
Knowedge-based Policy Conflict Analysis for Collabrative Workspace
Zhengping Wu

Department of Computer Science and Engineering,
University of Bridgeport

221 University Avenue, Bridgeport, CT 06604, USA
zhengpiw@bridgeport.edu

Yuanyao Liu
Department of Computer Science and Engineering,

University of Bridgeport
221 University Avenue, Bridgeport, CT 06604, USA

yuaoyaol@bridgeport.edu

Abstract— In collaborative workspace, collaborations are
constrained by different requirements between different
participants. Since policy-based management can be used to
simplify collaboration management, administrators and users
can use policies to define control rules and configurations of
collaborative workspaces. These control rules and restrictions
actually reflect management needs and business contracts. When
collaboration is necessary between participants for a specific task,
various management requirements from individuals may have
conflicts. The situation is even worse when the collaboration is a
one-time event. To detect and resolve potential conflicts within a
collaborative workspace, a knowledge-based agent framework is
proposed and used in this paper to analyze potential policy
conflicts. Experiments in a sensor network environment confirm
several advantages of the proposed framework.

Keywords - policy conflict analysis, knowledge-based analysis,
temporal logic, semantic extension, collaborative workspace.

I. INTRODUCTION
Collaborative workspace is a new trend for people to

work together, which helps people overcome the geographic
obstacles. There are also physical requirements for
collaborative workspace, such as video and audio
connections, and remote control sensors. Information in a
collaborative workspace is usually shared through networks.
In order to build an efficient and secure collaborative
workspace, policy-based management can be used. Policy-
based management is an administrative approach to manage
system usage and its governance rules within an information
domain. More and more systems have adopted this policy-
based approach for its convenience and efficiency. Policies
represent requirements in collaborative workspaces. A policy
domain (domain hereafter) is a collection of elements and
services administered in a coordinated fashion [1].

Collaborative workspace can support interactions and
collaborations between participants. Different workspace
participants can share their resources and build new
workspace based on existing workspaces. For example,
domain A has one participant and one resource. Participant
“A” requires resource to provide certain functionality.
Another domain B contains one participant and another
resource. Participant “B” also needs to require some
functionality provided by its resource. When these two
domains “A” and “B” collaborate, they share their resources.
At this point, the resource has two policies for participant
“A” and “B” respectively. However, different management

requirements of these services are reflected in different
policies in a policy-based management environment. These
requirements may conflict with each other, which are usually
reflected in policy conflicts. For example, before domain A
and domain B collaborate, there are policies to control their
services and their own data services. We call the policy in
domain A “Policy 1”, the policy in domain B “Policy 2”. In
“Policy 1”, sensor “D” has to provide data for participant
“A”, with an adaptive interval (the default value is 100s).
This value is adjustable according to request from participant
“A”. In “Policy 2”, resource “D” has to provide data under
certain data error rate for “B”. During the collaboration,
Policy 1 and Policy 2 will have some overlap on sensor “D”.
If participant “A” requests high-speed data, this request may
occupy a large amount of resources on sensor “D”. Therefore,
sensor “D” cannot provide qualified data to participant “B”.
When collaboration happens, there may be many conflicts
between two policies, which may affect the whole
collaboration. In this paper, we propose a knowledge-based
policy conflict analysis framework to analyze policies and
figure out such potential conflicts.

II. RELATED WORK

A. Temporal Logic
Properties of complexity and axiomatizations for

temporal logics have been studied for decades. Temporal
logics are widely used in the specification and verification
of distributed systems. However, along with explosion of
information, one element in different systems may carry
number of attributes, and these attributes may assign this
element different roles. Information becomes a barrier of
specification and verification. In previous approaches [2, 3],
information is presented as constraints. In [2], authors
implemented DLTL in specifying and verifying systems of
communicating agents and interaction protocols. The
semantic facts of agent communication have been specified
by means of laws and constraints. Authors in [3] provide a
logical framework (Temporal Action Logic, TAL) for
specifying and verifying systems of communicating agents
and interaction protocols. This framework provides a simple
formalization of the communicative actions in terms of their
effects and preconditions, and the specification of an
interaction protocol by means of temporal constraints. In [4],
authors present a general framework and a specification
language FCTL (first order CTL) for specifying properties
in trust management systems. This framework focuses on

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250514

dynamic policies, which may change their effectiveness at
run-time. In [5], authors present a temporal logic with
temporal constraint (Fuzzy Temporal Logic, FTL), which is
used in supporting efficient query answering. In [6], authors
present a generalization of temporal logics: CTL and the μ-
calculus. Both extensions are defined over C-semirings, an
algebraic structure that captures many problems and that has
been proposed as a general framework for soft constraint
satisfaction problems (CSP).

