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Abstract—In Collaborative WSNs, sensing devices are owned overhead by using a spanning tree across all sensor nodes, but
and operated by different stakeholders with incentive to preserve g single link failure in this model leads to the loss of all data
the confidentiality of their individual sensors readings while from the subtree connected by that link. Given that WSNs

contributing to statistics computed by the group. In such systems, h terized by hiah rat f ication fail
in-network data processing presents high efficiency for energy are characterized by high rates of communication failures (up

and bandwidth, but unfortunately introduces several challenges 10 30% loss rate [1]), this approach can lead to large errors
related to data security and fault tolerance. in the average casdlultipath-basedin-network aggregation

In this paper, we present and analyze a new protocol that gpproaches add robustness to the traditional tree structure
allows for confidentiality-preserving in-network aggregation for by taking advantage of the broadcast medium, but must be

collaborative WSNs in the face of intermittent link-level failures. . . . .
Our protocol makes use of a symmetric-key, homomorphic carried out carefully to avoid overcounting when computing

cryptosystem to maintain the confidentiality of individual sensor @ggregates.
readings while still permitting a trusted sink node to recover In addition to achieving the goal of reliably executing
the correct aggregate value. The encrypted sensor readings areine aggregation process, CWSNs require that the confiden-

then combined using a multipath aggregation protocol that is . . e . .
capable of detecting and recovering from a variety of failure tiality of individual sensor readings be preserved. Without

scenarios while carefully handling duplicate sensitive aggregates. SUch a guarantee, different sensors’ stakeholders could gain
We prove the security and correctness of our protocol, and we useful information from the confidential sensor readings and
conduct simulation studies to understand its data transmission gdversaries within the proximity of the network could in-
and energy consumption overheads. filtrate the network, eavesdrop, and gain useful information

Our results show that both confidentiality and fault tolerance I Unf | o hani f .
can be achieved in representative network configurations, while &S Well. Uniortunately, existing mechanisms for carrying out

incurring an increase of 7.1% in the average message size andconfidential in-network aggregation either require the use of
3.6% in the average energy consumption. In the unlikely scenario expensive cryptographic primitives that are unsuitable for use

that 100% of the sensor nodes participate in an aggregate query, in resource-limited sensor environments (e.g., [2]), or assume
the average energy consumption showed at most a 25% 'ncrease'perfectly reliable communication links (e.g., [3], [4])

KeywordsCollaborative wireless sensor networks, fault-  Motivating Application: One example ofCollaborative
tolerance, in-network aggregation, confidentiality, homomorphic Sensing over Shared Infrastructure (CS&pplications is for

encryption office buildings that are equipped with a sensing infrastructure
that is shared among many stakeholders. In some situations,
|. INTRODUCTION different stakeholders may not want to share information about

A wireless Sensor Network (WSN) is a collection ofhe occupancy of individual rooms, although they might want
tiny devices capable of sensing, computing, and wirelesd§ contribute in computing statistics about the occupancy of
communicating to monitor and control events of interest #¢gions within the building in order to make better decisions
a distributed manner. WSN applications span various dabout heating/cooling, public safety, facilities surveillance,
mains such as environmental and building monitoring ar@hd traffic monitoring. Sensors managed by individuals or
surveillance, pollution monitoring, agriculture, health care, arffepartments within the building could measure statistics like
energy management. Through collaboration, wireless sens@¢§upancy or temperature, encrypt their results, and forward
owned and operated by different entities and stakeholders ¢Bf encrypted results through the shared sensing infrastructure.
be used to collaboratively sense and detect phenomenalBgse readings are then aggregateencrypted formthereby
shared interest. reducing overheads in the network while protecting the indi-

In Collaborative WSNs (CWSNsh-network data aggre- vidual values sensed. In the end, the aggregate value(s) are
gation has been adopted as an energy_efﬁcient process gﬁﬁrypted to derive the desired statistics. Note that, in this
allows each node along the routing path to aggregdte case, the preservation of each value’s confidentiality provides
values received from its children intosingle response value User location privacy by not disclosing, say, the occupancy
(thereby avoiding the transmission of messages from ea@Rtus of individual offices. ¢
sensor to the data sink). However, different schemes for in-In this paper, we present a protocol for reliably carrying
network aggregation impose different challengé®e-based out in-network aggregation in CWSNs exhibiting link failures

Fmommtemels S msemmstioes memide = 4= =-1qimal communicatiowhile also maintaining the end-to-end confidentiality of indi-
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vidual sensor readings. To achieve secure data aggregationassumption is also a strong one, as sensor networks are
have chosen to use end-to-end encryption of sensor readiagbject to frequent link failures that might cause the loss
over hop-by-hop encryption for the following reasons: of a whole sub-tree aggregate value. Below we describe
« Using end-to-end encryption, intermediate nodes canni@rks that address fault-tolerant or confidentiality-preserving
decrypt the readings that they forward and thus data dfenetwork aggregation.
not only protected from external eavesdroppers, but also
from malicious compromised or curious nodes within the @) Confidentiality Preserving SystemsA simple ap-
collaborative WSN. proach to partially preserving the confidentiality of aggregated
. To aggregate data encrypted in a hop-by-hop manné@ta in WSNs is using hop-by-hop encryption ([12], [13]).
each sensor node must first decrypt each encrypted valle problem with all hop-by-hop encryption schemes is that,
that it has received, aggregate the resulting values, dhdhe node has been compromised, they may violate the
then re-encrypt the aggregate_ Hence, the Overheadcgﬂﬁdentia”ty of the data at each node since the data is
the decrypt-aggregate-reencrypt operations of hop_by_hggcrypted before the aggregation. Besides the confidentiality
increases linearly in the number of children of each nodéolation at nodes, the number of necessary shared secret
« End-to-end encryption eases the key distribution proceé@ys becomes a function of the network density where all
by reducing the number of keys required by the systefigighboring sensor nodes must share secret keys.
(a sensor shares only one unique secret key with the sini® higher level of confidentiality is achieved through com-
node). plete end-to-end encryption of the sensor readings and their

