
CyberX: 

A Biologically-inspired Platform for Cyber Trust 
Management

Mohamed Azab 
The Bradley Department of Electrical 

and Computer Engineering, Virginia Tech 
Email: mazab@vt.edu 

 

Mohamed Eltoweissy1 
Egypt-Japan University of Science and Technology  

Email: Mohamed.eltoweissy@ejust.edu.eg 
  

Abstract—: Today numerous infrastructure assets remain 
alarmingly susceptible to advanced, targeted cyber attacks. There 

is a need to construct trustworthy high-quality protection and 

defense solutions capable of securing such valuable assets. In our 

work, we realize such cyber trust through trace-resistant moving-

target defense, resilience against failures and attacks, and 

autonomous trustworthy cooperative defense. Achieving these 

goals would require software development, management, and 

operation platforms that support elasticity, diversity, awareness, 

cooperation, and intelligence. In this paper, we propose CyberX, 

a situation-aware trustworthy management platform. CyberX 

utilizes our Cell Oriented Architecture (COA) capability that 

separates the main design concerns: data, logic and physical 

resources to employ runtime diversity via hot shuffling of similar-

function different-quality-objective code variants. CyberX 

employs such diversity to modify the application implicit 

behavior at runtime utilizing autonomous execution elasticity and 

adaptability. Further, CyberX enhances application resilience 

against failures and attacks via multi-mode recovery and real-

time, context- and situation-aware adjustment of shuffling and 

recovery policies. Using analysis and simulation, results show 

that CyberX-managed COA-based software systems can 

efficiently adapt to maintain the desired performance and 

resilience objectives even in hazardous, unstable environments at 

a reasonable overhead. 
 

Keywords software management platform, system diversity, moving 
target defense, biologically-inspired software architecture, resilience, 
hot shuffling. 

I.INTRODUCTION 

Today, cyber systems form the backbone of national critical 
infrastructures, which means that cyber security incidents on 
such systems could have significant disruptive impact on the 
reliability and safety of many of the systems that we rely on to 
maintain our everyday life.  Both researchers and practitioners 
have been paying considerable attention to the cyber security 
problems for more than two decades.  However, the problems 
are far from being comprehensively resolved. Cyber trust was 
defined by the National Science Foundation with the goal to 
develop new insights and fundamental scientific principles that 
would lead to software and hardware technologies on which 
people can justifiably rely [12].  

To achieve the cyber trust vision and simultaneously 
improve the nation’s cyber security posture, cyber trust should 
support a portfolio of defense techniques that when 
synergistically composed into a comprehensive solution would 
enable adequate and trustworthy defense provisioning. In our 
work cyber trust encompasses trace-resistant moving-target 

defense, resilience against failures and attacks, and autonomous 
trustworthy allied-defense. We surmise that enabling cyber 
trust would require software development, management, and 
operation to be based on five main pillars: elasticity, diversity, 
awareness, cooperation, and intelligence.  

Currently software products depend mostly on static or 
partially dynamic architectures where data, logic, and/or 
physical resources are primarily tightly coupled. Multiple 
attempts have been presented in the literature to partially 
decouple these design concerns [1, 2, 3]. However, up to our 
knowledge our Cell Oriented architecture (COA) is the only 
architecture that comprehensively supports intrinsic separation 
of design concerns needed for runtime re-programmability, 
intrinsic autonomic online composability, and dynamic 
software adaptation and elasticity.  

In this paper, we propose CyberX, a situation-aware 
trustworthy management platform that utilizes the COA 
features to realize the aforementioned pillars. COA is a 
biologically-inspired architecture with active components 
termed Cells that support development, deployment, execution, 
maintenance and evolution of software. Cells separate logic, 
state and physical resource management. Cells are realized in 
the form of intelligent capsules that encapsulates executable 
applications defined as code variants. Cells are dynamically 
composable into organisms that are bound to functional roles at 
runtime. CyberX manages such construction to enable online 
re-programmability, hot code-swapping, local/global situation 
awareness, and automated recovery.   

CyberX enables applications to dynamically adapt to 
runtime changes in their execution environment via runtime 
diversification of multiple similar-function, quality-objective –
different code variants.  Reliability, performance, robustness, 
survivability, compatibility, scalability, and mobility are 
examples of such attributes.  

CyberX utilize the COA feature of enabling the application 
to exchange real-time status and recommendation messages 
with the host Cell for administrative purposes to enhance the 
Cell local application awareness and to enable application 
driven adaptation. CyberX use these messages to guide the Cell 
runtime quality-attribute manipulation towards accurate and 
prompt adaptation. Further, CyberX collects, analyze and 
trustworthy-share these messages and status reports 
constructing a real-time sharable global view of the Cell 
network.  

 CyberX enhances the system resilience by multiple 
recovery modes to cover different application requirements and 
host configurations. CyberX offers a prompt and accurate fine-
grained recovery for resourceful hosts executing critical 
applications, and a more resource efficient course-grained 

1 
The author is also affiliated with the Bradley Department of ECE  

at Virginia Tech and the ECE Department at University of Arizona 

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250512



recovery for less critical applications. CyberX uses the COA 
loosely coupled features to allow applications to seamlessly 
change their current active recovery modes based on context, 
environment, or application-objective change. 

