or temperature, encrypt their results, and forward
the encrypted results through the shared sensing infrastructure.
These readings are then aggregatedin encrypted form, thereby
reducing overheads in the network while protecting the indi-
vidual values sensed. In the end, the aggregate value(s) are
decrypted to derive the desired statistics. Note that, in this
case, the preservation of each value’s confidentiality provides
user location privacy by not disclosing, say, the occupancy
status of individual offices. ¨

In this paper, we present a protocol for reliably carrying
out in-network aggregation in CWSNs exhibiting link failures
while also maintaining the end-to-end confidentiality of indi-

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250523



vidual sensor readings. To achieve secure data aggregation we
have chosen to use end-to-end encryption of sensor readings
over hop-by-hop encryption for the following reasons:

• Using end-to-end encryption, intermediate nodes cannot
decrypt the readings that they forward and thus data are
not only protected from external eavesdroppers, but also
from malicious compromised or curious nodes within the
collaborative WSN.

• To aggregate data encrypted in a hop-by-hop manner,
each sensor node must first decrypt each encrypted value
that it has received, aggregate the resulting values, and
then re-encrypt the aggregate. Hence, the overhead of
the decrypt-aggregate-reencrypt operations of hop-by-hop
increases linearly in the number of children of each node.

• End-to-end encryption eases the key distribution process
by reducing the number of keys required by the system
(a sensor shares only one unique secret key with the sink
node).

Our protocol uses a lightweight homomorphic cryptosys-
tem [5] to enable collaborative in-network aggregation of
encrypted values while imposing small computational over-
head on individual sensors. This aggregation takes place by
extending the RideSharing multipath aggregation protocol [6]
to maintain additional metadata that allows the sink node to
recover the key needed to decrypt the hidden aggregate value.
The scheme presented in this paper was designed with the
following goals in mind:(a) Confidentiality: individual sensor
readings and their aggregate values are not revealed to any
external (eavesdropper) or internal (compromised aggregator)
attacker, only to the sink;(b) Fault tolerance: robustness
in that sensor readings that are lost due to link errors are
compensated forat most once; (c) Exact aggregation: Instead
of providing probabilistic query aggregate results (e.g., [7],
[8]), our approach provides an exact aggregate result in case
of no link failures. With link failures introduced, the final
aggregate deviates by exactly the lost value and not by some
derivative of that value; and(d) Low energy overhead: our
scheme has low overheads on the size of packets transmitted
and amount of computation required.

The rest of the paper is organized as follows. Section II
reviews the different in-network data aggregation schemes
proposed in the literature. Section III presents our network
and attack model, as well as the basic building blocks for our
new protocol. In Section IV, we present our new proposed
confidentiality-preserving, fault-tolerant, in-network aggrega-
tion protocol, and discuss its relevant properties. Section V
presents an extensive simulation study and system evaluation
of our approach. Finally, Section VI presents our conclusions
and directions for future work.

II. BACKGROUND AND RELATED WORK

There has been extensive work on data aggregation
schemes including (e.g., [9], [10], [11]). These schemes
assume both a reliable and a secure network. However,
in the real world, sensor nodes are usually deployed in
hostile environments where communication links can be an
easy target for adversarial eavesdropping. The reliability

assumption is also a strong one, as sensor networks are
subject to frequent link failures that might cause the loss
of a whole sub-tree aggregate value. Below we describe
works that address fault-tolerant or confidentiality-preserving
in-network aggregation.

a) Confidentiality Preserving Systems:A simple ap-
proach to partially preserving the confidentiality of aggregated
data in WSNs is using hop-by-hop encryption ([12], [13]).
The problem with all hop-by-hop encryption schemes is that,
if the node has been compromised, they may violate the
confidentiality of the data at each node since the data is
decrypted before the aggregation. Besides the confidentiality
violation at nodes, the number of necessary shared secret
keys becomes a function of the network density where all
neighboring sensor nodes must share secret keys.

A higher level of confidentiality is achieved through com-
plete end-to-end encryption of the sensor readings and their
aggregate values. The use of homomorphic cryptosystems
such as RSA, ElGamal, Elliptic Curve [14], or Paillier [15],
would allow for end-to-end encryption with in-network ag-
gregation. Unfortunately most such algorithms require exten-
sive computations and very long keys that do not suit the
computational and power constraints of WSNs. To enable
additive aggregations of sensor values, our approach makes use
of the additively homomorphic symmetric-key stream cipher
proposed by Castelluccia et al. in [5], which is a simple and
efficient cipher system and well-suited for use in WSNs.