Our protocol uses a lightweight homomorphic cryptosyé"‘-ggregate values. The use Qf homomorphic cryp_tosystems
tem [5] to enable collaborative in-network aggregation ucrll das”RSA}, EIG:?jmaI, E(Ijl|pt|c Cur_ve [1‘.1]6 or Pa|II|erk[15],
encrypted values while imposing small computational oveffou'd allow ?r en -tc;-en encry;r)]tloln W'th m-networ ag-
head on individual sensors. This aggregation takes place %‘793“0”' Un prtunatedy mostl suc ka gorlrt] mii require e.Xtehn_
extending the RideSharing multipath aggregation protocol [gve com_putaltlons(,j and very long xeys ; 3\58[\? n?; sut tble
to maintain additional metadata that allows the sink node % m_p_utatlona and power constraints o s. 10 ehable
recover the key needed to decrypt the hidden aggregate vaf?}%qmve ag_g.regatlons of Sensor values, our approach ma!<es use
The scheme presented in this paper was designed with he additively homomorphm s_ymmetrlc_—key strea_lm cipher
following goals in mindi(a) Confidentiality: individual sensor prc.)plosed'bz Castellucmadet aII.I in ,[S]C’j \;Vh'Ch 'S.a\i}gﬁle and
readings and their aggregate values are not revealed to gﬁ '?”F clpher ?é/sternl_an we -s_wte or use In s |
external (eavesdropper) or internal (compromised aggregator X|sgng 4conh| entiality-preserving aggr_ega.ltlon pr(i(tocos
attacker, only to the sink(b) Fault tolerance: robustness 9. [ ] [4]) share one common assumption: no pac gts are
in that sensor readings that are lost due to link errors Apest during the aggregation process (note that .“nk fa|lu_res
compensated foat most once(c) Exact aggregation Instead a;ewcsolilnmoln ?ue t.o the unreliable dcomr:numcatlonhmedllljgn
of providing probabilistic query aggregate results (e.g., [7],, . s). In aCtz IN SOme proposed schemes suc as.[' ]
[8]), our approach provides an exact aggregate result in ¢ |t|ye aggregation s supp(_)rted using a secret Sp"t.“”g
of no link failures. With link failures introduced, the finaItGChkn'C"fe for theldsensor re;ldlnghs.lln such scheme, a single
aggregate deviates by exactly the lost value and not by soPr?efC et loss would cause the whole aggregation process to
derivative of that value; and) Low energy overhead our fall and Fhe inability of the smk node to recover a precise
scheme has low overheads on the size of packets transmiﬁggregat'on result. The authors in [,3] proposgd an end-Fo-end
and amount of computation required. encryption for sensor networks traffic, but their scheme is not

The rest of the paper is organized as follows. Section rﬁ:silient against link failures. Their proposed scheme utilizes
reviews the different in-network data aggregation schem&&qﬁpfd default lvalutre]s to E):lompe?sc?t? fqr Ilan: failures,
proposed in the literature. Section Il presents our netwo IIC or?s nlptks;) xe t ehpro emBo e;ventng the correcth
and attack model, as well as the basic building blocks for o plues when fink fallures happen. By contrast, our approac
new protocol. In Section IV, we present our new propos gr conf|d§nt|al_|ty-_p_reserV|_ng |r_1-network a_ggregann IS
confidentiality-preserving, fault-tolerant, in-network aggregeiprSt_agamSt_l'ndt'V'dugl I|_nk failures. '[_hat I'S' rather thanh
tion protocol, and discuss its relevant properties. Section Isumnt"nr? a si e? nfo _T 'f n%n—opter?jlc;na,thour appro?c
presents an extensive simulation study and system evaluai gws the parents ot stient nodes to deler the aggregation

of our approach. Finally, Section VI presents our conclusioﬁ these rr:odeds hvalues t'o gth?ackupdp:,;\rents th?t .mayTh_
and directions for future work. ave overheard the perceived silent node’s transmission. This

allows the computation of more accurate aggregate values.
Il. BACKGROUND AND RELATED WORK b) Fault Tolerance Modelsin typical in-network data
There has been extensive work on data aggregatiaggregation systems, a query disseminates from a sink node to
schemes including (e.g., [9], [10], [11]). These schemesdl other sensor nodes. As the query propagates in the network,
assume both a reliable and a secure network. Howevarspanning tree is constructed. The spanning tree is rooted
in the real world, sensor nodes are usually deployed &t the sink node, and each intermediate sensor node receives
hostile environments where communication links can be aalues from its children, aggregates them with its own value,
easy target for adversarial eavesdropping. The reliabilignd forwards the result to its parent. One major drawback of