The main contributions of this paper are as follows: 

• A biologically inspired architecture with the following 
capabilities: 
• Intrinsic separation of design concerns (data, logic, 

and physical resources); and 
• Employing a mission-oriented application design and 

inline code distribution to enable adaptability, and 
online dynamic re-tasking; 

• Elastic system design and platform-managed control 
enabling the following: 
• Runtime diversity employment for hot manipulation 

of quality attributes to effect trace-resistance and  
moving target defense;  

• Multimodal, autonomous situation-aware recovery 
system for enhanced system resilience; and 

• Dynamic and autonomous change of shuffling and 
recovery policies according to run-time changes in 
the execution environment. 

The balance of this paper is organized as follows.  Section 2 
describes the Cell Oriented Architecture. Section 3 describes 
CyberX management platform design. Section 4 illustrates the 
CyberX-managed multimode failure recovery. Section 5 
presents an execution scenario for a CyberX-managed 
application. Section 6 discusses the evaluation of the proposed 
system. Section 7 presents a brief literature survey. Finally the 
paper concludes in section 8 which also outlines future work. 

II.THE CELL ORIENTED ARCHITECTURE 

The COA is an employment of a mission-oriented 
application design and inline code distribution to enable 
adaptability, dynamic re-tasking, and re-programmability. The 
Cell is the basic building block in COA. The COA Cell is 
inspired from the biological Cell in its independent, generic, 
composable construction.COA Cell is an abstraction of a 
mission-oriented autonomous active resource. Generic Cells 
termed stem-Cells, are seamlessly created by the host-side 
middleware or the COA Cell DNA (CCDNA). Further, they 
participate in emerging tasks through a process called 
specialization. The CCDNA is a middleware program that 
allows a physical workstation to host Cells and facilitates Cell 
physical resource allocation and management. 

 

 

Figure 1.  Components of our COA 

We envision applications built over COA as a group of 
cooperating roles representing mission objectives. The term 
organism is used to represent a role player that performs a 
dedicated mission. An organism might be composed of a single 
or multiple Cells based on its objectives. Figure.1 illustrates the 
different components of the COA.  We will briefly illustrate the 
main design aspects of the COA Cell. More details about COA 
can be found in [13]. 

A. The Cell 

Conceptually, the Cell is the smallest active resource in a 
distributed computing platform. Cells are intelligent, and 
independent, autonomous, single-application capsules 
“sandbox” that acquires, on the fly, application specific 
functionality in the form of an executable code variant "The 
specialization process". Cells act as a simple virtualization 
environment isolating the executable Logic from the 
underlying Physical resources. Figure. 2 illustrates an abstract 
view of a COA Cell at runtime. The Cell is dynamically 
composable into larger structures “organisms” representing 
complex multi-tasking applications.  

 

 

Figure 2.  COA Cell at runtime 

A single workstation can host one or more Cells, providing 
a flexible way to share the physical resources among multiple 
applications. Figure.3 illustrates the main components of the 
COA Cell briefly described as follows.  

 

 

Figure 3.  The Cell  

Cells are instantiated at bootstrapping when the bootstrap 
manager initializes the Cell components and ports with the 
appropriate parameters based on the bootstrap context. The 
communications unit (I/O manager) handles local and remote 



I/O communication setup, I/O logging, and IP/Port/Virtual 
naming resolution. 

The specialization process occurs when the execution unit 
receives an executable COA-ready code variant that represents 
the application specific functionality that the Cell should 
acquire.   

A COA-ready variant is a program that enables check-
pointing and frequent reporting through a predetermined 
channel using predetermined syntax. We isolate the Data from 
the Logic and physical resources by forcing committing all 
sensitive data to remote data storage before each checkpoint. 
The data is committed using a dedicated data channel provided 
by the infrastructure. The program must ask for, and start 
execution from an infrastructure provided starting point. This 
point is zero for fresh Cells. Finally, programmers have to 
provide at least two similar-function different-quality-objective 
variants to enable CyberX quality attribute manipulation. 

The execution unit starts by launching the selected variant 
with the appropriate parameters “Ex., the Cell Id”. The 
execution unit is also responsible for the termination and 
replacement of the executing variants based on incoming 
shuffling commands. All issues regarding diversity 
employment-methodology, shuffling policy, “shuffling 
frequency, commanding, and variant selection” are the 
responsibility of the diversity-management unit.  

The State Transaction Manager (STM) is responsible for 
monitoring the variant execution progress. It is the only unit 
with direct access to the executing application through a 
dedicated communication channel. STM reports checkpoint 
change and other incoming application requests and status 
reports to the appropriate units “ex, holding shuffling 
frequency change, objective change requests, etc”.   

The recovery manager is responsible for adjusting the 
recovery settings, and recovery mode change. Additionally, 
recovery manager cooperates with the execution unit to restore 
and synchronize checkpoints in case of failure-recovery. 
Recovery manager is also responsible for sending the Cell 
beacon messages to the tracking servers. These messages 
include the last checkpoint reported by STM, and other reports 
regarding Cell state reported by the situational awareness unit; 
and any other administrative messages needs to be delivered to 
the Global Management Servers (GMS). The details about 
CyberX multimodal failure recovery processes are illustrated in 
section IV. 

 The situational awareness unit, is responsible for providing 
the needed situational and context awareness information to the 
other Cell units in order to support their runtime decisions. It 
monitors the internal and the external surroundings and 
generates guideline reports for all Cell units. Additionally, 
situational awareness unit informs the GMS with awareness 
reports through messages attached to the Cell frequent beacon 
messages. GMS use these beacons to generate more 
meaningful status reports. These reports holds information, 
directions, and commands that CyberX wants to deliver to a 
certain area in the network. For example, if one of the Cells 
reported a malicious event that might affect other neighbor-
Cells, GMS might command other Cells to change their current 
variant to a more secure variant. 