B. Conflict Analysis
Research in conflict analysis has been growing over years.

Logic languages are widely used in this field. Temporal
logic has been used to analyze properties in many types of
policies. For example, First-order Temporal Policy-analysis
Logic (FTPL) [7] is used to check whether a SPKI policy
state satisfies a property specified in FTPL. This property
check is for static properties and static policies, which is not
sufficient for collaboration activities. A formal policy
analysis framework to identify trusted computing base
(TCB) with the consideration of specific security goals is
proposed in [8]. Authors build an information domain for
TCB policies, and use their rules to identify possible policy
conflicts in a system. But this methodology cannot be
applied in dynamic processes. Another logic-based policy
analysis framework is proposed in [9], which uses Event
Calculus to represent and reason about changing properties
of a domain regulated by policies. Two interesting aspects
of this framework are the runtime evaluation of policy rules
and the offline analysis of policies accomplished by an
abductive constraint approach. The runtime evaluation of
policy rules is used to abate effective policy conflicts. Then
offline analysis is used to detect policy conflicts. So this
framework actually cannot resolve runtime conflicts if new
policies are applied into the system at runtime. Neither can
this framework detect dynamic conflicts. An empirical
policy analysis tool implemented upon open source DL
reasoner Pellet is described in [10]. Before Pellet analyzes
policies, a mapping function will translate XACML rules
into formalism. Then policy comparison, policy redundancy
analysis and policy verification are performed by Pellet to
identify conflicts. A general model of security policies has
been discussed in [11]. Detection and reconciliation of
security policy conflicts following that model are restrained
by the complexity of the policy set. And only two-party
conflict reconciliation can be tractable. Applications of the
two-party conflict detection and reconciliation method to
KeyNote [12] and GAA-API [13] systems are also
discussed. But the capability for dynamic conflict detection
and reconciliation is still missing.

III. POLICY ANALYSIS USING TEMPORAL LOGIC

A. Temporal Logic
The primary feature of a logic theory is its order, which

defines the domain of all formulae described by the logic.
Propositional logic is based on a set of elementary facts by

using a set of logic operators. It indicates a Boolean value set.
First-order logic is an extension of propositional logic.
Temporal logic assumes that facts hold at particular time or
time points and they are ordered. Temporal first-order logic
extends the first-order logic with a time dimension. It has
been broadly used to cover temporal information within a
logical framework.

Logical operators and expressions are used in different
representation technologies. Usually, logical representations
employ the notation of constant, variable, function, predicate,
logical connective and quantifier to represent facts as logical
formulae. In modal logic, the concepts of truth and falsity are
not static and immutable, but are, on the contrary, relative
and variable. In modal logic system, if V is the evaluation
function for formulae, then it can be written as:

},{: falsetrueSFV →×
The F is the set of formulae, S is the set of states, and the

V assigns a truth value to every formula in every state set.
The V denotes whether there is a relationship between
different states s1 and s2 that can be expressed by a formula f.
Temporal logic is built as an extension of classic logic.
Temporal logic adds a set of new operators likes H, G:

H: always in the past;
G: always in the future;

The formal definition is:
),(.),(sfVstTSifftruetfV ⇒<∈∀=G ;

),(.),(sfVtsTSifftruetfV ⇒<∈∀=H ;
A major drawback of logical representation is the lack of

organizational principles for the facts constituting a
knowledge base. Temporal logic also has this drawback. A
knowledge base stores entities and relationships within a
world into a database (this word “world” denotes a collection
of objects. This object set includes entities and relationships
among these entities.)

B. General Policy Model
In a policy-based management system, a policy describes

several actions and information about these actions. In our
previous works [14], we considered one policy define one
action, and for each action, there is an executor or a type of
executors, a target or a type of targets, and some constraints,
which describe and limit certain aspects of this action. Each
executor or target is represented by a set of attributes.
Comparing to our previous works, we define an entity which
is a set of related attributes. Executors and targets are subset
of entities. Executors and targets are different roles that an
entity can play in a policy, and these roles can change in
different policies.