spanning trees is that they are not robust against link failurggneratorg can encrypt itsj** reading of a valuep’, as
a single link failure causes the value of the sub-tree connecfetlows:
by this link to be lost. Link failures that occur in the upper ¢ =l + ¢ (k) mod M
levels of a tree can thus cause massive losses of data._Jo . . )
address this problem, existing mechanisms (e.g., [17], [1éﬁ}e sink can then recover the valué as follows:
make use of multipath in-network aggregation. This approach v = — ¢’ (k) mod M
adds more robustness against link failures, but at the same ] o .
time introduces challenges with correctly handling duplicate- A key feature of this cryptosystem is its ability to ho-
sensitive aggregates such as SUM, AVG, and COUNT. momorphi(_:ally combine valu_es that are encrypted under the
Different variations of so-calledketchesprovide approx- Same or different keys. Consider two sensor nodesindn,
imate aggregation in WSNs for duplicate insensitive queri€§aring keysk; and k,, respectively, with the sink (but not
(e.g., [8] are based on FM-sketches [19]). Unfortunately, the$#h each other). Suppose these principals wish to encrypt
solutions are not applicable because aggregate computatibi i*" valuesvi and v}, respectively. The nodes encrypt
are infeasible when using encrypted sketches. their values as follows:
In [6],_ RideShar_ing is introdu_ced as a fault-to!erant s<_:heme ¢ = i 4gi(k)) mod M 1)
for duplicate sensitive aggregations in WSNs. RideSharing has i i i
been shown to outperform other fault tolerant schemes (e.g., ¢z = vp+gy(ke) mod M 2)
Synopsis Diffusion [18]), consuming up to 50% less energgiven the aggregate valug’ = ¢} + ¢, the sink can recover
and bandwidth resources, while delivering more accurate age aggregate keys = gi(ky) + gi(k2) and decrypt the
gregate results. aggregate valud¢’® = (vi +vi) = C* — K mod M. Note
No published work so far solves the problem of providing that neitherv? or v% are disclosed via this process.
both confidentiality and fault tolerance for the process of in- In [5], the authors prove that this symmetric key, additively
network aggregation. Hence, our approach is novel in thathbmomorphic cipher is semantically secure.
accomplishedothof these goals in an energy efficient manner
for collaborative WSNs. i

IIl. M ODELS AND BUILDING BLOCKS
A. Network and Attack Model

We assume a multi-hop network that consistsnoétatic
sensor nodes and a single trusted sink node. Each sensor T,
node shares a unique symmetric key with the sink. As usual,
sensors are small, battery-operated devices and the sink is
a more capable node with higher computational and storage
capabilities and no battery limitations. The sensors may belong
to different stakeholders and execute collaborative sensiFig- 1. Track graph network topology
applications that use in-network aggregation to efficiently
compute statistics over the individual sensor readings. We
are concerned with the data confidentiality, no bound on the
number of attackers, and consider two types of attackers: (afcascaded RideSharing was proposed in [6], as an efficient
honest but curioussensors, and (bjjuiet infiltrators Both fault tolerant in-network aggregation. Cascaded RideSharing
are able to eavesdrop and either accumulate the informat®fploits the redundancy in the wireless medium to detect and
gathered or send the information in an undetected way (e gQIrect communication link failures. To accomplish this, the
using a different channel). The sink node is assumed $6nsor network is organized intarack graphtopology [20].
remain uncompromised. Faults are in links only and they arégure 1 illustrates a simple track graph topology. In such a
“omission” faults or “crash” faults. topology, sensor nodes are organized in tracks, with the sink
residing in track 0, sensors one hop away from the sink are
in track 1, and so forth. The aggregation path then forms a
DAG with multiple paths through the track graph, rather than

Our confidentiality preserving scheme makes use of tlaesimple spanning tree. Each sensor node haspoineary
symmetric key, additively homomorphic stream cipher prgarent and one or moreackupparents in the adjacent track
posed in [5]. In this cryptosystem, a keyed pseudo-randgm track consists of all nodes at the same distance from the
generator is used to effectively generate keystreams that simk).
used to encipher sensor readings stored as integer value#\ parent of a sensor node is assumed to overhear another
Encryption is simply addition mod\/ and decryption is parent’s transmissions. Note that the assumption of overhear-
subtraction modM, where M is an upper-bound on theing sensors (which has also been adopted in other work ([21],
aggregate function to be computed. For example, a senfbr]) does not constrain the WSN deployment to only dense
node sharing a ke} with the sink and using pseudo-randomrmetworks because such assumption is easily justified when a