Existing confidentiality-preserving aggregation protocols
(e.g., [3], [4]) share one common assumption: no packets are
lost during the aggregation process (note that link failures
are common due to the unreliable communication medium
of WSNs). In fact, in some proposed schemes such as [16],
additive aggregation is supported using a secret splitting
technique for the sensor readings. In such scheme, a single
packet loss would cause the whole aggregation process to
fail and the inability of the sink node to recover a precise
aggregation result. The authors in [3] proposed an end-to-end
encryption for sensor networks traffic, but their scheme is not
resilient against link failures. Their proposed scheme utilizes
encrypted default values to compensate for link failures,
which does not solve the problem of delivering the correct
values when link failures happen. By contrast, our approach
for confidentiality-preserving in-network aggregation is
robust against individual link failures. That is, rather than
assuming a silent node is non-operational, our approach
allows the parents of silent nodes to defer the aggregation
of these nodes’ values to otherbackup parents that may
have overheard the perceived silent node’s transmission. This
allows the computation of more accurate aggregate values.

b) Fault Tolerance Models:In typical in-network data
aggregation systems, a query disseminates from a sink node to
all other sensor nodes. As the query propagates in the network,
a spanning tree is constructed. The spanning tree is rooted
at the sink node, and each intermediate sensor node receives
values from its children, aggregates them with its own value,
and forwards the result to its parent. One major drawback of



spanning trees is that they are not robust against link failures:
a single link failure causes the value of the sub-tree connected
by this link to be lost. Link failures that occur in the upper
levels of a tree can thus cause massive losses of data. To
address this problem, existing mechanisms (e.g., [17], [18])
make use of multipath in-network aggregation. This approach
adds more robustness against link failures, but at the same
time introduces challenges with correctly handling duplicate-
sensitive aggregates such as SUM, AVG, and COUNT.

Different variations of so-calledsketchesprovide approx-
imate aggregation in WSNs for duplicate insensitive queries
(e.g., [8] are based on FM-sketches [19]). Unfortunately, these
solutions are not applicable because aggregate computations
are infeasible when using encrypted sketches.

In [6], RideSharing is introduced as a fault-tolerant scheme
for duplicate sensitive aggregations in WSNs. RideSharing has
been shown to outperform other fault tolerant schemes (e.g.,
Synopsis Diffusion [18]), consuming up to 50% less energy
and bandwidth resources, while delivering more accurate ag-
gregate results.

No published work so far solves the problem of providing
both confidentiality and fault tolerance for the process of in-
network aggregation. Hence, our approach is novel in that it
accomplishesbothof these goals in an energy efficient manner
for collaborative WSNs.

III. M ODELS AND BUILDING BLOCKS

A. Network and Attack Model

We assume a multi-hop network that consists ofn static
sensor nodes and a single trusted sink node. Each sensor
node shares a unique symmetric key with the sink. As usual,
sensors are small, battery-operated devices and the sink is
a more capable node with higher computational and storage
capabilities and no battery limitations. The sensors may belong
to different stakeholders and execute collaborative sensing
applications that use in-network aggregation to efficiently
compute statistics over the individual sensor readings. We
are concerned with the data confidentiality, no bound on the
number of attackers, and consider two types of attackers: (a)
honest but curioussensors, and (b)quiet infiltrators. Both
are able to eavesdrop and either accumulate the information
gathered or send the information in an undetected way (e.g.,
using a different channel). The sink node is assumed to
remain uncompromised. Faults are in links only and they are
“omission” faults or “crash” faults.

B. Cryptographic Primitives

Our confidentiality preserving scheme makes use of the
symmetric key, additively homomorphic stream cipher pro-
posed in [5]. In this cryptosystem, a keyed pseudo-random
generator is used to effectively generate keystreams that are
used to encipher sensor readings stored as integer values.
Encryption is simply addition modM and decryption is
subtraction modM , where M is an upper-bound on the
aggregate function to be computed. For example, a sensor
node sharing a keyk with the sink and using pseudo-random

generatorg can encrypt itsjth reading of a value,vj , as
follows:

cj = vj + gj(k) mod M

The sink can then recover the valuevj as follows:

vj = cj − gj(k) mod M

A key feature of this cryptosystem is its ability to ho-
momorphically combine values that are encrypted under the
same or different keys. Consider two sensor nodesn1 andn2

sharing keysk1 and k2, respectively, with the sink (but not
with each other). Suppose these principals wish to encrypt
their ith valuesvi

1 and vi
2, respectively. The nodes encrypt

their values as follows:

ci
1 = vi

1 + gi
1(k1) mod M (1)

ci
2 = vi

2 + gi
2(k2) mod M (2)

Given the aggregate valueCi = ci
1 + ci

2, the sink can recover
the aggregate keyKi = gi

1(k1) + gi
2(k2) and decrypt the

aggregate valueV i = (vi
1 + vi

2) = Ci − Ki mod M . Note
that neithervi

1 or vi
2 are disclosed via this process.

