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Abstract— Emerging technologies such as the Internet of Things 

generate huge amounts of network traffic and data which lead to 

significant challenges in a) ensuring availability of resources on-

demand, b) recognizing emergent and abnormal behavior, and   

c) making effective decisions for efficient network operations. 

Network traffic data exhibit spatiotemporal patterns. Learning 

and maintaining the currently elusive rich semantics based on 

analyzing such patterns would help in mitigating those 

challenges. In this paper, we propose the concept of a network 

"memory" (or NetMem) to support smarter data-driven network 

operations as a foundational component of next generation 

networks. NetMem will enable networking objects to understand 

autonomously, at real-time, on-demand, and at low cost 

semantics with different levels of granularity and related to 

various network elements. Guided by the fact that human 

activities exhibit spatiotemporal data patterns; and the human 

memory extracts and maintains semantics to enable accordingly 

learning and predicting new things, we design NetMem to mimic 

functionalities of that memory. NetMem provides capabilities for 

semantics management through uniquely integrating data 

virtualization for homogenizing massive data originating from 

heterogeneous sources, cloud-like scalable storage, associative 

rule learning to recognize data patterns, and hidden Markov 

models for reasoning and extracting semantics clarifying 

normal/abnormal behavior. NetMem provides associative access 

to data patterns and relevant derived semantics to enable 

enhancements in early anomaly detection, more accurate 

behavior prediction and satisfying QoS requirements with better 

utilization of resources. We evaluate NetMem using simulation. 

Preliminary results demonstrate the positive impact of NetMem 

on various network management operations. 
  

Keywords—Network Semantics, Data Virtualization, Cloud 

Data Storage, Distributed Systems, Bio-inspired Design. 

I. INTRODUCTION 

Emerging networks and technologies (e.g., Internet of 

Things (IoT) [1]) comprise billions and wide varieties of 

communicating entities, running services and applications, and 

types of used resources. According to that, it is expected to 

have huge amount of network traffic related to various sources. 

Such complexities pose formidable challenges for network 

analysts and decision making. Also, networking entities will 

face difficulties to keep up with the dynamic requirements and 

behavior of the heterogeneous network elements (e.g., 

applications, protocols, resources, etc.). Contemporary tools 

and solutions as presented in [11][12] are limited in their 

ability to identify dynamic behavior aspects and thus they 

constrain our understanding of actors and activities in the 

network. Moreover, the  storage of  traffic  data for  mining and  
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analysis as presented in [8][9] would be prohibitive given the 

extreme volume of data and the timeliness needed in decision 

making. 

It is widely known that network traffic data exhibit 

spatiotemporal patterns. Learning and maintaining semantics 

based on analyzing such patterns would support network 

core/end systems to recognize normal/abnormal behavior of 

diverse network elements and requirements of new emerging 

services besides it would aid in enhancing services' QoS, 

utilization of resources, and detection of anomaly. 

Additionally, effectively utilizing semantics would provide self 

and situational awareness to help improve network 

performance, adaptability and evolution. 

Unfortunately, the current Internet [2] and other proposed 
network architectures in the contemporary literature, for 
example [3][6], in the most part, do not provide effective and 
efficient methodology for networking entities to discover, 
learn,  store and utilize patterns of traffic behavior, particularly 
at runtime in an automated manner and over a long period of 
time. For example, the behavior of TCP, a reliable 
communication protocol, can be extracted by learning patterns 
of that protocol. Learned TCP patterns would lead to know 
normal range of port numbers used between entities, normal 
ratio of source/destination messages through specific time 
period, and values of sequence numbers in source/destination 
within N connections. Hence, the normal behavior of TCP 
protocol can be expected based on discovered features in its 
patterns. Additionally, up to our knowledge, hardware and 
software solutions proposed for enhancing network intelligence 
(e.g., cognitive networks [27]), did not provide systematic 
means to learn, store and associate network semantics that can 
aid in extracting information concerning diverse network 
elements and their normal/emergent behavior. We depict the 
limited utilization of traffic semantics in networking operations 
as the “networking semantics gap”. Such gap deprives 
networks of efficient use of information at different levels of 
granularity, which would otherwise help in enhancing their 
operation. 