Policy-based management systems usually provide
flexibility of constructing complex policies, which allow
users to define multiple actions in one policy file. Therefore,
an entity can be both executor and target in one policy file.
In order to simplify the problem, we divide long policy into
small segments. We assume that one segment describes one
complete action containing one executor, one target, and its
context (in the form of constraints). Therefore, a policy

segment is represented as a tetrad (Executor, Target, Action,
and Context). In our policy model, a policy segment is the
smallest functional unit. In order to present these
components in logic expressions, we formally define several
key elements in our policy model below. Table 1 describes
these components of a policy.

Attribute (α) A piece of information describing

certain aspect of an entity.
Entity(E) = {α} A collection of attributes

describing a complete element in
an information domain.

Executor ={α} Executor is the entity that
performs the action on another

entity.
Target= {a}. Target is the entity that receives

the action from another entity.
Actioin()=Executor×Target. A process of an entity affecting

another entity or itself. An action
is a relation between an executor

and a target.
Context Context in a policy segment

includes all constraints on actions
and entities.

Segment = (Executor,
Target, Action(), Context)

The smallest functional policy unit
in a policy.

Table 1. General Policy Model
We can use temporal logic to express policies in the

examples from the introduction section:
Policy 1:
{A, D, setinterval(a),
[HoldsAt(permit(A,D,setinterval(a)),t)=true

iff A∈DomainA∧D∈DomainA ∧10ms<a<100ms] }
For “Policy 1”, we add time information into the

constraint without modifying the format of general policy
model. Then the logical expression contains a temporal
dimension denoted as “t”. In this expression, if “A” and “D”
belong to “DomainA” at time “t” and “10ms<a<100ms”, the
predicate “permit()” holds true.
Policy 2:
{B, D, SetDataErrorRate (1/100),
[HoldsAt(permit(B,D, SetDataErrorRate(100)),t)=true
iff B∈DomainB∧D∈DomainB∧(DataerrorD<DataerrorB=1/100)]}
In this expression, if “B” and “D” belong to “DomainB” at
time “t”, the predicate “permit()” holds true.

It seems that there is no conflict between these two
policies. However, if we have a close look at the
environment of this collaboration, we can find out that
participant “A” cannot always increase its data rate
requirement. Otherwise, sensor “D” cannot guarantee data
quality for participant “B”’s need. In this situation, these
two policies are conflicting with each other. Although
human administrators can examine policies manually and
may find out this possible conflict, extant policy analysis
systems cannot go that far. They need extra information to
detect possible conflicts. So we introduce a semantic

extension containing domain and environment information
to support logical reasoning.

C. Combination of Temporal Logic and Knowledge Base
In order to analyze properties that will change over time,

we build a logical agent for policy conflict analysis using
temporal logic. Among four typical parts (inference engine,
knowledge base, sensor, and actuator), we extend the
knowledge base with semantic extension. A semantic
extension contains attributes, relationships, and dynamic
constraints among attributes and relationships from an
information domain. In an information domain, there is
information not only changing along with others but also
changing over time. This dynamic information imposes
complication on logical analysis. And a traditional
knowledge base is not enough for logical reasoning in policy
conflict analysis with dynamic attributes and relationships.
We propose a semantic extension to represent various types
of dynamic information to support necessary logical
reasoning for policy conflict analysis. Semantic extension is
a formal representation of related information abstracted
from an information domain. Related information contains
attributes, entities, relationships and constraints in the
information domain. Relationship is an important definition
for the semantic extension. A relationship represents a
connection between two entities.
Definition 1: Relationship (Θ) is represented by the
Cartesian product of two entities: Θ=E×E’.
If Θ is a relationship between “Participant A” and “Sensor
D”, then Θ is an instance of A×D.
Θ={(α, β)| α∈A AND β∈D}

In collaborative workspace, relationships are implied in

policies to control information sharing. A relationship
between two entities is a relationship between two attributes
in different entities. However, there are attributes affecting
relationships directly, and some are affecting indirectly.
There are also some constraints acting on relationships.
Definition 2: Explicit attribute is an attribute that cause a
change of another attribute through a relationship.
The superscript in a logical expression denotes an explicit
attribute.
Definition 3: Implicit attribute is an attribute that is
influenced by a change of other attributes through a
relationship.
Implicit attributes are denoted as suffixes.