In [5], the authors prove that this symmetric key, additively
homomorphic cipher is semantically secure.
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Fig. 1. Track graph network topology

C. Cascaded RideSharing

Cascaded RideSharing was proposed in [6], as an efficient
fault tolerant in-network aggregation. Cascaded RideSharing
exploits the redundancy in the wireless medium to detect and
correct communication link failures. To accomplish this, the
sensor network is organized into atrack graphtopology [20].
Figure 1 illustrates a simple track graph topology. In such a
topology, sensor nodes are organized in tracks, with the sink
residing in track 0, sensors one hop away from the sink are
in track 1, and so forth. The aggregation path then forms a
DAG with multiple paths through the track graph, rather than
a simple spanning tree. Each sensor node has oneprimary
parent and one or morebackupparents in the adjacent track
(a track consists of all nodes at the same distance from the
sink).

A parent of a sensor node is assumed to overhear another
parent’s transmissions. Note that the assumption of overhear-
ing sensors (which has also been adopted in other work ([21],
[17]) does not constrain the WSN deployment to only dense
networks because such assumption is easily justified when a



sensor node is within a reachable distance of at least two
parents. Every sensor node transmits its reading to its primary
parent according to a predefined TDMA schedule. Note that
not all sensors transmit data, only those that include new infor-
mation, as determined by the application. For example, repeat-
edly transmitting the same temperature or other information
would not add any new value, and therefore the application
may choose to omit redundant/repeated values [22].

Backup parents compensate for errors in the primary links
by overhearing another parent’s transmissions. For error detec-
tion and correction purposes, each parent maintains a small bit
vectorL that has two bits for each child:r-bit (retransmitted
bit) ande-bit (error bit). If the primary parent does not receive
any data from a specific child node in its predetermined time
slot, it sets thee-bit to ‘1’ indicating a missing value from
this child. A backup parent then takes the responsibility of
aggregating the missing value. Ther-bit is set to ‘1’ if the
parent is able to aggregate and transmit the value for the child
node. This process repeats among backup parents until one
parent aggregates the value. Note that the primary parent of
some node might also function as a backup parent for other
nodes.

IV. CONFIDENTIALITY PRESERVING ANDFAULT

TOLERANCE PROTOCOL

In this section, we describe our protocol for confidentiality-
preserving and fault-tolerant in-network aggregation among
CWSNs. We begin by discussing the details of our protocol,
and then prove that it affords strong reliability and confiden-
tiality properties.

A. Protocol Overview

At a high level, our approach to providing fault-tolerant and
confidentiality-preserving in-network aggregation for CWSNs
is built on top of the Cascaded RideSharing algorithm com-
bined with the additively-homomorphic stream cipher de-
scribed in Section III-B. In the event that the readings of
all sensor nodes are included in the final aggregate value,
the algorithm goes as follows: (i) each sensorni encrypts
its value vi as ci = vi + gi(ki) mod M ; (ii) the resulting
ci values are aggregated using the Cascaded RideSharing
protocol, which results in the sink receiving the valueC =∑

i ci mod M ; (iii) the sink then computes the aggregate key
value K =

∑
i gi(ki) mod M ; and (iv) the sink extracts the

final aggregate valueV =
∑

i vi = C −K mod M .
Unfortunately, the above algorithm only works in the rare

case thatall sensor nodes contribute readings to an aggregate
computation. Most commonly, not all sensors’ readings are
included in the final aggregate because of either node- or link-
level failures or simply because not every sensor will have
a reading to contribute to every query. In this case, the sink
node would compute an incorrect aggregate keyK. If the sink
attempts to decrypt the aggregate ciphertext using the wrong
aggregate key, the resulting value will be a random element
from the set{0, . . . ,M−1}. This random and unbounded error
is due to the semantic security of the cipher, which ensures that

a ciphertext reveals no information about the corresponding
plaintext without the appropriate key.

To account for the above types of problems, we designed
our protocol in such a way to allow the sink node toefficiently
determine which sensors contributed readings to the final
aggregate and thus correctly compute the aggregate key that
should be used to recover the true aggregate value from
the ciphertext received. As we will see, this is achieved by
propagating state not only between nodes within the same
track as done in RideSharing, but also between nodes in
adjacent tracks. Using our protocol, even duplicate-sensitive
aggregates such as SUM and AVG are securely computed
using the in-network aggregation process, while guaranteeing
with high probability that every sensor reading contributes to
the final aggregate at most once.