In this paper, we motivate the concept of a "memory" for 

resolving the aforementioned semantics gap for smarter 

networking operation. Our proposed network memory, termed 

NetMem, is a shared distributed semantics management 

system. It provides a facility for learning at runtime 

spatiotemporal patterns exhibited by syntax data (SData) 

originating from heterogeneous networking domains and 

related to various network elements. By recognizing patterns, 

NetMem learns and discovers network semantics in a 

Biologically-inspired Network “Memory” for 

Smarter Networking 
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Fig. 1.  Abstraction of Biologically-inspired Semantics Management System 

systematic way to inform networking operations with 

semantics at different levels of abstraction (e.g., function and 

normal behavior of routing protocol and reliable service in a 

specific contexts such as wireless ad-hoc networks). 

NetMem is inspired by the functionalities of the “human 

memory”. The human memory [18] is capable of 

autonomously collecting huge amounts of data with different 

levels of details via our five senses, i.e., various sources, and 

learns their pattern and derives associative semantics 

accordingly. There are unified semantics representation and a 

scalable structured way for yielding associative semantics 

storage. Moreover, semantics in human memory are 

accumulated as sequences and updated continuously and can 

be associatively accessed and retrieved. Based on maintained 

semantics, humans can predict future events, learn things, and 

recognize new ones by matching their estimated semantics 

with those which are already registered. Our claim is that the 

functionalities of human memory [18] are suited to designing 

NetMem because of analogy in processes of 

deriving/matching semantics based on learning patterns and 

capabilities which are offered in human memory for the 

associative retrieval and scalable storage. 

NetMem structure adopts composable and cooperative 

building components forming connection patterns for data 

feedforward and semantics feedback. NetMem has memory 

components which are implemented using a cloud-like data 

storage [27] form - big relational tables [7]. NetMem 

comprises the following components:  

a) Cloud data-like storage [27] components to get short-term 

memory (StM) and long-term memory (LtM) manifesting 

associative storage concept and mimicking the hierarchal 

memory system of classified and sequenced patterns in 

human brain [18];  

b) Data collection and acquisition component, we call DVA, 

which mimics sensory memory system in human [18]. 

DVA includes data virtualization techniques for collecting 

data from various sources and unifying data 

representation in StM as data profiles;  

c) Semantic manager (SM) which mimics neocortex 

functionality and it is responsible for learning and 

deriving semantics in LtM. SM adopts associative rule 

learning algorithms for pattern learning and feature 

extraction, Fuzzy membership functions [22] for 

classifying features and hidden Markov model (HMM) 

[25] for reasoning and semantics extraction. Feature 

extraction and classification processes facilitate semantics 

discovery operations because those processes reduce 

dimensionality of data, i.e., show discriminative 

information; and  

d) Controller and interface component which represents the 

capability of feedforward and feedback connectivity 

among the above mentioned components besides allowing 

data/actions/alerts pass to requesting entities outside the 

NetMem system.  

 

Our contribution in the paper is two folds: 

• A biologically-inspired architecture and methodology for a 

network memory mimicking functionalities of the human 

memory for resolving the networking semantics gap; and 

• Constructing a network semantics management system with 

associative semantics storage/retrieval/matching capabilities 

at runtime and on-demand for supporting enhancement of 

running services' QoS guaranties and anomaly detection. 
 

The remainder of this paper is organized as follows. Section 
II presents NetMem design showing its bio-inspiration of 
human memory functionalities. Section III discusses related 
work. Section IV discusses evaluation and the obtained results. 
The paper concludes in section V with an outline of future 
work. 

II. NETMEM SYSTEM 

NetMem is a shared distributed system that can be built 

separately on multiple autonomous entities with capability of 

inter-communication and semantics integration. Also, 

NetMem can be attached with already shared, existing and 

interconnected networking entities in the current Internet (i.e., 

overlay networks). NetMem outputs semantics with lower 

levels of details based on monitoring and learning 

spatiotemporal patterns of huge amount of high dimensional 

network data, which possess higher levels of details. NetMem 

provides capabilities for networking entities to 

store/discover/retrieve at runtime and on-demand 

SData/semantics related to different network elements. 