In the COA Cell, decision-making tasks are totally 
distributed among Cell units. The global operation of the Cell 
is handled by the real time cooperation and autonomous 
synchronization between all these units. 

III.THE CYBERX MANAGEMENT PLATFORM 

CyberX is a situation-aware trustworthy management 
platform that utilizes the COA features to enable a wide set of 
features and capabilities. Online re-programmability, hot code-
swapping, local/global situation awareness, and automated 
recovery are examples of such capabilities that participate in 
the realization of Cyber-trust. In the next subsections we 
describe CyberX architecture, the main components 
participating in its construction and the functionality of each 
component. Further, we will discuss the communication 
aspects and security issues with and within CyberX. 

A. CyberX platform architecture  

CyberX is composed of a set of central powerful nodes we 
will address them as servers. These servers cooperate 
autonomously to manage the whole network of Cells. This 
platform is responsible for the organism creation “composition 
and deployment of Cells”, management, the host side API(s) 
“CCDNA”, real-time monitoring and evaluation of the 
executing Cells, and recovery management. Further, it provides 
the necessary management tools for system administrators to 
manage, analyze, and evaluate the working Cells /organisms. 

 

 

Figure 4.  The management platform architecture   

Auditing and Reputation Management Servers 
(ARMS); its main task is to monitor outgoing or incoming Cell 
administrative messages for the lifetime of the Cell. This 
information is used to assist evaluating the trustworthiness of 
the Cell.  These servers cooperate with the recovery tracking 
servers and routing nodes to frequently evaluate the Cell 
behavior for any malicious activities.  These servers will hold 
comprehensive reports about each Cell for the lifetime of the 
Cell.  

Recovery and Checkpoint Tracking Servers (RCTS); its 
main task is to monitor, and store checkpoints changes for all 
running Cells. Checkpoint updates are always enclosed as a 
part of the Cell frequent beacon message updates. This server is 
also responsible for reporting failure events by comparing the 
duration between consecutive beacon messages to a certain 
threshold matching the reporting frequency settings of each 
Cell. Failure events are validated by comparing the recently 
noticed reporting-delay for a particular Cell to the average 
reporting-delay within its neighbors and other Cells hosted in 



the same host. A Cell failure notice is reported to the global 
management servers with the last known failure recovery 
settings, checkpoint, and variant settings to start deploying 
replacement Cells.  

Global Management Servers (GMS); its main task is to 
manage the underlying COA infrastructure. It is responsible of 
Cell deployment, coordinating between servers, facilitating and 
providing a platform for administrative control. It is the only 
server authorized of issuing Cell termination signals. It can also 
force Cell migration or change the current active recovery 
policy when needed. It is responsible of assigning the 
infrastructure global policy, routing protocol, auditing 
granularity, registering/revoking new hosts, and 
keeping/adjusting the host-platform configuration file.   

The Data-Warehouse Servers (DWS), it is one of the 
main components of the infrastructure that participate in the 
separation between the Data, Logic, and Physical-resources. 
DWS are distributed through the Cell network, they are 
responsible for holding and maintaining all the data being 
processed, and any other sensitive data that the management 
units want to store. All running Cells are not permitted to store 
sensitive data on their local memory. All sensitive data has to 
be remotely stored in a specific DWS through the dedicated 
data channel. DWS synchronize their data independently.    

Distributed Naming Servers (DNS), is responsible for 
resolving the real host IP/Port mapping to the virtual Cell Id 
and organism names. The working Cells use this mapping at 
runtime to direct incoming and outgoing communications. 
DNS is major player in the COA’s separation of concerns that 
enables virtually seamless, Cell relocation, and workload 
transition in case of failure recovery. In case of Cell movement, 
the DNS will be instructed by the GMS to maintain 
communication redirection. 

B. CyberX  trustworthy platform-communication  

This section discusses CyberX management of the secrecy, 
authenticity, and anonymity of the inter-Cell communications. 
We present a suitable key management scheme for various 
connection types in the system. Further, we will illustrate our 
mechanism to detect maliciously behaving and problematic 
Cells.  Additionally, we present our secure authentication 
mechanism securing the inter-Cell communications against 
identity theft attacks. 

In order to maintain the secrecy of the sensitive 
information stored locally or externally, or being exchanged 
over communication lines; CyberX uses an asymmetric key 
encryption scheme to encrypt this data. At the deployment 
time, the GMS assigns a pair of keys to each cell, a public key 
and a private key. The public key will be used to encrypt all 
incoming messages to the Cell. The private key will be used to 
decrypt these incoming messages. The Cell can use the private 
key to encrypt the sensitive data within the Cell itself, if the 
situation necessitates that. For example, it can encrypt sensitive 
data stored in the local hard drive if the drive is being shared by 
other Cells hosted in the same host. Figure 5, illustrates the 
architecture of CyberX local security mechanism. 

CyberX maintains the Cell to Server, and Cell to Replica 
data authenticity using a set of encryption/decryption keys. At 
the deployment time GMS attaches the Cell inputs, 
configuration parameters, the Cell public and private keys, and 
a pool of public keys for other entities that the Cell might 
communicate with to the Cell deployment package. The public 
keys pool includes keys for CyberX servers and routers that the 
Cell might need to be in direct contact with. Additionally, if the 

Cell had any replicas at the deployment time, the public keys 
for those replicas are also included. 