Figure 1 Relationships and Entities

The Figure 1 shows the difference between explicit and
implicit attribute. In Figure 1, if explicit attribute “data rate
requirement” changes, this change will lead relationship “G”
to change and then the implicit attribute “data error rate” in
D should also change. Because “data error rate” is an
explicit attribute for relationship “F”, the relationship “F”
will also change if attribute “data error rate” changes.

We use semantic extension to represent these explicit and
implicit attributes and track their updates.

∀t.T<t∧HoldsAt(increase(A.data_rate),t)
∧(10<A.data_rate <100)

∧HoldsAt(GA.data_rate
D.error_rate,t) ∧HoldsAt(FD.error_rate,t)

⇒HoldsAt(permit(increase(A.data_rate),t)
In this expression, if action “increase throughput” is

hold, and requested throughput less than 90, and
relationship “G” and “F” are hold, then the action
“increase()” is permitted. We donate the attribute
“A.data_rate”, which is an explicit attribute for relationship
“G”, as a superscript, and the implicit attribute
“D.error_rate” as a suffix.

A relationship does not only affect by attributes, but also
affect by constraints. In an information domain,
relationships connect different entities (participants and
sensors). Because an entity is a set of attributes,
relationships connect different attributes. Figure 3 illustrates
this situation. In this figure, Participant (A and B) and
sensor D have two relationships (policies). Participant (A
and B) and sensor D have 3 attributes respectively.
Relationship G connects attribute “data rate requirement” in
Participant A and sensor D. If there is a constraint on
attribute “data rate requirement” in Participant A,
Relationship G will be affected only when this constraint
(10ms<data rate<100ms in this case) is satisfied. If this
constraint changes over time, we call this constraint
dynamic constraint. Dynamic constraints are very important
in an information domain, because these constraints control
the connection between different entities. In addition,
attribute “data rate requirement” is an explicit attribute for
Relationship G, attribute “data error rate” is an implicit
attribute for Relationship G, and attribute “data error rate” is
also an explicit attribute for Relationship F. Therefore, if
Attribute “data rate requirement” changes, it will affect
Relationship G, and then Relationship G affects Attribute
“data error rate”, and Attribute “data error rate” affects
Relationship F finally. If results of these two changes are
inconsistent, there will be a conflict (conflict of duty).

Figure 3 Relationships and constraints

Relationships in an information domain are connections
between entities, which are sets of attributes (Figure 3).
Therefore, relationships are connections of attributes.

A relationship is:
 R=data_rate_requirement×data_error_rate_requirment,

because there is also a constraint limits this relationship, we
have to consider this constraint during logic reasoning. If we
consider this constraint, the relationship becomes two sub-
relationships: R’(c) and R-R’(c) (Figure 4 b). R’(c) is means
values of relationship when constraint “c” is true or
becomes effective, R-R’(c) means values of relationship that
are not affected by constraint “c”. However, in the semantic
extension, we consider these two sub-relationships as a
complete relationship, which can be express as R=(R-
R’(c))∪R’(c) (Figure 4 c). Sometime, constraints are not
active, the relationship become: R=(R-R’(c))∪R’(c) ⇒
R=(R-φ)∪φ=R.

Figure 4 Relationship and Constraints

Definition 4: Constraint (Δ) is restrictive information on
attributes or relationships.

Relationships can be expressed as “Θ=χ×υ”, where “χ”
and “υ” are attributes in different entities, and “Θ” is a
relationship. A constrained relationship becomes
“Θ’(Δ)=(χ×υ)× Δ”, where “Δ” is one or a set of constraints.
In semantic extension, constraint “Δ” is a predicate that
returns whether the constraint is satisfied or not. Constraints
are conditions that restrict changes of attributes and
relationships. Only when constraints are satisfied, an
attribute or relationship can change to a certain value.

A semantic extension abstracts certain information from
an information domain. Now we can give a definition for
semantic extension.
Definition 5: A semantic extension contains attributes,
entities, relationships and constraints from one information
domain. Σ={{α},{E},{Θ},{Δ}| E⊆{α},E≠∅,Θ=E×E’}.

Attributes in an information domain are not only
associated with entities in the domain but also attributes
describing properties of the domain. These are domain
attributes that do not constitute entities usually. However,
domain attributes may be added to entities in some situation.
For example, when two semantic extensions merge together,
the attribute “domain ID” may become an attribute of an
entity.

Usually we use one semantic extension to present one
information domain. One knowledge base can contain more

than one semantic extension, which depends upon the scope
of this knowledge base. In a semantic extension, values of
relationships are associated with corresponding attributes.
When constraints on these relationships are satisfied,
changes of attributes will affect relationships. Because some
constraints will change over time, we use temporal logic to
represent these dynamic constraints.