B. Protocol Details

Algorithm 1 contains pseudo-code describing the aggrega-
tion protocol as run by sensor nodes that help aggregate and
route readings in the network, and optionally contribute their
own readings to the aggregate being computed. This algorithm
takes four inputs: a set of child nodes for which this node
is the primary parent (“Primary” Children, orPC), a set of
child nodes for which this node is a backup parent (“Backup”
Children, orBC), the list of peer nodes in this track (set of
peers, orSP ), and an optional sensor reading to include in
the aggregation (valuev). In addition to maintaining the fault-
tolerant L bit vector needed by the Cascaded RideSharing
protocol (cf. Section III-C), Algorithm 1 also maintains a
Partaking vector, called theP vector, to keep track of nodes
that have successfully contributed to the final aggregate. The
P vector is ann-bit vector, wheren is the number of sensor
nodes in the network. In Section V, we show that in practice,
sensor nodes do not necessarily have to transmit the wholeP
vector, but only a compressed vector to minimize bandwidth
overhead.

The protocol proceeds as follows. If the sensor node has
a non-null readingv to contribute to the aggregate,v is first
encrypted using the homomorphic cryptosystem described in
Section III-B and then added to the local aggregateA. After
receivingP andL vectors, the node sets the bit corresponding
to its ID in the P vector to ‘1’, indicating that it has
contributed to the aggregate value. The sensor then waits to
receive theL vectors transmitted by the nodes in its track
that precede it in the TDMA transmission order; the bit vector
informs the sensor of what corrective actions it should attempt
to take. After receiving P and L vectors, the sensor iterates
over all of its child nodes and combines the aggregate values
and P vectors reported by these nodes with its local values
as indicated by theL vector. Specifically, values are included
into the sensor’s local aggregate if this sensor is the primary
parent of the child, or if it is a backup parent that is capable
of correcting an error induced by faults that affect the child’s
transmitted value.

After receiving data from all its child nodes, the sensor
transmits its updated aggregate valueA, its updatedP vector,
and its localL vector. This message is destined to its parent



Algorithm 1: Aggregation and routing algorithm run
by sensors within the network

input : PC, BC, SP , v
A := 0;
P := 0̄;
L.r := 0̄;
L.e := 0̄;
if v NOT NULL then // Aggregate own value

A := A + v + gID(kID) mod M ;
P [ID] := 1;

end
L := rcvL(SP );
foreach Child C in PC ∪BC do

if rcv(Ac,Pc) from Child C then
if C ∈ PC OR (C ∈ BC AND L[C].e = 1
AND L[C].r = 0) then // Aggregate
the received values

A := A + AC mod M ;
P := P OR Pc;
L[C].e := 1;

end
end
else // Propagate the error signal

L[C].e := 1;
end

end
Transmit(A,P ,L);

Algorithm 2: Final aggregation and decryption
algorithm used by the data sink

input : PC
output: FinalA
A := 0;
P := 0̄;
K := 0;
FinalA := 0;
foreach Child C in PC do

if rcv(Ac,Pc) from Child C then
A := A + AC mod M ;
P := P OR Pc;

end
end
foreach bit set to ’1’ in P do

K := K + gi(ki) mod M ;
end
FinalA := A−K mod M ;

nodes (primary and backup) and to the peer parents (backup
for its children).

Note that theL vector is a local vector used merely for
the coordination of primary and backup parents through side
edges within each track; that is, theL vector is re-created in
each track and ignored by nodes in adjacent tracks. On the
other hand, theP vector propagates to the next track along
with the aggregate value.

Algorithm 2 contains pseudo-code describing the protocol
run by the sink node requesting the aggregate. This algorithm
takes only a single input: the set of children in track 1 of the
graph (PC, similar to Algorithm 1). After the sink receives
an encrypted value and aP vector from each of its responsive
children, it computes the sum of each suchA value and
the bitwise OR of everyP vector to compute both the final
(encrypted) aggregate value and the finalP vector indicating
which nodes successfully contributed to the aggregate. The
sink then generates the keystreams for each node indicated in
the final P vector and uses the aggregate key to recover the
plaintext aggregate value.

C. Protocol Properties

We now show that our protocol provides strong guarantees
in terms of both sensor reading confidentiality and correctness
of the final aggregation.

Theorem 1 (Confidentiality):During the execution of the
protocol described by Algorithms 1 and 2, no sensor (except
the sink) can learn the value of the readings reported by any
other sensor, nor the value of any intermediate aggregate value.

Theorem 1 follows directly from the semantic security of
the cipher used by Algorithms 1 and 2 and the fact that each
sensor node shares a unique symmetric key only with the sink.