NetMem targets minimizing resource consumption at entities 

and enhancing scalability in data and algorithms by limiting 

their storage at enormous entities to perform NetMem 

functionalities. Maintained data (i.e., SData and semantics) at 

NetMem are represented uniformly, associated in big 

relational tables [7], and classified into three networking 

concerns, namely application, communication and resource 

concern as those concerns are defined in [6]. At the same time, 

data are abstracted via FBS engineering framework [20] to 

functional, behavioral, and structural (FBS) aspects. 

The following subsections describe concepts underlying our 

NetMem system, its architecture and operations, respectively. 

A. Concepts 

To achieve our goal, we propose that our system is driven 

by group of fundamental concepts, input to the system; to get 

system features at the output, see Fig. 1. NetMem system 

design and operation depends on the following concepts:  

1) Formal reasoning concept states a well-founded artificial 

intelligence functionality based on integrated 

mathematical reasoning algorithms to perform data 

patterns learning, semantics extraction and 

representation, and semantics matching algorithms; 

2) Data-driven conceptualization concept declares that 
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Fig. 2.  Structure of NetMem 

semantics learning and deriving algorithms are based on 

extracted and classified features of learned data patterns; 

3) Pattern sensing concept states the ability to discover 

patterns based on their extracted and classified features; 

4) Associative storage concept shows that storage would be 

enabled with capabilities of identifying storage locations 

by their contents or part of contents and having 

hierarchical storage structure by showing 

interdependence between different storage locations 

based on some criteria as imply or dependence; and 

5) Data virtualization (DV) concept states that massive data 

from heterogeneous sources can be abstracted/federated/ 

presented to one logical place without physical data 

movement, e.g., [4][5]. DV provides for our system 

built-in tools for data homogenization and, also, data 

models for unifying data representation. 

NetMem system has the following features as shown in  

Fig. 1, i.e., output of our system:  

1) FBS Prediction: the capability of system to conjecture 

semantics of new/abnormal various network elements 

(e.g., services, applications, protocols, etc.) on different 

levels of abstraction which are FBS aspects. FBS 

prediction is performed throughout learning patterns, 

features extraction and classification mechanisms 

besides applying implemented reasoning algorithms and 

concept models;  

2) FBS Identification: the ability of the system to learn 

patterns of data related to communicating entities and 

running services and applications in complex systems to 

identify semantics on different levels of abstraction in 

case of normal operation modes or emergent behavior 

due to changes in internal/external contexts; and  

3) Systematic Semantics Management: semantics are 

maintained and organized in a structured way, using 

concept models and definition language besides showing 

different levels of details as FBS aspects. Semantics are 

stored as sequences of concepts which reveal 

relationships among concepts. 

B. Architecture 

NetMem architecture comprises the following components 

which can inter-communicate as shown in Fig. 2.   

• Data virtualization and access (DVA): DVA is a data 

collection and acquisition component inspired by sensory 

memory system in human. DVA is attached to a sensory 

system to gather data from entities, channels, etc.; and it 

implements DV techniques [4, 5]  for data homogenization; 

and it possess a data model for building syntactic data 

structure and uniform representation in NetMem tables.  

• Short-term memory (StM) and long-term memory (LtM): 

StM and LtM consist of sets of big extensible relational data 

tables. We are inspired in their design by the work in [7] 

where there is a capability to store large datasets in big 

tables based on an open source implementation technique 

for big tables for massive scalability defined in HBase [16] 

and built on top of the Java framework Hadoop [17]. StM 

mimics lower cortex areas in human brain which deal with 

spatiotime-varying data. LtM mimics higher cortex areas 

which deal with semantics. StM, or working memory, 

maintains SData related to various network elements and 

phenomena such as running services, applications, resources 

and communication flows. LtM, auto-associative memory, 

maintains semantics, which are based on reasoning 

processes for data in StM. The reasoning processes are 

executed within NetMem in the fourth component we call 

"semantic manager" or SM.  

• Semantic Manager (SM): SM mimics neocortex 

functionality [18]; and it is responsible for discovering/ 

generating/matching concepts in LtM based on monitoring 

and learning data patterns in StM and extracted features. In 

another meaning, SM relates SData of high levels of details 

in StM to semantics, i.e., concepts with low levels of details, 

in LtM. SM utilizes HMMs as semantics reasoning models 

for extracting semantics based on data at StM. SM uses 

associative rule learning (ARL) algorithms [22][23] and 

statistical analysis to provide capabilities of associative 

access and learning data patterns in NetMem big tables. 