At runtime, Cells can acquire new replicas as a response to 
a change in the current recovery mechanism. The process starts 
by a request from this Cell or the RCTS to GMS to deploy new 
replicas. GMS will reply with the public key and the unique 
Cell name of the new replica to the requester in an encrypted 
message using the requester public key.  

In order to guarantee the authenticity of all incoming 
messages, the source id will be enclosed and encrypted with the 
message. The ARMS will be monitoring inter-Cell behavior 
with the cooperation of RCTS that keeps track of all Cells 
activities. Malicious, or problematic Cells, will be terminated, 
and their terminated Cell id will be blacklisted and announced 
to all routing Cells.   

 

Figure 5.  CyberX security framework 

In CyberX managed applications, Inter-Cell 
communications can be classified into two main types, 
administrative related communications, and application related 
communications. Application related communications are 
messages being exchanged to serve the application needs and 
identified by the application designer.  The administrative 
communication messages include, recovery beacon messages 
between Cells and replicas or RCTS; alerts and events between 
Cells and ARMS; and messages between Cells and routing 
nodes. 

 

Figure 6.  The Inter-Cell message format. 

Figure 6 describes an abstract view for The Inter-Cell 
message format. The message is divided into two main parts, 
the destination id, encrypted data block. 

The encrypted data block is divided into five parts 
encrypted with different keys, sub destination id, the source id, 
timestamp, message to be sent, and message integrity assurance 
data “like hash code”. 

Inter-Cell communications anonymity, Cells are not 
allowed to directly exchange messages. The reason behind that 



is to protect the anonymity of the inter-Cell communications. 
Cells communicate to intermediate routing nodes to conceal the 
physical location of the communicating nodes like “replicas, 
and Cells hosting fractions of the same application”, and to 
control administrative related communications. CyberX uses 
intelligent routing cells to anonymize the source and 
destination of any outgoing message. Doing so can block 
attackers with access to the network from monitoring outgoing 
messages searching for a certain transmission pattern “Ex,. 
Beacon messages between Cells and replicas”. Identifying 
these patterns can expose the physical location, and the 
functionality of the destination Cells “replica”.  

Figure 7 illustrates a communication scenario between 
different nodes in the system, cells, replicas, servers. Each node 
uses the destination public key to encrypt and sign all outgoing 
messages. We use random router selection for each message 
(EX,1,2) 

 

 

Figure 7.  CyberX secure messaging system 

Cells are only permitted to directly communicate with 
routing nodes, and servers. Routing nodes receive the Cell 
outgoing messages and forward them to their designated 
destinations in order to hide their physical location. The source 
Cell will use two different keys to send a message. First, a 
router public key to encrypt the source ID, and the sub 
destination ID part of the message. The sub destination ID is 
the final destination “targeted cell” that the message is indented 
to be transmitted to. Figure.8 is an example of an incoming 
message to the router from one of the Cells. Second the final 
destination key, which will be used to encrypt the message and 
the integrity check fields. 

 

Figure 8.  Incoming router message. 

The destination ID will be the ID of one of the router close 
to the Cell. Figure 9 is an outgoing message from the router to 
one of the Cells. The list of close by routers is preloaded to the 
Cell at the deployment time, and updated when needed.   

 

Figure 9.  Router outgoing message.  

At each routing node, incoming messages will be decrypted 
using the router private key to extract the source and sub 
destination information. If the source was blacklisted, the 
message will be discarded. If the source was not blacklisted, 
the source ID will be re-encrypted with the destination public 
key, and attached to the reaming part of the message into a new 
message to be forwarded to the targeted cell.  

We prefer using pre-deployed keys instead of asking for 
public keys prior communication to block any attempts of a 
Man in the Middle attack. 

We preferred using asymmetric key encryption instead of 
symmetric key encryption regardless of the added 
computational cost, because it is hard to use one key for all 
communicating parities, due to the high cost of key 
management, and replacement given the large scale of the 
network of Cells. Further, we used asymmetric key encryption 
to authenticate the Cell identity and to protect the network 
against identity theft attacks. The Cell encrypts the source id 
field using its private key, later it can easily be authenticated by 
recipients using its unique public key. Additionally, the cost of 
compromising a Cell is much less with asymmetric encryption 
as the other Cells will not be affected by revealing the 
compromised Cell keys. Such keys will be revoked upon 
detection of exposure. With symmetric key encryption, all the 
Cells using the compromised keys will be vulnerable to wide 
set of communication related attacks until the keys gets 
replaced after detection of exposure.  

The presented security mechanism doesn’t protect the Cells 
against getting compromised. We rely on CyberX full time 
monitoring of Cells behavior to detect such events. Upon 
detecting any maliciously behaving Cell, CyberX 
autonomously block and replace such Cell with a new Cell.  

IV.THE CYBERX MANAGED MULTI-MODE FAILURE RECOVERY  

CyberX applies diversity techniques to enable autonomous 
adaptation and performance optimization. Applying diversity 
might involve multiple execution interruptions. Doing so might 
lead to multiple coincident failures. Therefore, CyberX is 
designed to equip COA based applications with an 
autonomous, dynamic, and situational-aware multi-mode 
failure recovery mechanism to resolve possible failures. A 
major outcome of this recovery mechanism is the failure 
resilience enhancement not only against coincidental failures, 
but also against malicious induced failures by adversaries. 