—> primary edge

----> backup edge

Cascaded RideSharing

B. Cryptographic Primitives



sensor node is within a reachable distance of at least t&cciphertext reveals no information about the corresponding
parents. Every sensor node transmits its reading to its primgigintext without the appropriate key.
parent according to a predefined TDMA schedule. Note thatTo account for the above types of problems, we designed
not all sensors transmit data, only those that include new infaur protocol in such a way to allow the sink nodeefficiently
mation, as determined by the application. For example, repegé¢termine which sensors contributed readings to the final
edly transmitting the same temperature or other informati@ygregate and thus correctly compute the aggregate key that
would not add any new value, and therefore the applicatiehould be used to recover the true aggregate value from
may choose to omit redundant/repeated values [22]. the ciphertext received. As we will see, this is achieved by
Backup parents compensate for errors in the primary linksopagating state not only between nodes within the same
by overhearing another parent’s transmissions. For error deteack as done in RideSharing, but also between nodes in
tion and correction purposes, each parent maintains a smalldgfacent tracks. Using our protocol, even duplicate-sensitive
vector L that has two bits for each child:=bit (retransmitted aggregates such as SUM and AVG are securely computed
bit) ande-bit (error bit). If the primary parent does not receiveaising the in-network aggregation process, while guaranteeing
any data from a specific child node in its predetermined tinveith high probability that every sensor reading contributes to
slot, it sets thee-bit to ‘1’ indicating a missing value from the final aggregate at most once.
this child. A backup parent then takes the responsibility of
aggregating the missing value. Thebit is set to ‘1’ if the .
parent is able to aggregate and transmit the value for the ch'ﬁd Protocol Details
node. This process repeats among backup parents until on&lgorithm 1 contains pseudo-code describing the aggrega-
parent aggregates the value. Note that the primary parenttioh protocol as run by sensor nodes that help aggregate and
some node might also function as a backup parent for ottietite readings in the network, and optionally contribute their
nodes. own readings to the aggregate being computed. This algorithm
takes four inputs: a set of child nodes for which this node
is the primary parent (“Primary” Children, aPC), a set of
child nodes for which this node is a backup parent (“Backup”
Children, or BC), the list of peer nodes in this track (set of
In this section, we describe our protocol for confidentialitypeers, orSP), and an optional sensor reading to include in
preserving and fault-tolerant in-network aggregation amonige aggregation (value). In addition to maintaining the fault-
CWSNs. We begin by discussing the details of our protocdblerant L bit vector needed by the Cascaded RideSharing
and then prove that it affords strong reliability and confidemprotocol (cf. Section IlI-C), Algorithm 1 also maintains a
tiality properties. Partaking vectoy called theP vector, to keep track of nodes
that have successfully contributed to the final aggregate. The
P vector is amn-bit vector, wheren is the number of sensor
nodes in the network. In Section V, we show that in practice,
At a high level, our approach to providing fault-tolerant andensor nodes do not necessarily have to transmit the whole
confidentiality-preserving in-network aggregation for CWSNgector, but only a compressed vector to minimize bandwidth
is built on top of the Cascaded RideSharing algorithm comverhead.
bined with the additively-homomorphic stream cipher de- The protocol proceeds as follows. If the sensor node has
scribed in Section IlI-B. In the event that the readings & non-null reading to contribute to the aggregate,is first
all sensor nodes are included in the final aggregate valemcrypted using the homomorphic cryptosystem described in
the algorithm goes as follows: (i) each sensgrencrypts Section IlI-B and then added to the local aggregateAfter
its valuev; asc¢; = v; + g;(k;) mod M; (ii) the resulting receivingP andL vectors, the node sets the bit corresponding
¢; values are aggregated using the Cascaded RideShatmgts /D in the P vector to ‘1, indicating that it has
protocol, which results in the sink receiving the valle= contributed to the aggregate value. The sensor then waits to
>, ¢; mod M; (iii) the sink then computes the aggregate keseceive theL vectors transmitted by the nodes in its track
value K = ). g;(k;) mod M; and (iv) the sink extracts the that precede it in the TDMA transmission order; the bit vector
final aggregate valu® = >, v; = C — K mod M. informs the sensor of what corrective actions it should attempt
Unfortunately, the above algorithm only works in the rar& take. After receiving P and L vectors, the sensor iterates
case thaall sensor nodes contribute readings to an aggregateer all of its child nodes and combines the aggregate values
computation. Most commonly, not all sensors’ readings aend P vectors reported by these nodes with its local values
included in the final aggregate because of either node- or lirks indicated by thd. vector. Specifically, values are included
level failures or simply because not every sensor will haveto the sensor’s local aggregate if this sensor is the primary
a reading to contribute to every query. In this case, the siplrent of the child, or if it is a backup parent that is capable
node would compute an incorrect aggregate keyf the sink of correcting an error induced by faults that affect the child’s
attempts to decrypt the aggregate ciphertext using the wrdngnsmitted value.
aggregate key, the resulting value will be a random elementAfter receiving data from all its child nodes, the sensor
from the sef{0, ..., M —1}. This random and unbounded errotransmits its updated aggregate vallieits updatedP vector,
is due to the semantic security of the cipher, which ensures that its localL vector. This message is destined to its parent