Theorem 2 (Correctness):Under the assumption of “honest
but curious” or “quiet infiltrators” attack nodes, the protocol
described by Algorithms 1 and 2 includes each sensor reading
at most one time during the aggregation process. Further,
the sink node is able to correctly identify the sensors that
contributed to this aggregate, generate the resulting aggregate
key, and recover the correct result.

Proof: To prove this claim, we must show that (i) each
sensor reading is aggregated at most once and (ii) that the
P vector includes exactly the information needed to recover
the aggregate key needed to decrypt the result. Note that
Algorithm 1 sets a bit in theP vector if and only if the sensor
reading for the corresponding node is included in the local
aggregate. Also, the P vector is always transmitted with the
aggregate values. As such, proving assertion (i) is sufficient to
prove the theorem. We proceed by induction on the height of
the track graph.

For our base case, we consider a track graph consisting
of three tracks: the sink (track 0) and two tracks of sensors
(tracks 1 and 2). Assuming that track 1 has perfect connectivity
to the sink, we need only show that all readings from track
2 are aggregated by at most one node in track 1. Without
loss of generality, we assume that track 2 consists of a single
sensor nodeni and consider 5 cases: (1) there are no link
failures in the graph, (2) the link betweenni and its primary
parent fails, (3) the link betweenni and its primary parent and
some number of its backup, (4) there is a side-channel error in
track 1prior to the aggregation ofni’s reading, and (5) there
is a side-channel error in track 1after the aggregation ofni’s
value.

1) If no links fail, the reading of sensorni will be heard
by its primary parent. The primary parent will include



this value in its local aggregate, set ther-bit for nodeni

in its L vector, and transmit. Since ther-bit for nodeni

is set, no backup parent in track 1 will take corrective
action to includeni’s reading in its local aggregate.

2) If the link betweenni and its primary parent fails, the
primary parent will set thee-bit for ni in its L vector and
transmit this vector along its side-channel to the other
nodes in track 1. The first backup parent ofni will then
incorporateni’s reading into its local aggregate, set the
r-bit for ni in its L vector and transmit. No other backup
parent in track 1 will take corrective action to include
ni’s reading in its local aggregate sinceni’s r-bit is now
set in theL vector passed along track 1.

3) If the links betweenni and its primary parent and
betweenni and some number of its backup parents fail,
ni’s primary parent will set thee-bit for ni in its L vector
to indicate an error. ThisL vector will propagate along
the side-channel in track 1 until it reaches a backup
parent that has overheardni’s transmission. If no such
backup parent exists,ni’s reading is lost. Otherwise, the
first such backup parent incorporatesni’s reading into
its local aggregate, sets ther-bit for ni in its L vector
and transmits. No other backup parent in track 1 will
take corrective action to includeni’s reading in its local
aggregate sinceni’s r-bit is now set.

4) If there is a side-channel error in track 1prior to the
incorporationni’s reading in the aggregate, no entry
will exist in the L vector for nodeni. As such, nodes
optimistically assume thatni’s reading was already
aggregated, and will not incorporateni’s reading. This
implies thatni’s reading will be absent from the final
aggregate.

5) If there is a side-channel error in track 1after the
incorporation of ni’s reading in the aggregate, this
implies, as in the last case, that no entry will exist in
the L vector for nodeni. As such, nodes optimistically
(and correctly) assume thatni’s reading was already
aggregated and will not again incorporateni’s reading.

The above cases account for all possible link failure sce-
narios between tracks 2 and 1, and within track 1, and in all
casesni’s reading was included at most once. Thus, we have
shown that Theorem 2 holds in the base case.

For the induction step, assume that Theorem 2 holds for all
track graphs containing up tok tracks. We now prove that it
also holds for all track graphs of up tok + 1 tracks.

First, observe that an argument similar to that used in the
base case shows that the reading reported by each sensor in
trackk+1 will be incorporated by at most one sensor in track
k. Furthermore, our inductive hypothesis can be used to prove
that the value reported by sensor in trackk is incorporated at
most once into the final aggregate. As such, the readings of
sensors in trackk + 1 are incorporated at most once into the
final aggregate, and Theorem 2 holds in all track graphs.

Taken together, these theorems show that the protocol
described by Algorithms 1 and 2 does indeed provide
confidentiality-preserving and fault-tolerant in-network aggre-
gation functionality for wireless sensor networks.

D. Integrity Checking

Integrity checking of the data could be another desirable
property of CWSNs to defend against external attackers who
could manipulate the data in transit. Even though integrity
protection is not within the scope of the paper—given our
eavesdropping attack model—for completeness, we discuss in
this section how to add integrity to our proposed protocol.