For example (as illustrated in Figure 3), relationship
“F”, which connects service “A”, “B” and “D”, has one
explicit attribute “Data Rate Requirement” in service “A”
and one implicit attribute “Data Rate” in service “D”. And
there is a constraint “Δ” on “Data Rate Requirement” and
“F”. Relationship “G” connects one attribute “Data Error
Rate Requirement” in service “B” and one attribute “Data
Error Rate” in service “D”. Relationship “Θ” connects
attributes “Data Rate” and “Data Error Rate” in service
“D”. When constraints are satisfied, “Data Rate
Requirement” will affect “F”, and “Data rate” in service
“D”. And this change is transferred through relationship “Θ”
and affects “Data Error Rate” in service “D”. Then the
change of “Data Error Rate” will change the relationship
“G”. This situation can be represented as follows:
∀t,(T<t)∧HoldsAt(FA.DataRateRequirement

D.DataRate=Equal,t)
∧HoldsAt(ΘD.DataRate

D.DataErrorRate=Balance,t)
∧HoldsAt(GD.DataErrorRate

.B.DataErrorRateRequriement=Larger,t)
∧(HoldsAt(Δ,T))∧Change(A.DataRateRequirement,t)

⇒ Change(D.DataRate,t)∧Change(D.DataErrorRate,t)
∧Change(Θ,t)
In this logical expression, constraint “Δ” holds after time

“T”. Therefore, after time “T”, if explicit attribute
“DataRateRequirement” in service “A” changes, implicit
attribute “DataRate” in service “D” will change; attribute
“DataErrorRate” in service “D” will change because of
relationship “Θ”; attribute “DataErrorRate” in service “D”
will affect relationship “G”.

IV. AGENT ARCHITECTURE OF CONFLICT ANALYSIS
ENGINE

A conflict analysis agent is an autonomous entity which
observes environment and acts upon the environment. In
this paper, we propose conflict-analysis agent architecture
(Figure 5) for conflict analysis using temporal logic and
semantic extension. In the inference engine of the agent, the
first component is “policy decomposition”. This component
decomposes policies into subjects, objects and other policy
components according to the role information and domain
information from the knowledge base, especially from the
semantic extension. The next component is query module.
This component queries semantic extension to get
relationship information between different policy elements.
The temporal logic module uses analysis rules from
knowledge base to analyze policies, and forward analysis
result to the reconciliation module. The reconciliation and
suggestion module provides suggestion for users.

 Figure 5 Conflict-analysis Agent Architecture
The knowledge base in this architecture consists of

semantic extension, temporal logic analysis rules,
reconciliation rules and other domain information. The
semantic extension contains formal representations of
relationships between attributes, constraints on relationships
and other related information from an information domain.
Temporal logic analysis rules contain conflict detection rules.
We will discuss certain common rules in the next section.
Reconciliation rules are established according to different
types of conflicts. These rules provide suggestions for users
to solve corresponding conflicts.

V. AUTOMATIC CONFLICT ANALYSIS IN
COLLABORATIVE WORKSPACE

A. Workspace Collaboration Environment
Recent technological advancements have made

deployment of small, inexpensive, low-power, distributed
devices, which are capable of local processing and wireless
communication, a reality. In most workspace there are lots of
sensors, some are monitoring temperature, some are
monitoring water level. Sensor node is a representative
device. Each sensor node is only capable of doing a limited
data processing. However, networks of these small sensor
nodes can monitor many aspects of our daily lives. Early
sensor networks consist of a small number of sensor nodes
that are wired to a central processing station. Nowadays,
sensor networks become distributed and wireless, and
functions of sensor networks become more diverse.
Collaborations between sensor nodes and between sensor
node and other participants have developed. For example, a
sensor monitors the water level of a water tank, where two
participants (“A” and “B”) reading data from this sensor.
This sensor provides limited computational power for
increasing the quality of its data. Participant “A” generates
flood alarms for monitoring agencies; participant “B” records
water level periodically as records. If the water level does
not exceed a certain threshold, “A” only receives data from
the sensor. However, if the water level exceeds this threshold,

“A” will request sensor data more frequently. At this time
point, the sensor has to consume more power for sending
data and has to reduce its data quality. How to configure this
type of sensor nodes for accommodating collaboration is a
major issue for sensor network collaboration. One policy
presents one configuration of a sensor node. If one policy
conflicts with another policy, this may cause a sensor failure
or data failure. Our proposed knowledge-augmented logical
agent can be applied here to detect such conflicts in sensor
networks environment.