IV. CONFIDENTIALITY PRESERVING ANDFAULT
TOLERANCE PROTOCOL

A. Protocol Overview



Algorithm 1: Aggregation and routing algorithm run

by sensors within the network

input : PC, BC, SP, v

&
i1l oo

T

0;
L.e :=0;

if v NOT NULLthen// Aggregate own value

A= A+v+grp(krp) mod M;
P[ID] := 1,

end

L = rcvL(SP);

foreach Child C' in PC U BC do

if rev(A.,P.) from Child C then

the received values
A=A+ Az mod M;
P =PORP,;
L[Cl.e = 1;

end

end

else // Propagate the error signal

| L[Cle:=1;

end

end

Transmit(4,P,L);

if Ce PCOR( €BCANDL|[Cle=1
AND L[C].r = 0) then /I Aggregate

Algorithm 2: Final aggregation and decryption

algorithm used by the data sink

input : PC
output: FinalA
A =0

P:=0;

K =0;
FinalA = 0;

foreach Child C in PC do
if rcv(A.,P.) from Child C then
A=A+ Ac mod M,
P =PORP,;
end
end
foreach bit set to '1’ in P do
| K = K + g;(k;) mod M;
end
FinalA = A— K mod M;

Algorithm 2 contains pseudo-code describing the protocol
run by the sink node requesting the aggregate. This algorithm
takes only a single input: the set of children in track 1 of the
graph PC, similar to Algorithm 1). After the sink receives
an encrypted value anda vector from each of its responsive
children, it computes the sum of each sughvalue and
the bitwise OR of everyP vector to compute both the final
(encrypted) aggregate value and the fifalector indicating
which nodes successfully contributed to the aggregate. The
sink then generates the keystreams for each node indicated in
the final P vector and uses the aggregate key to recover the
plaintext aggregate value.

C. Protocol Properties

We now show that our protocol provides strong guarantees
in terms of both sensor reading confidentiality and correctness
of the final aggregation.

Theorem 1 (Confidentiality)During the execution of the
protocol described by Algorithms 1 and 2, no sensor (except
the sink) can learn the value of the readings reported by any
other sensor, nor the value of any intermediate aggregate value.

Theorem 1 follows directly from the semantic security of
the cipher used by Algorithms 1 and 2 and the fact that each
sensor node shares a uniqgue symmetric key only with the sink.

Theorem 2 (Correctness)lJnder the assumption of “honest
but curious” or “quiet infiltrators” attack nodes, the protocol
described by Algorithms 1 and 2 includes each sensor reading
at most one time during the aggregation process. Further,
the sink node is able to correctly identify the sensors that
contributed to this aggregate, generate the resulting aggregate
key, and recover the correct result.

Proof: To prove this claim, we must show that (i) each
sensor reading is aggregated at most once and (ii) that the
P vector includes exactly the information needed to recover
the aggregate key needed to decrypt the result. Note that
Algorithm 1 sets a bit in thé® vector if and only if the sensor
reading for the corresponding node is included in the local
aggregate. Also, the P vector is always transmitted with the
aggregate values. As such, proving assertion (i) is sufficient to
prove the theorem. We proceed by induction on the height of
the track graph.

For our base case, we consider a track graph consisting
of three tracks: the sink (track 0) and two tracks of sensors
(tracks 1 and 2). Assuming that track 1 has perfect connectivity
to the sink, we need only show that all readings from track
2 are aggregated by at most one node in track 1. Without
loss of generality, we assume that track 2 consists of a single
sensor noden; and consider 5 cases: (1) there are no link

nodes (primary and backup) and to the peer parents (bacKaitures in the graph, (2) the link between and its primary

for its children).

parent fails, (3) the link betweem; and its primary parent and

Note that theL vector is a local vector used merely forsome number of its backup, (4) there is a side-channel error in
the coordination of primary and backup parents through sitf@ck 1prior to the aggregation ofi;’s reading, and (5) there
edges within each track; that is, tHevector is re-created in is a side-channel error in trackéfter the aggregation ofi;'s
each track and ignored by nodes in adjacent tracks. On walue.
other hand, theP vector propagates to the next track along 1) If no links fail, the reading of sensor; will be heard

with the aggregate value.