One major problem with homomorphic cryptosystems is
that they aremalleableby design. An encryption algorithm is
malleable if it is possible for an adversary, without knowing
the secret key, to transform a ciphertext into another ciphertext
that decrypts to arelatedplaintext. Consider the cryptographic
primitives in Section III-B, where nodesn1 and n2 encrypt
their ith valuesvi

1 and vi
2 into the two ciphertextsci

1 and ci
2

and the aggregate valueCi = ci
1+ci

2. An external attacker can
jam the network while the aggregateCi is being transmitted
and then transmit an inflated (or deflated) aggregate valueCi′ ,
by adding (or subtracting) some constant toCi withouthaving
the ability to decrypt the aggregateCi. When the sink node
attempts to decrypt the aggregate it receivesCi′ it will recover
the modified valueV i′ rather than the true aggregateV i. Un-
fortunately, such attacks are undetectable without adding extra
cryptographic mechanisms to verify both the data integrity
and the authenticity of the encrypted aggregate values across
sensor nodes.

It is straightforward to extend our protocol with hop-by-hop
integrity protections to guard against the injection or modifica-
tion of data by malicious outsiders. In order to accomplish this,
every sensor node can establish a shared secret key with all its
parents in the adjacent track. Secure key distribution between
nodes is a well-explored problem, and could be achieved
using any secure and efficient key distribution scheme in the
literature (e.g., [23], [24]). Using this shared key, the sensor
node can compute cryptographic integrity code (e.g., a keyed
HMAC [25]) over its aggregate value, and then transmit the
aggregate along with its corresponding integrity code to its
parents. The parent receiving these values can then verify both
the integrity of the message, as well as authenticate that it was
sent by one of its legitimate children. If the verification passes,
the values are processed as usual. If the verification fails, the
faulty value can be ignored by the receiving parent and, if
necessary an alert can be raised indicating that tampering has
been detected.

Note that in the case of malicious compromised aggregating
nodes, integrity checking becomes a more complex problem
as end-to-end integrity checking will be required. We leave
the solution for this problem to our future work.

V. EVALUATION

We carry out a detailed evaluation of the communication and
energy-consumption overheads associated with our protocol.

A. Simulation Setup

To understand the costs and benefits of our approach, we
implemented four protocols by extending the WSN in-network
aggregation simulator TiNA developed in [22]. Specifically,we



implemented (i) a spanning-tree aggregation without fault-
tolerance nor data confidentiality; (ii) the Cascaded RideShar-
ing protocol [6], which provides only fault tolerance; (iii)
the basic version of our protocol described in Section IV,
with both fault-tolerance and data confidentiality protection;
and (iv) an enhanced version of our protocol that applies
compression (run-length encoding or RLE) to theP vector
to minimize data transmission overheads.

All protocols were compared relative to three main metrics:
• Average relative RMS error: The root mean square error

of the final result, normalized to the correct result value.
• Average energy consumed per node per epoch: The aver-

age energy spent transmitting, listening for, and receiving
data by each node for an epoch.

• Average message size transmitted per node per epoch:
The average amount of data transmitted by each node
during one run of the protocol.

Sensor nodes are distributed over a 320×320 ft2 grid,
with the data sink located closest to the center of this area.
The radio range of each node is assumed to be 30ft. All
results are the averages over 10 simulation runs, each with
30 epochs. As in [6], we assume that sensor nodes have the
Mica2 specifications [26] where data transmission, listening
and reception, and idling consume 65mW , 21 mW , and
0 mW , respectively; network bandwidth is assumed to be 38.4
Kbps. We also assume network activity is much more costly
than computation [27].

TABLE I
SIMULATION PARAMETERS

Parameter Values
Total number of nodes 300, 400, 500, . . . ,1000, 1024
Link error rate 0.05, 0.10, . . . , 0.35
Number of primary+backup parents at most 3
Participation level (% of nodes reporting values)1.5%, 2.5%, 5%, . . . , 25%

We assume that link errors occur independently of each
other and are distributed uniformly throughout the network.
Failures can happen independently in primary, backup, and
side edges, while the links between track 1 and the data
sink are assumed to be error free. The number of (primary
and backup) parents for each node is set to be at most 3
and depends on the network (in particular, it is a function
of network density). Table I lists some of the simulation
parameters.

We implemented the RC4 stream cipher as our pseudo-
random keystream generator, due to its simplicity. We also
used an appropriate optimization to conserve both energy and
bandwidth. Given the nature of theP vector, we applied Run
Length Encoding (RLE) to compress theP vector at each
sensor node. Using this performance optimization, each sensor
node contributing a value sets the corresponding bit in theP
vector, aggregates any receivedP vectors from its children
into a singleP vector, compresses the new vector using RLE,
and sends the compressed version.