According to our knowledge-augmented logical
framework, these policies can be expressed as the following
logical expressions.
Policy 1:
HoldsAt(permit(A,D,setinterval(a)),t)=true iff 10<a<100
Policy 2:
HoldsAt(permit(B,D, SetDataErrorRate (1/100)),t)=true

In the above logical expressions, there is no conflict
between these two policies. In Figure 6, the sensor’s interval
for participant “A” will change between 10s and 100s; the
sensor’s data quality for participant “B” will be constant and
higher than “B”’s requested level. These two policies define
over different attributes in the sensor.

However, if we analyze the entire collaboration, we find
that participant “A” cannot always increase its requirement
over data acquisition frequency. Otherwise, the sensor will
not be able to provide enough data quality to participant B.
Figure 7 illustrates the correlation of these two policies. In
this diagram, when water level increases, the data acquisition
frequency needed by participant “A” will also increase. So
the sensor has to use more computational resources for
participant “A”. At time “t”, the data error rate of sensor’s
output meets the requirement of participant “B”. At time “t’ ”,
the data error rate of sensor’s output cannot meet the
requirement of participant “B”. If participant “A” continues
to increase its requirement, the sensor cannot provide
qualified data for participant “B”. In this situation, these two
policies are conflicting with each other. Although human
users can sometimes find this implicit conflict manually,
computer cannot assess this implicit impact by itself. It needs
someone to provide extra information. So the proposed
semantic extension that contains domain or environment
information is necessary for logical reasoning upon implicit
relationships and resultant conflicts.

Figure 6 Time Interval and Data Quality in Two Policies

Figure 7 Relationship between Two Policies

B. Implementation rules
In this case study, relationships among two participants

are also combined with logical expressions to represent their
policies. Here we just illustrate one example implementation
rule.
∀t.(T<t)∧HoldsAt(permit(A,Sensor,

setinterval(A,Sensor)),T)
∧HoldsAt(permit(B,Sensor,
setdataerrorrate(1/100)),T)

∧HoldsAt(ΦA.requestedfrequency
Sensor.frequency =Equal,t)

∧HoldsAt(ΘB.dataerrorrate
Sensor.dataerrorrate=Smaller ,t)

∧HoldsAt(ΠSensor.frequency
Sensor.dataerrorrate =Balance,t)

⇒HoldsAt(dynamicConflict(ConflictofDifexecutor,overlaps
(permit(A,Sensor,setinterval(A,Sensor)),

permit(B, Sensor, setdataerrorrate (1/100)),t)
⇒Trajectory(permit(B,Sensor,setinterval (B,Sensor)),T,

deny(B, Sensor, setdataerrorrate (1/100)),t)
[Situation: The executor (“A”) has a “level” attribute. This
attribute can change over time. This attribute is an explicit
attribute for a relationship “Φ”. This relationship allows the
executor to perform action “change data frequency of
sensor”. Attribute “Sensor.frequency” is an implicit attribute
for this relationship “Φ”. Attribute “B.dataerrorrate” is an
explicit attribute for relationship “Θ”. The relationship “Θ”
keeps the sensor providing qualified data to outside
participants. This information is stored in semantic extension.
If the attribute “level” changes, the executor will also change.
Then an overlap conflict will occur.]

C. Experiments
In the experiments for this case study, we choose three set of
policies A, B, C. These policies come from two different
sensor systems. We copy these policies before these two
sensor systems collaborate. 30 policies are from one sensor
system, and the other 30 are from the other system. There are
20 policy pairs in each set. There are 15 static conflicts in set
A, 16 dynamic conflicts in set B, and 13 dynamic conflicts in
set C. Conflicts in policy set B are dynamic conflicts but
there is no explicit attribute or implicit attribute involved in
any conflict. Conflicts in policy set C are also dynamic
conflicts, but certain explicit and implicit attributes are
involved in conflicts. We use temporal logic and temporal
logic with semantic extension to analyze each policy set. In
set A, two logics report the same accuracy; in set B, there is
no difference in the analysis result too; while the third set
shows some difference. The analysis result of the temporal
logic is not accurate. There are only 8 reported conflicts,
which means 5 conflicts are not reported. The temporal logic
with semantic extension reports all 13 conflicts. The result
shows that if a conflict is caused by implicit relationships
and constraints on relationships, the temporal logic with the
support from an extended knowledge base can provide more
accurate result than pure temporal logic.