by its primary parent. The primary parent will include



this value in its local aggregate, set théit for noden; D. Integrity Checking

in its L vector, and transmit. Since thebit for noden;  yteqrity checking of the data could be another desirable
is set, no backup parent in track 1 will take correctivgonerty of CWSNs to defend against external attackers who
action to includen;’s reading in its local aggregate.  q,|4 manipulate the data in transit. Even though integrity
2) If the link betweenn; and its primary parent fails, the ooection is not within the scope of the paper—given our
primary parent will set the-bit for n; inits L vector and - g5y esdropping attack model—for completeness, we discuss in
transmit this vector along its side-channel to the othfis section how to add integrity to our proposed protocol.
_nodes n tracI’< L Th_e f'r.St b".iCkuP parentrgfwill then One major problem with homomorphic cryptosystems is
mcgrporatgni.s reading into its Iocall aggregate, set thg, ¢ they areamalleableby design. An encryption algorithm is
r-bit for n; inits L vector and transmit. No other backupyjieaple if it is possible for an adversary, without knowing
parent in track 1 will take corrective action to includgpe gecret key, to transform a ciphertext into another ciphertext
n;'s reading in its local aggregate sinag's r-bitis NOW 5t gecrypts to zelatedplaintext. Consider the cryptographic
set in thel, vector passed along track 1. primitives in Section 11-B, where nodes; and n, encrypt
3) If the links betweenn; and its primary parent and e ;i yaluesyi andvi into the two ciphertexts’ and ¢’
be,twe(.anni and some number OT Its bac_ku_p parents fa'!ind the aggregate valu® = ¢} +c,. An external attacker can
n;'s primary parent will set the-bit for n; in its L vector ;a0 the network while the aggregaté is being transmitted
to indicate an error. Thid vector will propagate along g then transmit an inflated (or deflated) aggregate v@lie
the side-channel in track,l until 't. re_aches a back% adding (or subtracting) some constanttowithout having
parent that has overheard's transmission. If no such e apijity to decrypt the aggrega@. When the sink node
paCkuD parent exists,; s re.adlng Is lost. Othef,W'S‘?’ theattempts to decrypt the aggregate it receigésit will recover
first such backup parent incorporatess reading into o mogified value/* rather than the true aggregdté. Un-
its local aggregate, sets thebit for n; in its L VECIOT ¢y nately, such attacks are undetectable without adding extra
and transmits. No other backup parent in track 1 willyytoqraphic mechanisms to verify both the data integrity
take corrective action to include;’s reading in its local 4 the authenticity of the encrypted aggregate values across
aggregate smc_ei’s r-bit is now set. . sensor nodes.
4) .lf there 'S & su?e—chan.nel error in trackptior to the It is straightforward to extend our protocol with hop-by-hop
mporppraponms reading in the aggregate, no entrXntegrity protections to guard against the injection or modifica-
W'"_ e>_<|s_t in the L vector for ,nOde”/i'_ As such, nodes tion of data by malicious outsiders. In order to accomplish this,
optimistically assume th‘.mi S readlfwg was alrea_dy every sensor node can establish a shared secret key with all its
gggr_egated, a,nd W'".nOt |r_|corporates reading. Th|s parents in the adjacent track. Secure key distribution between
implies thatn,’s reading will be absent from the f'nalnodes is a well-explored problem, and could be achieved
aggregatt_a. . . using any secure and efficient key distribution scheme in the
5 .If there IS a S|de-’channe.I error in track dliter the _ literature (e.qg., [23], [24]). Using this shared key, the sensor
!nco_rporatlo_n 0fn;’s reading in the aggreg_ate, _th'_snode can compute cryptographic integrity code (e.g., a keyed
implies, as in the last case, that no entry ‘_N'I_I e_X'St Mimac [25]) over its aggregate value, and then transmit the
the L vector for noden;. As su'ch, nOQes optimistically aggregate along with its corresponding integrity code to its
(and correctly) assume th@ S reading was alrgady parents. The parent receiving these values can then verify both
aggregated and will not again incorporatgs reading. the integrity of the message, as well as authenticate that it was
The above cases account for all possible link failure scgent by one of its legitimate children. If the verification passes,
narios between tracks 2 and 1, and within track 1, and in &fe values are processed as usual. If the verification fails, the
casesn;’s reading was included at most once. Thus, we haf@ulty value can be ignored by the receiving parent and, if
shown that Theorem 2 holds in the base case. necessary an alert can be raised indicating that tampering has
For the induction step, assume that Theorem 2 holds for Bff€n detected. o _ _
track graphs containing up to tracks. We now prove that it Note thatin the case of malicious compromised aggregating
also holds for all track graphs of up fo+ 1 tracks. nodes, integrity checking becomes a more complex problem

First, observe that an argument similar to that used in tig8 end-to-end integrity checking will be required. We leave

base case shows that the reading reported by each sens& emsolutlon for this problem to our future work.

track £+ 1 will be incorporated by at most one sensor in track
k. Furthermore, our inductive hypothesis can be used to prove V. EVALUATION

that the value reported by sensor in trdcks incorporated at e carry out a detailed evaluation of the communication and

most once into the final aggregate. As such, the readingsedfergy-consumption overheads associated with our protocol.
sensors in track + 1 are incorporated at most once into the

final aggregate, and Theorem 2 holds in all track grapis.
Taken together, these theorems show that the protoCAbI
described by Algorithms 1 and 2 does indeed provide To understand the costs and benefits of our approach, we
confidentiality-preserving and fault-tolerant in-network aggremplemented four protocols by extending the WSN in-network
gation functionality for wireless sensor networks. aggregation simulator TiNA developed in [22]. Specifically,we

Simulation Setup



implemented (i) a spanning-tree aggregation without fault- —+— Confidentiality + RideSharing o
tolerance nor data confidentiality; (ii) the Cascaded RideShar- ] SeTree et o
ing protocol [6], which provides only fault tolerance; (iii) 601 )
the basic version of our protocol described in Section IV,
with both fault-tolerance and data confidentiality protection; 40 L
and (iv) an enhanced version of our protocol that applies 0 7 _—
compression (run-length encoding or RLE) to tRevector 0% //
to minimize data transmission overheads. 0 __—
All protocols were compared relative to three main metrics: — ‘ ‘ ‘ ‘
« Average relative RMS erroiThe root mean square error 005 0l 15 02 0% 03 035
of the final result, normalized to the correct result value.
« Average energy consumed per node per epddle aver- Fig. 2.  Average Relative Mean Square Error for 100% participation
age energy spent transmitting, listening for, and receivingarents/node = at most 3, total nodes = 1024)
data by each node for an epoch.