CyberX dynamically and autonomously changes the Cell 
recovery-policy to switch between different fault-tolerance 
granularity levels. Such levels might target reliability, 
survivability, and resource usage optimization. CyberX offers a 
fine-grained recovery “Hot-recovery” using replication.  The 
Cell can have one or more replicas on the same physical host. 
This type of local replication can address only logical failure. 
For a finer-grained recovery against logical or physical node 
failure, the Cell might have one or more replicas on different 
physical hosts. The fine grained recovery comes in two modes, 
the resource saver, and the fast-recovery modes. 



In the resource-saver mode, replicas need to only replicate 
the STM, I/O unit and local data store units of the Cell. The 
remaining Cell components stay in hibernation waiting for 
resurrection when the replica takes over. These replicas will 
have one variant working all the time and no shuffling or 
recovery policy change until resurrection. We do that to 
minimize the resource usage consumed by these replicas. This 
mode do save the resources but on the account of increasing 
failure downtime by the time needed to resurrect the Cell.  

The fast-recovery mode can achieve virtually no task-
transition downtime by using a fully-alive replica Cells. 
Replicas mimic all the actions of the source Cell except 
outgoing communications and data change. The execution-
transition in this case is a simple network rerouting by a DNS 
record update. The failure downtime is the time needed to 
detect failure. The only disadvantage of this mode is the 
resource duplication needed to keep both Cells alive.  

In a resource-constrained environment, CyberX can follow 
a more coarse-grained recovery “cold-recovery” that might 
save some of the resources used by replicas while 
compromising some of the execution states, and increasing the 
failure downtime.  

The default Cell design forces COA Cells to send periodic 
beacon messages to the RCTS. Such messages contains the last 
executed checkpoint, some sensitive data, and the currently 
executing variant. In case of failure, the RCTS notice the delay 
in beacon message arrival, and investigates the possibility of 
failure. If failure was detected then the last recovery procedure 
will be executed as follows:  

In case of a failed Cell that follows a fine-grained 
recovery mode then the RCTS will inform MGS to send a 
resurrection signal to the replica and notify the routers. 
Additionally, MGS starts to deploy new replicas to replicate the 
resurrected one. After successful restoration, DNS entry will be 
adjusted.  

If the Cell was following a coarse-grained recovery mode 
then the management will deploy a replacement of the failed 
Cell while attaching the last checkpoint received by the RCTS 
to the deployment package. After successful restoration, DNS 
entry will be adjusted, and the Cell starts execution in 
recovered-Cell mode. This mode involves negotiating with all 
Cells in communication to resynchronize any lost execution 
steps. 

The coarse-grained recovery mode is always-on by default 
enabling the support of multiple concurrent recovery policies. 
The remote safe store is updated regularly with beacon 
messages from all working Cells. Each Cell will independently 
and dynamically set its own message update frequency. Such 
update frequency could be influenced by the change of the 
current recovery policy. The update frequency might decrease 
in fine-grained recovery mode; while they should increase with 
lower granularity recovery.  

CyberX can dynamically change the Cell recovery policy at 
runtime. The change is guided by the application requirements 
and host conditions. In stable situations with non-mission 
critical application, a coarse-grained recovery policy can be 
used, while in a more hazardous situation, a fine-grained 
recovery is preferred. The cell utilizes the available information 
about the current working environment with the application 
profile to decide the appropriate recovery policy to use. As the 
surroundings change, the cell changes the current recovery 
policy to suit these changes. 

V. A CYBERX MANAGED APPLICATION 

The COA Cell can be built using different techniques based 
on the desired resource virtualization depth. We implemented 
the simple and fast version of the Cell to enable quick 
development of a prototype. We are in the process of realizing 
a more complex version of the Cell utilizing one of the 
application virtualization techniques mentioned in [1].   

The slow and complex version of the Cell addresses the 
host resources through a thin hardware virtualization layer. 
Such indirect addressing increases the execution complexity 
and the computational cost of the Cell. One of the main 
advantages of using this technique is enabling uniform variant 
design where all variants are built to target a uniform 
virtualized platform regardless of the heterogeneity of the host 
configuration.  Enabling such uniform application design 
reduces the cost of software production, management, and 
maintainability; and the effort involved in system upgrades 
and/or changes. The main disadvantages of such technique are 
the added workload, and higher risk of failure when compared 
to the simple version approach.  

The simple and fast version technique works only with 
variants built to match specific deployment platform. This 
technique gives the executing variants a controlled direct 
access to the actual host hardware. No hardware virtualization 
is needed. Such direct access speeds the system response time, 
and reduces the Cell resource consumption when compared to 
the complex version technique. Cells instantiate, monitor, and 
control all the runtime aspects of the variant as descried latter. 
All communications and data access are only permitted through 
dedicated units/channels within the Cell. In order to enable 
emergency Cell-relocation, the variant pool should contain 
variants matching the destination platform configuration. 

As mentioned before a COA-ready program is a program 
that enables check-pointing with at least two different objective 
variants enabling quality-attribute manipulation. The 
checkpoint reporting location has to consider data integrity 
requirements especially in case of failure. All data has to be 
committed before checkpoints. 

At the deployment time, a new DNS record will be created 
by the GMS for each Cell. This record indicates the application 
virtual name to be used for inter-variant communications “if 
needed by the application designer”, the Cell unique id for 
inter-Cell communication, and the IP of the physical-host 
hosting the Cell. 