Also, Fuzzy membership functions (FMF) and decision 

trees (DT) are used to extract and classify features thus aids 

in learning patterns of these data. Furthermore, SM 

constructs relational big tables [7] of concepts to build 

relations between concepts.  

• NetMem controller and interface (NCI): NCI is responsible 

for handling syntax and semantics data requests from 

networking entities in various domains. In other words, NCI 

represents the gate for data exchange between NetMem 

components and entities in the networking world. It has the 

capability for differentiating the requests, and accordingly it 

sends tasks, i.e., data discovery, to DVA or SM. In addition, 

it receives responses from DVA and SM including required 

data that it will enable requesting entities to access them. It 

might send SM additional tasks in case of the incapability of 

DVA to find required data. Furthermore, NCI is responsible 

for invoking actions/alerts based on analytical reports sent 

to it from DVA and SM. Analytical reports are generated 

based on data requests sent to DVA and SM and already 

data in their accessed memories where DVA has access to 

an internal cache memory and StM and SM has access to 

LtM. NCI uses defined policies and Fuzzy rules to generate 

actions and alerts. For instance, NCI might generate attack 

alert based on a report sent to it from SM showing that 

current learned patterns in StM refers to an attack.  

C. NetMem Operations 

In the following subsections, we will discuss NetMem 

functionalities executed by its components. 

 

Data Virtualization and Access 

This function is accomplished in NetMem DVA where it 
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Fig. 4.  Semantic Manager in NetMem 

  

represents uniformly syntax data (SData) from heterogeneous 

sources as profiles. DVA search for keywords in collected 

data from disparate sources and accordingly, it forms syntactic 

data profiles at StM. For instance, a data profile might clarify 

source/destination IPs, type of service such as file transfer, and 

packet size. DVA registers data as profiles in StM. It uses 

XML as a representation language clarifying type and 

attributes per each data profile. According to space limitation, 

discussion of how data are represented and associatively 

accessed in/from NetMem tables is beyond our scope in this 

paper.  

Fig. 3 describes the proposed DVA component. DVA 

comprises the following units: a) Manager which handles data 

from sensory system, and requests from entities via NCI 

component to discover and retrieve data from StM at real 

time; b) Data model registry which contains the format and 

keywords for data structure, i.e., profile; c) Cache which is the 

temporary warehouse where valuable data is stored by the 

manager to facilitate data access and to enhance response 

time; d) Matching which is attached with data homogenization 

and classification algorithms for probabilistic dimension 

reduction of collected massive high-dimensional data and 

categorizing data into groups based on application, 

communication and resource concerns; and  e) Transformer 

which represents uniformly, using defined data models, data 

as profiles, which comprise three concerns, in StM structured 

tables.  

 

Semantic Manager (SM) 

SM is responsible for generating/storing/retrieving 

semantics to/from LtM based on 1) continual monitoring and 

learning for data patterns in StM; 2) maintained statistical 

prediction models;   3) acquired and learned data patterns from 

data experts; and  4) experience and history of SM such as 

defined HMM models. We are inspired in SM design, shown 

in Fig. 4, with functionalities of cortex and neurons in human 

brain [18]. SM uses associative rule learning [22][23] or ARL 

to recognize features of data profiles maintained in StM. 

Moreover, SM utilizes Fuzzy membership functions [24] to 

classify extracted features. Based on learned and classified 

features, SM runs HMM [25] as models for semantics 

reasoning and extraction. HMM is a categorical sequence 

labeling supervised/unsupervised algorithm (predicting 

sequences of categorical labels). Sequence labeling can be 

treated as a set of independent classification tasks. Based on 

extracted features and maintained data profiles by DVA in 

StM, SM runs HMM models after executing the training 

phase. The input to HMM models are sequence of profiles’ 

features and the output is semantics (i.e., sequences of 

concepts) with certain probabilities. SM registers semantics at 

LtM using DTD XML language. 