With respect to the energy consumed during computation
(including aggregation and RLE compression), we rely on the
fact that transmitting one bit over radio is at least three orders
of magnitude more expensive in terms of energy consumption
than executing a single instruction [27]. Our measurements

Fig. 2. Average Relative Mean Square Error for 100% participation
(parents/node = at most 3, total nodes = 1024)

determined that the number of CPU cycles necessary to
compress aP vector of size 1024 bits is less than 20 cycles
per bit on the average. Since this cost is greatly dominated by
the cost of transmitting a single bit, we do not consider the
energy consumption due to compression in our simulations
computations. The cost of the simple operations—such as
additions, ANDs, ORs, and swaps—required by our stream
cipher is similarly dominated by transmission cost, particularly
in the event that sensors are pre-keyed and need not generate
their keystream on the fly.

B. Experiments

All results below have a maximum error of less than 1%
when computed with 95% confidence level. We omit error
bars from the plots for better presentation.

1) Effect of Link Error Rate: In this experiment we fix
the number of sensor nodes in the network to 1024 nodes,
deployed in a grid. The participation level is set at 100%; that
is, all sensor nodes participate by contributing readings to the
aggregate computation. We vary the link error rates, where
the link error rate is the probability with which a link will fail
during data transmission.

Figure 2 shows the effectiveness of the confidentiality
preserving RideSharing and the spanning tree schemes with
respect to the RMS error of the aggregated value for different
link error rates. As expected, link error is highly correlated
with spanning tree error. For link error rate of 35%, we
see an improvement in the RMS error of the confidentiality
preserving RideSharing scheme over the spanning tree scheme
by 48.2%.

Figures 3a and 3b illustrate the average message size
and the average energy consumption overheads, respectively,
for each scheme. The four schemes each show a stable
overhead for different link error rates. Yet, the overhead
differs significantly from one scheme to another. The naive
version of our new scheme shows the maximum overhead1 in
both message size and the energy consumption. On the other
hand, the version with compression optimization shows a
significant improvement in the overhead over that without the
compression optimization and is comparable to the schemes

1It is 50x bigger and thus not shown in Figure
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Fig. 3. Avg. msg. size and avg. energy consumption per node (per epoch) for 100% node participation (parents/node = at most 3, total nodes = 1024)
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Fig. 4. Avg. msg. size and avg. energy consumption per node (per epoch) for different participation levels (parents/node = at most 3, total nodes = 1024,
link error rate = 0.25)

that do not provide fault-tolerance or confidentiality. A 96.2%
reduction in the average message size and 94.5% reduction
in energy consumption is achieved using the compression
optimization. This is due to the fact that theP vector starts
from the higher network tracks with more “0” bits than “1”
bits and then as theP vectors gets aggregated towards the
sink more “1” bits are introduced. Hence, theP vectors are
very compressible at both higher and lower level tracks.

2) Effect of Participation Level:A 100% participation rate
is not a common case in collaborative WSNs, as often only a
fraction of sensor nodes satisfies a query. Most queries involve
a conditional clause, such as a WHERE condition. Only those
sensors that satisfy the condition are expected to contribute
to the query response. This experiment identifies the effect
of the participation level on the overall system overhead. In
particular, we fix the link error to 0.25, with 1024 sensor nodes
deployed in the grid. We report only energy and message size
(RMS is relatively insensitive to participation level).

From Figures 4a and 4b, we can see a huge improvement
in the overall system overhead when compared with the
100% node participation (cf. Figure 3). Our new scheme
with compression optimization shows only an average of

7.1% and 3.6% increase in the average message size and
average energy consumption, respectively, when compared
with that of Cascaded RideSharing. Note that nodes that do
not participate in the query result still need to send theL
vectors to propagate ther- ande- bits among backup parents
in the same track. This is necessary for the correctness
of the fault-tolerance scheme. Note also that with lower
participation levels, theP vector contains mostly “0”
entries, hence the compression reaches excellent levels.
For example, for 25% participation of the sensor nodes,
the average message size per node decreases by 45% when
compared with 100% participation for the same link error rate.

3) Effect of Network Density:In this experiment, we study
the effect of the network density on the system performance
for the different schemes. We study this effect by varying the
number of sensor nodes from 300 to 1000 within the fixed 320
× 320 ft2 grid. Using a uniform random distribution function,
each sensor node is assigned a random(x, y) position in the
grid. Figure 5 shows sample random deployments of 300,
600 and 1000 nodes in a 320×320 ft2 grid. Each simulation
run then uses a different random network deployment, so
the results represent the average over 10 different random



0

50

100

150

200

250

300

0 50 100 150 200 250 300

(a) 300 nodes

0

50

100

150

200

250

300

0 50 100 150 200 250 300

(b) 600 nodes

�

��

���

���

���

���

���

0 50 100 150 200 250 300

(c) 1000 nodes

Fig. 5. Example random deployment of nodes in a 320× 320 ft2 grid.