« Average message size transmitted per node per epoch

The average amount of data transmitted by each nogstermined that the number of CPU cycles necessary to
during one run of the protocol. compress a° vector of size 1024 bits is less than 20 cycles

Sensor nodes are distributed over a 822D ft> grid, Pe' bit on the average. Since this cost is greatly dominated by
with the data sink located closest to the center of this arel® €OSt of transmitting a single bit, we do not consider the
The radio range of each node is assumed to bef@0All  €N€rgy consumption due to compression in our simulations
results are the averages over 10 simulation runs, each wiimputations. The cost of the simple operations—such as
30 epochs. As in [6], we assume that sensor nodes have fifiditions, ANDs, ORs, and swaps—required by our stream
Mica2 specifications [26] where data transmission, Iisteninﬁpher is similarly dominated by transmission cost, particularly
and reception, and idling consume 651, 21 mW, and in the event that sensors are pre-keyed and need not generate
0mW, respectively: network bandwidth is assumed to be 3gH#€ir keystream on the fly.

Kbps. We also assume network activity is much more costly

RMS Error (%)
X

than computation [27]. B. Experiments
S TAB'LDE' All results below have a maximum error of less than 1%
IMULATION FPARAMETERS . . .
when computed with 95% confidence level. We omit error
Parameter Values bars from the plots for better presentation.
Total number of nodes 300, 400, 500, ..., 1000, 1024
h‘”k E”"rfrat? back . OiOS' Ot-130'---'0-35 1) Effect of Link Error Rate:In this experiment we fix
umber of primary+backup parents at mos .
Participation level (% of nodes reporting value4).5%, 2.5%, 5%, ..., 25% the number of sensor nodes in the network to 1024 nodes,

] ] deployed in a grid. The participation level is set at 100%; that
We assume that link errors occur independently of eagh )| sensor nodes participate by contributing readings to the
other and are distributed uniformly throughout the network, gregate computation. We vary the link error rates, where
Failures can happen independently in primary, backup, aﬂge link error rate is the probability with which a link will fail
side edges, while the links between track 1 and the dEHGring data transmission.
sink are assumed to be error free. The number of (primaryFigyre 2 shows the effectiveness of the confidentiality
and backup) parents for each node is set to be at mospserving RideSharing and the spanning tree schemes with
and depends on the network (in particular, it is a functiogpect to the RMS error of the aggregated value for different
of network density). Table | lists some of the simulatiofynk error rates. As expected, link error is highly correlated
parameters. i with spanning tree error. For link error rate of 35%, we
We implemented the RC4 stream cipher as our pseudQse an improvement in the RMS error of the confidentiality
random keystream generator, due to its simplicity. We al$aserying RideSharing scheme over the spanning tree scheme
used an appropriate optimization to conserve both energy a(;};j48_2%_
bandwidth. Gi\{en the nature of the vector, we applied Run Figures 3a and 3b illustrate the average message size
Length Encoding (RLE) to compress tifé vector at each gng the average energy consumption overheads, respectively,
sensor node. Using this performance optimization, each Senggr aach scheme. The four schemes each show a stable
node contributing a value sets the corresponding bit infthe gyerhead for different link error rates. Yet, the overhead
vector, aggregates any receivétlvectors from its children gjgers significantly from one scheme to another. The naive
into a singleP vector, compresses the new vector using RLEgarsion of our new scheme shows the maximum overhiad
and sends the compressed version. _ _both message size and the energy consumption. On the other
_ With respect to the energy consumed during computatiogng, the version with compression optimization shows a
(including aggregation and RLE compression), we rely on theyniicant improvement in the overhead over that without the

fact that transmitting one bit over radio is at least three Ordetfﬁmpression optimization and is comparable to the schemes
of magnitude more expensive in terms of energy consumption

than executing a single instruction [27]. Our measurementsit is 50x bigger and thus not shown in Figure
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Fig. 4. Avg. msg. size and avg. energy consumption per node (per epoch) for different participation levels (parents/node = at most 3, total nodes = 1024,
link error rate = 0.25)

that do not provide fault-tolerance or confidentiality. A 96.29%%.1% and 3.6% increase in the average message size and
reduction in the average message size and 94.5% reductieerage energy consumption, respectively, when compared
in energy consumption is achieved using the compressiatith that of Cascaded RideSharing. Note that nodes that do
optimization. This is due to the fact that thé vector starts not participate in the query result still need to send the
from the higher network tracks with more “0” bits than “1"vectors to propagate the ande- bits among backup parents
bits and then as thé” vectors gets aggregated towards thim the same track. This is necessary for the correctness
sink more “1” bits are introduced. Hence, tlievectors are of the fault-tolerance scheme. Note also that with lower
very compressible at both higher and lower level tracks. participation levels, theP vector contains mostly “0”
entries, hence the compression reaches excellent levels.
2) Effect of Participation LevelA 100% participation rate For example, for 25% participation of the sensor nodes,
is not a common case in collaborative WSNs, as often onlytlee average message size per node decreases by 45% when
fraction of sensor nodes satisfies a query. Most queries invols@mpared with 100% participation for the same link error rate.
a conditional clause, such as a WHERE condition. Only those
sensors that satisfy the condition are expected to contribute3) Effect of Network Densitytn this experiment, we study
to the query response. This experiment identifies the effébe effect of the network density on the system performance
of the participation level on the overall system overhead. for the different schemes. We study this effect by varying the
particular, we fix the link error to 0.25, with 1024 sensor nodesmumber of sensor nodes from 300 to 1000 within the fixed 320
deployed in the grid. We report only energy and message size320ft? grid. Using a uniform random distribution function,
(RMS is relatively insensitive to participation level). each sensor node is assigned a randeny) position in the
From Figures 4a and 4b, we can see a huge improvemgnt. Figure 5 shows sample random deployments of 300,
in the overall system overhead when compared with tf&0 and 1000 nodes in a 32820 ft?> grid. Each simulation
100% node participation (cf. Figure 3). Our new schemmein then uses a different random network deployment, so
with compression optimization shows only an average tifie results represent the average over 10 different random
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deployments. The link error rate is fixed to 0.25, and sensdrate the same metric, but Figure 7a shows the improvement
participation is 100%. of the compression optimization scheme over that without