As shown in Fig. 4, SM has the following components:                

a) Coordinator which is responsible for handling and 

differentiating between enforcement signals from internal 

units, NCI and DVA to allow performing semantics 

derivation, retrieval, matching and discovery processes and to 

let pass networking data from StM to SM; b)  Patterns learning 

which executes ARL algorithm to learn data patterns in StM 

and to learn semantics patterns, which describe relation or 

interdependence among different semantics, used in semantic 

matching process, in LtM; c) Reasoning algorithms which 

represent the semantics models by implementing group of AI 

algorithms, i.e., HMM models, for multi-stage reasoning to 

perform tasks of semantics derivation on different levels of 

granularity, i.e., providing FBS data, and generation of 

semantics patterns; d) Semantics matching which is embedded 

with a case-based reasoning algorithm, using defined 

semantics in LtM, and a statistical analysis model for applying 

semantics fitting processes; e) Semantics adaptation maintains 

algorithms for defining aspects and features of semantics 

considering changes happened in those semantics FBS data 

based on results from semantics matching unit and a control 

signal from coordinator; f) Semantics definition and goals 

which shows experience of the SM, preserves semantic 

derivation models, and definitions and intentions of semantics; 

g) Semantics placement which has data storage models and 

definition languages, such as extensible markup language 

(XML) document type definition, for maintaining semantics in 

LtM tables; h) Feature extraction and classification which 

maintains models for probabilistic and statistical analysis 

beside classification algorithms as decision trees and Fuzzy 

membership functions to extract and classify features of 

learned patterns; i) Parse input which is responsible to handle 

inputs to SM whether those inputs are data (from LtM and 

StM) or alerts and request signals from DVA and NCI, 

respectively; and j) Data output which is the gate where 

analytical reports and semantics are passed through to NCI 

and LtM/NCI, respectively.  

 

Short-term Memory (StM) 

StM stores temporarily SData of different network elements 

in various domains. Data in StM are classified to application, 

communication, and resource concern, as defined in [6]. We 

propose four big relational structured tables for StM, namely 

service data structured table (SDST), concerns data structured 

table (CDST), concerns index table (CIT), and composite 

concerns index table (CCIT). SDST provides data service 

where it contains entries for multiple network elements and 
 

Fig. 3.  Data Virtualization and Access in NetMem 
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Fig. 5.  A Probabilistic Model using HMM for Semantics Extraction 

  

their related extracted concerns. CDST defines FBS attributes 

per each concern's data entry in the SDST. The CIT and CCIT 

clarify in which entries in the SDST, a single concern’s and 

group of concerns' attributes can be found, respectively. 

 

Long-term Memory (LtM) 

It is a permanent auto-associative memory of semantics, 

which are stored on different levels of abstraction (based on 

three networking concerns and FBS data). LtM design 

depends on using sets of extensible big relational tables to 

represent in class tables three classes (application, 

communication, and resource) of features on which semantics 

depend. Extracted semantics are maintained in sub-classes 

tables via numeric vectors and alphabetic symbols which refer 

to their features in class tables.  

 

NetMem Semantics Extraction Model (via an example) 

SM is monitoring N data profiles registered by DVA at StM 

to learn patterns. We assume that profiles have a length of T 

features, learned and their number identified by ARL, studied 

by statistical analysis, and classified by FMF and DT, of group 

of K features that T ≤ K. for instance, SM discovers TCP 

profile then it will study number of occurrence in StM and 

then it will classify that number using an FMF whether it is 

large, or normal, or small number.  We design an HMM model 

for SM that provides a relation between sequence of T 

features, extracted from learned patterns at StM, and generated 

sequence of T concepts of total M concepts based on prior 

transition and observation probabilities where T ≤ M. Based 

on extracted features, SM extracts semantics concerning one 

of three networking concerns, namely, application, 

communication and resource. Fig. 5 illustrates the forward 

algorithm used by our HMM to extract semantics. 

The designed HMM λ = (A, B, π) model for TCP and UDP 

service profiles, kept as StM, has T=4 states for input (i.e., 

features) and output (i.e., semantics). A is defined as a matrix 

of input state transition probability, which shows the 

probability to transfer from a feature (e.g., large number of 

profiles) to another one, B is the observation probability 

matrix, which shows the probability to have semantics from a 

certain a feature, and π is the initial state probability for each 

feature and it equals 1/T = 0.25, i.e., T = 1/ (number of 

features). Four concerns are extracted from TCP/UDP profiles 

which are: protocol type, buffer_size, bandwidth, 

long_service_duration. We defined decision tress and FMFs 

that classify extracted concerns to four features like degree of 

bandwidth value and range of used buffer_size. Obtained 

features are input sequence to our HMM. Based on training 

sequences and HMM parameters, we have at output a 

sequence of four defined semantics which are reliable service, 

huge resources, file transfer, stable communication. Using the 

Viterbi algorithm for maximum likelihood estimation, SM 

extracts semantics for TCP and UDP profiles on different 

levels of granularity defining; application concern (file 

transfer and reliable service) and communication concern 

(stable communication) where it will register them at LtM.   