The Figure 8 shows the result of this experiment. In the
first two policy sets, the analysis result from temporal logic
and temporal logic with semantic extension are the same,
because these conflicts are caused by executors and targets
themselves, and there is no transitional relationship or
implicit attribute within a relationship. In policy set C,
conflicts are caused by implicit attributes and transitional
relationships. Different results illustrate how relationships
and implicit attributes affect analysis result. If implicit
attributes appear in a relationship, pure temporal logic won’t
consider the transitivity of these attributes. This transitivity
is achieved through the relationship(s) among entities or
attributes. Only knowledge base containing this transitivity
information can help detect conflicts caused by these
attributes.

Figure 8. Comparison of Analysis Results in Sensor

Network Environment

VI. DISCUSSION
Changing environment and entities are big challenges for

policy analysis, because dynamic information and
relationships are hard to represent and analyze during logical
reasoning. Temporal logics are widely used in conflict
analysis. However, the dynamic relationship is still a barrier
for logical reasoning. Most previous systems rely on human
interference. In extant approaches, relationship and
constraint information is mentioned, but not integrated into
logical reasoning. In [3], semantic information is specified
by means of laws and constraints. These laws and constraints
cannot be modified during the analysis. If any constraint is
changed, users have to change reasoning rules. In [4], a
logical reasoning framework is presented, and authors also
presents a specification language FCTL (First Order CTL)
for specifying properties in trust management system. The
framework is designed for dynamic policies. However,
authors transfer policies into a time-bounded format. This
only works in a well-known environment, because if there is
a dynamic attribute affected by environment factors, this
approach will not respond promptly. In [5], authors propose
a temporal logic with temporal constraints, in which a
temporal logic (Fuzzy Temporal Logic, FTL) is used to
support efficient query answering. However, this temporal
logic with temporal constraints is too simple in terms of its
fuzzification method. This method only uses an interval as a
metric constraint. If an information domain is very complex,
this temporal logic cannot support semantic domain
information. In [6], a generalized temporal logic is
introduced. It includes two extensions: CTL and the μ-
calculus. Both are defined over an algebraic structure (c-
semirings) capturing many soft constraint satisfaction
problems (CSP). It is difficult for these extant approaches to
work in complex information domains, because relationships
and dynamic contexts cannot be captured and represented
and will eventually reduce the accuracy of logical reasoning.
In our proposed knowledge-augmented temporal logic, the
semantic extension can convey these relationships

(sometimes even implicit relationships or constraints) for a
complex information domain, so the semantic extension can
ensure the accuracy of logical reasoning.

Policy analysis includes static analysis and dynamic
analysis. Both ACLP [9] and an event-driven model [15] can
monitor run-time policies. These frameworks concentrate on
static policy set. If policy set is changed, they have to re-
analyze the entire policy set. So these systems can only
detect static conflicts instead of dynamic conflicts. The
event-driven mechanism [15] uses a conflict database to
store all possible conflicts. The capability of this approach is
also limited by this reliance on conflict database. Dynamic
analysis gains more attention in recent years. Several
dynamic analysis systems will be discussed and compared
here. In [16], authors implement Event Calculus in a QoS
management environment to analyze QoS management
policies. This framework only works in a single domain. In
[17], authors use Boolean rules and corresponding
algorithms to discover and resolve two types of dynamic
IPSec conflicts. One is runtime analysis; the other is dynamic
information analysis. Dynamic information analysis focuses
on dynamic elements in a domain, which may change over
time. Temporal logics can represent time related information
and analyze this type of information. In [16], authors propose
a policy analysis framework using event calculus to analyze
policies from a single domain. Although this framework
works on dynamic information, it only works for one single
domain. It cannot deal with policies from multiple domains,
because the same attribute may have different names or
definitions in different domains, which may cause ambiguity.
And the complexity of integrating different domain
information is also a barrier for multiple domain policy
analysis. In the proposed knowledge-augmented temporal
logic, semantic extension supplies information from multiple
domains and also relationships between entities. It can
reduce ambiguity, which usually happens in multi-system
integrations.