 The deployment starts when the CCDNA receives the 
deployment package from the GMS including the Cell globally 
unique ID(s), the initial checkpoint value, variant pool setup 
“variant binaries, names; numbers; sets; variant-classification” , 
the configuration script describing the specs of each variant, the 
global objective of the application, and any specific specs 
added by the developer to be considered at time of execution 
“number of application fractions; fraction-names; ..”, the initial 
shuffling and recovery policy, the needed security level, and 
the list of security parameters and encryption keys.  

The CCDNA instantiates the Cell by constructing the 
components mentioned in section II passing the provided 
unique id as a bootstrap parameter. Then the CCDNA starts to 
interpret the deployment configuration file in order to generate 
separate configuration files for each Cell unit. Such files will 
describe modifications to the default task assignment, or 
special considerations to be taken care off at the time of 
execution.  



The execution starts when the execution unit asks the STM 
for the starting checkpoint, the STM will get this information 
as a part of the deployment configuration file. STM will 
repeatedly provide this information to the execution unit at 
each shuffling event. The execution unit starts to launch the 
first variant while passing the appropriate bootstrapping 
parameters.  

The last executed checkpoint value will be held by the STM 
locally, and remotely at the RCTS that will receive it via the 
Cell beacon messages.  

At runtime, variants will update the STM frequently with 
the checkpoint advance and any other special needs via a 
dedicated communication channel.  

Quality attribute manipulation: the following is an 
example for a situation that necessitates manipulating the 
current targeted quality attribute. An attacker might be able to 
induce a change in the system surroundings, like a DOS attack 
that aims to overload the network. CyberX will respond to such 
change in the normal workload by shuffling the currently 
executing variant to a more resource efficient variant. CyberX 
will ask Cells close to the induced event to change their variant 
to target a different quality attribute (e.g. performance) that 
suits the induced change in the environment.   

At the time of shuffling, the Cell diversity manager gives 
the shuffling signal to the STM and the execution unit. These 
units will start the process after the next reported checkpoint 
and based on the provided shuffling policy. 

We have two main realization modes for the shuffling 
operation the greedy and the light modes. The system designer 
can select either one of them based on the available 
deployment-platform host resources, and the criticality of the 
application. The greedy-mode with seamless handover offers 
virtually no-downtime but duplicates the resource usage at the 
time of shuffling, and the lightweight-mode offers no-resource 
increase at the time of shuffling on the account of increasing 
the transition time by the time needed for variant loading and 
synchronization. We will briefly describe both. 

The greedy-mode “local replication”: Upon reception of 
the shuffling signal, the execution unit starts to load the new 
variant in freeze “ideal” mode.  The new variant will connect to 
the STM that will locally synchronize the execution checkpoint 
with it. The communications unit will duplicate all the inputs to 
the old and the new variant. Upon reception of the ACK Signal 
from the STM and the communications unit confirming that the 
synchronization is completed, the execution unit sends pause 
signal to the old variant, and a resume signal to the new one 
followed by a termination signal to the old variant.  

The lightweight-mode: Upon the reception of the shuffling 
signal, the execution unit starts by local synchronization with 
the STM for the checkpoint update. Then it pause the old 
variant, and informs the STM and communication unit about 
the execution hold. The communication unit will buffer 
incoming messages for the duration of the handover. The 
execution unit will terminate the variant, and starts loading the 
new variant with the last known checkpoint, and informs the 
communication unit and the STM about the successful loading 
to resume execution. The communications unit will send 
buffered messages to the new variant.  

VI.EVALUATION 

In this section, we present the results of multiple 
experiments that were performed using a MATLAB based 

simulator. These experiments have different objectives 
regarding evaluating the effect of enabling autonomic 
adaptation and intrinsic failure recovery on the system 
performance with respect to failure downtime and resource 
consumption.  

Table I shows the main parameters used in the simulation. 
The network parameters are mainly static parameters used to 
setup the experiments, except for the deployment of fresh Cells 
in the network. The dynamic part depends on a set of 
distributions mentioned in the column named “Generator “. 

The failure or environment-change parameters show the 
spatiotemporal distribution of failure /environment-change 
events and the event type that necessities variant change in 
response to such event. The recovery parameters represent the 
initial recovery mode for each Cell, and the dynamic recovery 
change through the experiment lifetime.  Deploy-new-Cell 
parameters represent the rate and location for the deployment 
of fresh Cells to replace dead or problematic Cells in the 
network. All experiments had the same period of 6 hours with a 
sample rate of six minutes giving us 60 samples (time slots) 
within the network of Cells. The presented parameters in (Run 
1) were used to device Figure 10, and 12. We used the 
parameters in the three runs to evaluate the effect of increasing 
the failure generation rate illustrated in Figure 11. 

TABLE I.  PARAMETERS USED FOR THIS STUDY 

Classification Parameter Genera

tor 

Run1 Run2 Run3 

Network Network size 
 

Static 10*1
0 

10*1
0 

10*1
0 

# shuffling variants  Static 8 8 8 
Exp_Time Static 6 6 6 
App_exe_time normal 50 50 50 
Deplo
y new 
Cell 

Period Poisso
n 

20 18 16 

Location normal 8,3 8,3 8,3 
Resour
ce 
usage  

Cell  Static 5 5 5 
For 
Replica 

Static 3 3 3 

Cell 
failure 

 2 2 2 

Recovery Recovery at deploy normal 8,3 8,3 8,3 
Mode 
change 

Period Poisso
n 

20 18 16 

Type normal 8,3 8,3 8,3 
Event Failure 

or 
enviro
nment 
event 
change  
 

Timing 
(Period) 

Poisso
n 

22 20 16 

Location Normal 11,3 9,4 10,2 
Type Unifor

m 
10 10 10 

  

 



Figure 10.  The total downtime in response to failures due to 
changes for different recovery modes with and without adaptation.   