Figure 6a shows the average message size per nodec%@pression. The improvement in terms of average energy

the network density increases, while Figure 6b zooms Fﬁ)nsumption per node is on average 90.2%. l_:igure /b £ooms
on the difference between the compression optimization aWd(.)n.th?_ dlffer((jar;rc]:e geMegndo;rdsgr;]eme W'tE com[?:ressut)rr]]

the Cascaded RideSharing scheme. Compression optimizaﬁgﬁ'm'za lon an ti t?ﬁca ed Ridesharing sc emet._ rom the
reduces overhead: the average message size ranges from gEe we can see fhal ne average energy consumption ranges

to 39.8 bits per node (which represents from 60% to 80 o 0.11 10 0.16m.J per node (representing an overhead that

overhead over the Cascaded RideSharing scheme), as "fges from 22% to 25%), as the network density changes. Itis

network density increases from 300 nodes to 1000 nod&é‘?rth mentioning that_ very Qense deployments —as in the 1000

Figures 7a and 7b shows the average energy consumpfﬂ(?rqes case — are highly improbable deployments, therefore
0, 0, 1

overheads as the network density increases. Both figures i”8¥9rheads of up to 25% and 80% of energy and message size,



respectively, represent extremely unlikely situations.

(11]

V1. CONCLUSIONS [12]

We introduced a confidentiality-preserving and fault-tolerant
in-network data aggregation protocol for deployments of col-
laborative WSNs. Our protocol allows the aggregation ¢f3] Y. Yang, X. Wang, S. Zhu, and G. Cao, “Sdap: A secure hop-by-hop
sensor readings while maintaining end-to-end confidentiality
of both individual sensor readings and the aggregate I’ESH!E.] E. Mykletun, J. Girao, and D. Westhoff, “Public key based cryp-
Our protocol makes use of a simple and efficient additive
homomorphic cryptographic scheme and further offers robust- International Conference on Communications, ICG'@6l. 5, june 2006,

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: a tiny
aggregation service for ad-hoc sensor networl8(GOPS Oper. Syst.
Rev, pp. 131-146, Dec. 2002.

H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network
aggregation in sensor networks,” iAroceedings of the 13th ACM
conference on Computer and communications security, CCS éw
York, NY, USA: ACM, 2006, pp. 278-287.

data aggregation protocol for sensor networlCM Trans. Inf. Syst.
Secur, vol. 11, pp. 18:1-18:43, July 2008.

toschemes for data concealment in wireless sensor networks,|HEE

. 2288 —2295.

: pp
ness (?f the aggregation process. The Pr0t009| guarantees thate. paillier, “Public-key cryptosystems based on composite degree resid-
with high probability every sensor reading will contribute to

the final aggregate through error detection and error correcti?n]
techniques. Extensive simulations show that our new protoéo?
achieves a high degree of robustness by offering an improve- Proceedings of the 26th IEEE International Conference on Computer
ment of 48.2% in the Root Mean Square (RMS) error of the_ CommunicationsMay 2007, pp. 2045 ~2053.

X . 17
final aggregate result. Energy and messages size overh ads

uosity classes,” ildvances in cryptology, EUROCRYPT.9%pringer-
Verlag, 1999, pp. 223-238.

W. He, X. Liu, H. Nguyen, K. Nahrstedt, and T. Abdelzaher, “Pda:
Privacy-preserving data aggregation in wireless sensor networks,” in

S. Biswas and R. Morris, “Exor: opportunistic multi-hop routing for
wireless networks,” inProceedings of the 2005 conference on Appli-

are acceptable (about 3% and 7% increases, respectively). For cations, technologies, architectures, and protocols for computer com-
dense network configurations and 100% nodes participation Mmunications, SIGCOMM "05 New York, NY, USA: ACM, 2005, pp.
the maximum incurred energy consumption overhead WAS
25%. In the future, we plan to investigate ways of extending
our protocol to also provide end-to-end integrity verification
in a confidentiality-preserving manner, which is a more COMArg)
plicated task than the hop-by-hop integrity checking we have

discussed earlier. Although schemes exist to provide end-{o-
end integrity and confidentiality in the presence of malicious

nodes (e.g., [12], [16]), these approaches are not tolerant to
failures in the underlying aggregation protocol. Achieving thiﬁl]
goal will be a significant challenge.
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