III. EVALUATION 

We conducted simulations using JSim [21] for our 

preliminary evaluation of the efficacy of NetMem. We 

implemented a simple scenario for a network composed of 

eight hosts, two nodes with routing functionalities “routers”, 

and a shared NetMem system represented by an overlay 

network comprises entities for NCI, DVA, StM, LtM, and SM 

operations. NetMem system was implemented by Java for 

handling data from sources and semantics request/response 

messages from nodes, profiles’ building, feature extraction 

and classification and the used ARL algorithm and HMM 

model. In this scenario, we designed an HMM model for 

extracting semantics related to abnormal profiles and attacks. 

A simple communication protocol was built to enable 

interaction between NetMem and other nodes. Our scenario 

goal, basically, is to show the capability of NetMem for 

understanding at runtime and on-demand networking contexts 

(e.g., running services and their time-varying requirements) 

via learning and deriving semantics related to                         

a) normal/abnormal flows of running services; and b) attacks 

and use those semantics for predictive operation to enhance 

QoS of running services and to strengthen security by 

anomalies detection. We have two different service classes for 

data transfer where the first service class uses TCP transport 

protocol between two hosts and the other service class uses 

file transfer protocols on top of UDP among other two hosts. 

We build a static route for each service class where 

intermediate routers transfer data packets of both services. The 

other four hosts are attackers (i.e., non-legitimate entities) 

which generate abnormal TCP/UDP flows to degrade services' 

QoS of legal entities. Table I shows simulation parameters.  

Legal entities in the scenario can access NetMem at runtime 

and on-demand to store/discover/retrieve data and to learn 

semantics, or sequence of concepts, concerning their 

interesting services. For instance, the TCP and UDP services 

are provided in a specific region and at certain periods of time 

through the day. Data profiles regarding traffic of those 

services are stored in NetMem by DVA at StM. Those profiles 

show source/destination IP, service type, port number, packet 

size and type, allocated buffer size and bandwidth, and service 

duration. Profiles in StM exhibit patterns that can be learnt by 

SM to derive semantics related to those services. 

Communicating entities such as routers can know via a) data 

profiles which clarify IP attributes; and b) TCP/UDP 

semantics: requirements of running services, and the normal 

and abnormal behavior of services. For example, NetMem has 

semantics for the TCP service which reveal that this service, 

within range of IPs, uses specific resources at certain time 

period and at particular area because of the impact of another 
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TABLE I 

SIMULATION PARAMETERS 

Value Parameter 

1 Mbps Link Data Rate (fixed) 
7000 packets Router Buffer Size (fixed) 

512 /1024 & 2048 bytes 
TCP MSS (fixed) Normal/Abnormal Flow 

(1) & (2) 
128 bytes TCP MCWS (fixed) Normal/Abnormal Flow 

255 seconds 
TCP Time to Live (fixed) Normal/Abnormal 

Flow 
30 seconds UDP Client/Reply Timeout 

512/ 512 & 2048 bytes 
UDP Packet Size (fixed) Normal/Abnormal 

Flow (1) & (2) 

From beginning/form 

beginning/40 seconds/90 

and 100 seconds 

Start Time: Normal TCP flow/two abnormal 

TCP flows/Normal UDP flow/two abnormal 

UDP flows 

100 mseconds Propagation Delay (fixed) 

Every 60 seconds 
Rate of Using Sensory Functions  in Hosts 

for Recognition of Attack Alerts (variable) 

Every 100 seconds 
Rate of NetMem Access and Data Patterns 

Detection in StM by SM (variable) 
Every time Hosts 

send/receive data 
Rate of Change for Contents (i.e. Data 

Patterns) in StM 
Unsupervised using 

Baum-Welch algorithm/ 

1000 

HMM approach/number of training 

sequences 

1000 seconds Simulation Time 

service (i.e., UDP service).  