Figure.10 illustrates the effect of failure due to unexpected 
changes on the total downtime with and without CyberX 
autonomic adaptation. The figure reflects the different system 
responses to failures when we activate and deactivate CyberX 
autonomic adaptation with and without coarse or fine-grained 
recovery modes. The experiment shows significant 
improvement in minimizing the failure downtime when the 
CyberX autonomic adaptation is active as the system adapts 
autonomously to most of these changes minimizing the number 
of failures.   Additionally, the total downtime significantly 
decreases when we activate CyberX fine or coarse grained 
recovery. Both recovery modes will rabidly recover failed Cells 
minimizing the overall failure downtime.  

Figure 11 presents the effect of increasing the failure 
generation rate by increasing the number of changes over time 
on the total downtime while utilizing coarse or fine-grained 
recovery modes. The experiment shows that CyberX fine 
grained recovery always minimizes the failure downtime when 
compared to coarse grained recovery. In coarse grained 
recovery mode, CyberX spend more time instantiating 
replacement Cells; while in fine grained mode, replicas take 
over and resume execution first then a new replica is 
instantiated without holding the execution restoration. Figure 
12 illustrates that such fast recovery comes on the expenses of 
consuming more resources. This figure reflects the total 
resource usage through the experiment with different recovery 
and adaptation modes.  

 

Figure 11.  The total downtime in response to increasing failure 
generation rate for three different experiments and different recovery modes. 

 

Figure 12.  The total resource usage in case of failure with different 
recovery and adaptation modes 

Figure 12 illustrates the effect of using CyberX autonomous 
adaptation to minimize failures, in saving some of the resource 

that would have been wasted in the recovery of such failures.  
Enabling such feature provides some guarantees that the 
system will always consider using the right resources at the 
right time while maximizing the system quality-attribute 
satisfaction-scope.  Further, CyberX attempts to recompense 
resources wasted due to failure recovery by changing the 
system targeted quality attribute towards optimizing the 
resource usage after each recovery event. CyberX usually favor 
using one of the resource efficient variants to resume execution 
after each recovery event. CyberX do that while maintaining 
the balance between the different application objectives and 
targeted quality attribute to the best interest of the application 
while efficiently maximizing resource utilization.    

 

VII.RELATED WORK 

CyberX is designed to manage COA-based systems to 
enable constructing elastic, dynamic, and adaptable software 
products with intrinsic support for situation and context aware 
fault tolerance.  Currently software products depend mostly on 
static or partially dynamic architectures where data, logic, 
and/or physical resources are primarily tightly coupled. 
Multiple attempts have been presented in the literature to 
partially decouple these design concerns. Object (OOA), Agent 
(AOA), and Service (SOA) oriented architectures are examples 
[1, 2, 3]. However, up to our knowledge our COA is the only 
architecture that comprehensively supports intrinsic separation 
of design concerns needed for runtime re-programmability, 
intrinsic autonomic online composability, and dynamic 
software adaptation and elasticity.  

Attempts have been presented towards enabling some of 
these features separately. AOA utilized autonomic building 
blocks while SOA and OOA used non-autonomic components.  
Using autonomic building blocks facilitated supporting non-
deterministic behavior change in AOA by explicit use of soft 
computing as presented in [5]. However, supporting online 
composability is not clear in AOA, while in OAA and SOA it 
is enabled either by aggregation [6] or by service composition 
[7].  

The COA Cell separates logic from physical resource 
management by constructing an intelligently-managed elastic 
thin virtualization layer between the application and the 
underlying physical resources. Such construction facilitates 
unifying the execution platform for distributed applications 
regardless of the configuration of the host platform. Unifying 
the execution environment waives the load of building 
platform/OS specific application for each targeted platform. In 
addition, the maintainability issues are divided between the 
developer and the technology owner. Software developers are 
concerned with maintaining the application itself, while the 
technology owner is responsible for maintaining the execution 
platform. 

Partially elastic virtualization approaches were presented 
for loosening the bond between physical and logical resources; 
where applications are partially compiled at the production 
phase to be executed over virtual machine host [1, 14]. Such 
approached can be used to build a uniform execution 
environment for distributed applications. However, such 
approaches presented static elasticity and partial separation of 
design concerns. They did not separate data from logic and 
physical resources. Such separation is a key enabler for 
supporting intrinsic fault-tolerance, live-mobilization, and 
runtime adaptation to frequently changing execution 
environment.  



Our approach provides an intelligent elastic virtualization 
utilizing mobile software capsules (Cells) that gets specialized 
at runtime facilitating online re-programmability. This feature 
when managed by CyberX enables COA Cells to seamlessly 
move between heterogeneous hosts, while autonomously 
adapting to any resulted changes. Additionally, CyberX-
managed COA Cell can encapsulate different code variants and 
switch between them at runtime. CyberX utilized this unique 
feature to enable runtime manipulation of targeted quality 
attributes. Doing so, facilitates real-time adaptation to 
execution environment changes optimizing the application 
performance, resource-utilization, and enhancing its reliability, 
survivability, and compatibility. Based on our knowledge 
utilizing any of the available virtualization techniques to enable 
such features were not possible prior to our work. 