VII. CONCLUSION
Temporal logics have been study for decades, several

techniques have been developed. The logic representation
and reasoning functionalities are used in conflict analysis
area. In collaborative environments, when temporal logics
are used for analysis, logic reasoning is affected by domain
information. In this paper, we integrate temporal logic with a
semantic extension, which contains information of an
information domain. Through the experiments on our
prototype system, the improvement on capability and
accuracy of combination of knowledge base and temporal
logic for automatic policy analysis is confirmed. And it also
reduces human interventions. The knowledge base is flexible
for adapt to dynamic collaboration and system integration.

REFERENCES
[1] A. Westerinen, J. Schnizlein, “RFC3198 - Terminology for Policy-

Based Management”, 2001 http://www.faqs.org/rfcs/rfc3198.html
[2] Jesper G. Henriksen, P. S. Thiagarajan, “Dynamic Liner Time

Temporal Logic”, Annals of Pure and Applied Logic, Volume 96(1-
3), 1 1999, pp. 187-207

[3] Laura Giordano, Alberto Martelli, Camilla Schwind, “Specifying and
verifying interaction protocols in a temporal action logic”, Journal of
Applied Logic, Vol.5(12), 2007, pp. 214-234.

[4] A. Prasad Sistla, Min Zhou, “Analysis of dynamic policies”,
Information and Computation, Vol. 204 Issue 2-4, 2008, pp. 185-212.

[5] Liguo Deng ; Yunpeng Cai ; Chen Wang ; Yan Jiang, “Fuzzy
Temporal Logic on Fuzzy Temporal Constraint Networks”, Sixth
International Conference on Fuzzy Systems and Knowledge
Discovery, Vol. 6, 2009, pp. 272 – 276.

[6] Alberto Lluch-Lafuente, Ugo Montanari, “Quantitative μ-calculus
and CTL Based on Constraint Semirings”, Electronic Notes in
Theoretical Computer Science, Vol. 112, 2005, pp. 37-59

[7] Arun K. Eamani, A. Prasad Sistla, “Language based policy analysis in
a SPKI Trust Management System,” Journal of Computer Security,
Vol. 14(4), 2006, pp. 327-357.

[8] Gail-Joon Ahn, Wenjuan Xu, Xinwen Zhang, “Systematic Policy
Analysis for High-assurance Services in SELinux”, Proceedings
IEEE Workshop on Policies for Distributed Systems and Networks,
2008. pp.3-10.

[9] Robert Craven, Jorge Lobo, Jiefei Ma, “Expressive Policy Analysis
with Enhanced System Dynamicity,” Proceedings of the 4th
International Symposium on Information, Computer, and
Communications Security, 2009, pp. 239-250.

[10] Vladimir Kolovski, James Hendler, Bijan Parsia, “Analyzing Web
Access Control Policies”, Proceedings of the 16th international
conference on World Wide Web, 2007, pp. 677–686.

[11] Patrick McDaniel and Atul Prakash, “Methods and limitations of
security policy reconciliation,” ACM Transactions on Information
and System Security, Vol. 9, No. 3, 2006, pp.259-291.

[12] M. Blaze, J. Feigenbaum, and Jack Lacy, “Decentralized Trust
Management,” Proceedings of 1996 IEEE Symposium on Security
and Privacy, 1996, pp. 164 -173.

[13] Tatyana Ryutov, Clifford Neuman, “The Specification and
Enforcement of Advanced security Policies,” Proceedings of the 2002
Conference on Policies for Distributed Systems and Networks, 2002,
pp.0128.

[14] Zhengping Wu, Yuanyao Liu, "Knowledge-Based Policy Conflict
Analysis in Mobile Social Networks," Proceedings of 20th
International Conference on Computer Communications and
Networks (ICCCN), 2011, pp.1-6.

[15] N. Dunlop, J. Indulska, K. Raymond, "Dynamic conflict detection in
policy-based management systems," Proceedings of Sixth
International Enterprise Distributed Object Computing Conference,
2002, pp. 15- 26.

[16] Charalambides, M. Flegkas, et al., "Policy conflict analysis for
diffserv quality of service management," IEEE Transactions on
Network and Service Management, vol.6 (1), 2009, pp.15-30.

[17] S. Niksefat, M. Sabaei, "Efficient Algorithms for Dynamic Detection
and Resolution of IPSec/VPN Security Policy Conflicts,"
Proceedings of 24th IEEE International Conference on Advanced
Information Networking and Applications (AINA), 2011, pp.737-744.