720

780

840

900

960

1020

A
v
er

ag
e 

S
en

so
r 

M
sg

.S
iz

e 
p
er

 E
p
o
ch

 

Confidentiality + RideSharing without optimization

Confidentiality + RideSharing with optimization

Cascaded RideSharing

360

420

480

540

600

660

720

A
v
er

ag
e 

S
en

so
r 

M
sg

.S
iz

e 
p
er

 E
p
o
ch

 

(b
it

s)
 

Cascaded RideSharing

0

60

120

180

240

300

300 400 500 600 700 800 900 1000

A
v
er

ag
e 

S
en

so
r 

M
sg

.S
iz

e 
p
er

 E
p
o
ch

 

300 400 500 600 700 800 900 1000

Number of Nodes

(a) Confidentiality + RideSharing (with/without optimization)/Cascaded
RideSharing schemes

35

40

45

A
v
er
ag
e 
S
en
so
r 
M
sg
.S
iz
e 
p
er
 E
p
o
ch
 

Confidentiality + RideSharing with optimization

Cascaded RideSharing

15

20

25

30

A
v
er
ag
e 
S
en
so
r 
M
sg
.S
iz
e 
p
er
 E
p
o
ch
 

(b
it
s)
 

0

5

10

15

300 400 500 600 700 800 900 1000
A
v
er
ag
e 
S
en
so
r 
M
sg
.S
iz
e 
p
er
 E
p
o
ch
 

300 400 500 600 700 800 900 1000

Number of Nodes

(b) Confidentiality + RideSharing (with optimization)/Cascaded
RideSharing schemes

Fig. 6. Avg. msg. size per node (per epoch) for different network densities (parents/node = at most 3, participation = 100%, link error rate = 0.25)
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Fig. 7. Avg. energy consumption per node (per epoch) for different network densities (parents/node = at most 3, participation = 100%, link error rate = 0.25)

deployments. The link error rate is fixed to 0.25, and sensors
participation is 100%.

Figure 6a shows the average message size per node as
the network density increases, while Figure 6b zooms in
on the difference between the compression optimization and
the Cascaded RideSharing scheme. Compression optimization
reduces overhead: the average message size ranges from 10.5
to 39.8 bits per node (which represents from 60% to 80%
overhead over the Cascaded RideSharing scheme), as the
network density increases from 300 nodes to 1000 nodes.
Figures 7a and 7b shows the average energy consumption
overheads as the network density increases. Both figures illus-

trate the same metric, but Figure 7a shows the improvement
of the compression optimization scheme over that without
compression. The improvement in terms of average energy
consumption per node is on average 90.2%. Figure 7b zooms
in on the difference between our scheme with compression
optimization and the Cascaded RideSharing scheme. From the
figure we can see that the average energy consumption ranges
from 0.11 to 0.16mJ per node (representing an overhead that
ranges from 22% to 25%), as the network density changes. It is
worth mentioning that very dense deployments – as in the 1000
nodes case – are highly improbable deployments, therefore
overheads of up to 25% and 80% of energy and message size,



respectively, represent extremely unlikely situations.

VI. CONCLUSIONS

We introduced a confidentiality-preserving and fault-tolerant
in-network data aggregation protocol for deployments of col-
laborative WSNs. Our protocol allows the aggregation of
sensor readings while maintaining end-to-end confidentiality
of both individual sensor readings and the aggregate result.
Our protocol makes use of a simple and efficient additive
homomorphic cryptographic scheme and further offers robust-
ness of the aggregation process. The protocol guarantees that
with high probability every sensor reading will contribute to
the final aggregate through error detection and error correction
techniques. Extensive simulations show that our new protocol
achieves a high degree of robustness by offering an improve-
ment of 48.2% in the Root Mean Square (RMS) error of the
final aggregate result. Energy and messages size overheads
are acceptable (about 3% and 7% increases, respectively). For
dense network configurations and 100% nodes participation
the maximum incurred energy consumption overhead was
25%. In the future, we plan to investigate ways of extending
our protocol to also provide end-to-end integrity verification
in a confidentiality-preserving manner, which is a more com-
plicated task than the hop-by-hop integrity checking we have
discussed earlier. Although schemes exist to provide end-to-
end integrity and confidentiality in the presence of malicious
nodes (e.g., [12], [16]), these approaches are not tolerant to
failures in the underlying aggregation protocol. Achieving this
goal will be a significant challenge.
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