Component diversity was investigated in Genesis [8], were 
the idea of providing both design diversity in the form of 
multiple variants representing different designs of the same 
specification as well as data diversity were proposed.  Compiler 
guided code variance approach [9] aimed to present automated 
massive-scale software diversity by the help of automated 
variant generation and utilizing multi-core platforms. More 
advanced diversity employment approaches with the objective 
of anomaly detection through detecting flow deviation but with 
fewer constraints were presented in [10, 11].   A major 
drawback of such solutions is the need for virtualizing every 
input to the whole set of executing variants at the same logical 
point to be able to detect the abnormal deviation of the 
execution flow.  

Based on our knowledge utilizing runtime hot shuffling of 
software variants for quality attribute hot manipulation was not 
previously investigated. Additionally, failure recovery 
mechanisms were not investigated as most of these solutions 
presented static diversity with low probability of failure. None 
of them investigated the idea of a comprehensive solution that 
provides elastic, autonomous, resilient, situation-aware 
platform targeting different quality attributes, while 
dynamically shuffling its software components to suit changes 
in the surroundings. Another drawback of these solutions is the 
massive use of resources to realize diversity using heavy 
virtualization techniques and multicore or multiprocessor 
platforms.  

VIII.CONCLUSION 

In this paper, we presented the CyberX platform designed for 
cyber trust management through supporting elasticity, 
diversity, awareness, cooperation, and intelligence. CyberX 
utilized our COA capability to induce autonomous execution 
elasticity and adaptability, and to enable adjusting the system 
shuffling and recovery policies at runtime to meet the 
continual operational environment changes. Further, CyberX 
uses its situation-aware, autonomic adaptation and dynamic 
failure recovery mechanisms to enhance software resilience 
against failures and attacks. Results showed that CyberX-
managed COA-based software systems can efficiently adapt to 
maintain the desired performance and resilience objectives 
even in hazardous, unstable environments at a reasonable 
overhead. Some interesting challenges still to be addressed. 
include utilizing application-level virtualization to enable 
seamless Cell migration across heterogeneous platforms, 
autonomous detection and profiling of environment changes; 
adjusting shuffling and recovery settings based on context; 

formalizing an automated variant generation system, and 
providing alternatives for legacy non-COA-ready software. 

 

REFERENCES 

[1] VMware, (2012, Jun), “Application Virtualization made simple,” 
Available: http://www.vmware.com/products/thinapp/overview.html  

[2] G. Lawler, “Distributed architecture for the object oriented methods for 
interoperability,” Monterey, CA: Naval Postgraduate School, thesis, 
2003  

[3] C. Hahn, C. Madrigal-Mora, and K. Fischer, “Interoperability through a 
platform-independent model for agents,” 3rd International Conference 
on Interoperability for Enterprise Software and Applications, 2007. 

[4] C. Seo and B.P. Zeigler, “DEVS namespace for interoperable 
DEVS/SOA,” Winter Simulation Conference, 2009.  

[5] C. Carrascosa, A. Terrasa, J. Fabregat, V. Botti, “Behaviour 
management in real-time agents,” Fifth Iberoamerican Workshop on 
Multi-Agent Systems, pp. 1-11, 2004. 

[6] A. Tolk, S. Diallo, C. Turnitsa,  L. Winters,  “Composable M&S Web 
services for Net-centric  Applications,”  Journal of Defense Modeling 
and  Simulation 3 (1) 27-44, 2006 

[7] P-O. Östberg , E. Elmroth. “GJMF - A Composable Service-Oriented 
Grid Job Management Framework,” Preprint available at 
http://www.cs.umu.se/ds, submitted, 2010 

[8] J. C. LKnight, J. W. Davidson, D. Evans, A. Nguyen-Tuong, C. Wang, 
"Genesis: A Framework for Achieving Software Component Diversity," 
Technical Report AFRL-IF-RS-TR-2007-9, University of Virginia, 
January 2007 

[9] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer 
systems,” 6th Workshop on Hot Topics in Operating Systems (HotOS-
VI), pages 67–72, 1997.  

[10] T. Jackson, B. Salamat, G. Wagner, Ch. Wimmer, and M.Franz, “On the 
Effectiveness of Multi-Variant Program Execution for Vulnerability 
Detection and Prevention,” International Workshop on Security 
Measurements and Metrics (MetriSec 2010), September 2010. 

[11] M. Franz, “E unibus pluram: Massive-Scale Software Diversity as a 
Defense Mechanism,” New Security Paradigms Workshop 2010 (NSPW 
2010), September 2010. 

[12] Cyber Trust (2009) Program Solicitation NSF 08-521, Available : 
http://www.nsf.gov/pubs/2008/nsf08521/nsf08521.htm  

[13] M.Azab, R.Hassan and M.Eltoweissy, "ChameleonSoft: A Moving 
Target Defense System," 7th International Conference on Collaborative 
Computing, 2011.  

[14] R. Spruijt, (2012, Jun). “Application Virtualization Smackdown: Head-
to-head analysis of Citrix, Endeavors, InstallFree, Microsoft, Spoon, 
Symantec and VMware,” Available: http://www.brianmadden. 
com/blogs/rubenspruijt/archive/2010/09/22/application-virtualization-
smackdown-head-to-head-analysis-of-endeavors-citrix-installfree-
microsoft-spoon-symantec-and-vmware.aspx 