To derive semantics, SM analyzes the different profiles in 

StM where it learns group of concerns (e.g., packet_size) in 

profiles using our designed ARL algorithm. After that, SM 

discovers features per each profile by classifying obtained 

concerns through using our defined decision trees and FMFs. 

Sequence of classified features per each profile is sent to a 

defined behavior HMM model to extract semantics, i.e., 

sequences of concepts, and to learn normal/abnormal behavior 

of services and attacks. The Accuracy of SM prediction for 

profiles’ behavior is evaluated every reasoning time period, 

i.e., 100 seconds. In our HMM model, we defined five 

concepts, namely, known attack, UDP flood attack, 

TCP_Syn_flood_attack, normal and abnormal flow. Those 

concepts depend on extracted and classified features per each 

profile, which are related to number of each profile in StM, 

packet size, port number, number of synchronization packets. 

Normal/abnormal behaviors for services are defined in HMM 

model based on values’ range of input features. For instance, a 

normal behavior of TCP services is assigned by certain range 

of port numbers and packet sizes. We propose four cases of 

operation. The first case is that NetMem operation before 

learning that SM does not learn and derive concepts yet.  The 

second one is operation after learning concepts; and SM will 

perform concept matching processes for learned data patterns. 

The third case is operation before learning and with DVA 

control. DVA control is a simple mechanism proposed to 

minimize storage space in StM that each data profile will not 

exceed a ratio of total number of profiles in StM. The last case 

is operation after learning and with DVA control.  

Fig. 6 shows measured average throughput at the two 

 
(a) Throughput at TCP destination without NetMem                                    (b) Throughput at UDP destination without NetMem 

 
           (c)Throughput at TCP destination with NetMem before learning                (d) Throughput at UDP destination with NetMem before learning 

 
        (e)Throughput at TCP destination with NetMem after learning                          (f) Throughput at UDP destination with NetMem after learning 

 

Figure 6.  Throughput at TCP/UDP Destinations with/without NetMem and before/after learning 
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Figure 8. Data Scalability at StM with/without DVA Control 

 
Figure 7.  Semantic Manager Timeliness 

legitimate TCP/UDP destinations in cases of operation 

with/without NetMem before/after learning and with/without 

DVA control. Fig. 6 (a, b) shows operation without NetMem 

that according to abnormal TCP/UDP flows, QoS of TCP 

service is deteriorated and also much resources consumption 

at UDP destination due to UDP flood attacks initiated from 

non-legitimate entities. In Fig. 6 (c, d), the operation is with 

NetMem, however, LtM does not maintain concepts that can 

be matched with learned patterns of running services’ profiles. 

So, SM begins to learn and derive concepts during the 

simulation time. SM could learn patterns of three service 

profiles at StM which reveal two types of attacks and an 

abnormal flow behavior. Accordingly, three concepts are 

constructed and stored at LtM. Routers in our scenario could 

learn those concepts in LtM through linkage between known 

IPs for those routers and service types attributes in profiles at 

StM, and extracted semantics at LtM and thereby routers 

stopped allocating resources and processing data concerning 

abnormal services' flow. Hence, QoS of legitimate services 

begins to enhance, however, after overhead time due to the 

patterns learning phase by SM, and LtM access and semantics 

retrieval by routers. Legitimate UDP flow stops because 

arrival of many datagrams from attackers increases probability 

of collision which make buffer overflow and result in 

exceeding legitimate flow for the client and reply timeout 

value (30 seconds). In Fig. 6 (e, f), NetMem operates after 

learning patterns and maintaining semantics for abnormal 

flows and attacks. So, routers learn early semantics of their 

services and they limit resources assigned to abnormal flows. 

SM keeps learning data patterns at StM and it matches them 

with registered semantics. Fig. 7 illustrates SM timeliness to 

analyze and learn patterns of service profiles, which are 

updated continuously at runtime, to derive semantics 

accordingly and to predict services’ behavior. In cases 

operation after learning, SM takes time longer than cases of 

operation before learning because SM learned semantics of 

attacks and abnormal profiles and it found matching between 

analyzed and learned patterns and those semantics. 

Accordingly, routers will not assign resources for those 

profiles and normal traffics of TCP/UDP services will reach 

destinations successfully (data collisions and channel access 

contention are minimized). So, network throughput will be 

enhances and NetMem will be able to collect large number of 

normal profiles. Hence, StM size increases after learning as 

shown in Fig. 8. NetMem could achieve same rate of learning 

in case of operation before learning with/without using the 

simple DVA control. In addition, NetMem, with DVA control 

after learning, could minimize required storage space at StM. 

However, SM could discover 100% of semantics. 

IV. RELATED WORK 

Some previous works have implemented mechanisms for 

storing Internet data and measurement data based on required 

attributes. For instance, flexible meta-databases as in [9]-[11] 

were proposed to enable accessing uniformly represented and 

correlated data from heterogeneous sources to support better 

data analysis and understanding of networking traffics. Also, in 

[11]-[15] and [19], authors presented architectures for 

knowledge plane (KP) for autonomic knowledge management 

capabilities to strengthen self-* properties and to enhance 

decision making and understanding network dynamics.  

Researchers have also investigated mechanisms for storing 

Internet and measurement data based on certain attributes. For 

example, CAIDA in [8] presented the Internet measurement 

data catalogue (IMDC) as metadata repositories of 

measurement data to achieve smooth accessibility of that data 

for comparative analysis purposes. IMDC provided detailed 

information about stored data such as its source and location 

and time of its occurrence. Authors in [9] proposed a scalable 

Internet measurement repository (SIMR) to track Internet 

measurements where large databases provide information 

about measurements, tools, users, experiments, and datasets. 

These databases can be accessed easily for analyzing obtained 

measurements at various contexts and times. Similar to SIMR, 

the MOME in [10] is a web-based way for repositories of 

meta-databases independent of service types. Authors of 

MOME showed the capability to record information related to 

measurement tools and data (e.g., QoS attributes) where there 

is a public access capability, but processes of 

updating/retrieving entries are limited to registered users.  

The work in [11] and [12] proposed to add a distributed 

knowledge plane (KP) to the current Internet, based on 

artificial intelligence and cognitive techniques, to be self-

knowledgeable, self-configuration, self-diagnosing, self-

analyzing, and self-managing. In [13] authors proposed a non-

shared centralized KP inside each communicating entity in 

mobile wireless ad hoc networks. That KP helps entities in 

storing information related to protocols of the networking 

stack and other entities. The proposed knowledge system 

facilitates protocol interactions. Riggio et. al in [14] proposed 

a KP for wireless mesh networks where communicating nodes 

can exchange information related to services and operating 

conditions. In [15], Shieh et. al proposed a global federated 

KP for Internet where that plane provides trustworthy 

information regarding networking properties that will be used 
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by running applications. The proposed KP was implemented 

via a group of servers operated by third parties to support 

security issues (confidentiality and privacy). There are defined 

access control policies which are used for information 

disclosure. In [19], authors presented a knowledge plane for 

autonomic networking based on machine learning tools to 

enhance self-* properties (especially for self-adaptation) of 

communicating entities in distributed environments. In [19], 

an KP is constructed virtually via knowledge sharing and 

discovery processes which are performed by networking 

entities. . The KP in [19] provides data access and retrieval on 

levels of internal and environmental states. 

Similar to works in [8]-[10], NetMem adopts metadata 

models for uniformly representing data related to various 

network elements from various sources. However, NetMem is 

a semantics management system that maintains network 

semantics at different levels of granularity based on learning 

spatiotemporal data patterns originating from heterogeneous 

sources. Semantics can be accessed on-demand and at runtime 

to support decision making and tasks of networking built-in 

tools as intrusion detection systems. Compared to work in [11] 

and [12], we provide a biologically-inspired architecture for 

NetMem, where human memory functionality guides its 

constituting components and internal operation for collecting 

and homogenizing data from various sources using data 

virtualization techniques. The proposed KP in [12] uses rules to 

generate responses based on gathered observations. But, 

NetMem adopts predictive analytics based on learned patterns 

and extracted features to generate semantics. Unlike work in 

[13],[14] and [19], NetMem is designed to provide a shared 

distributed management system for network semantics, which 

are associatively stored using data models in big relational 

tables. Also, semantics can be accessed and learned by 

networking entities at runtime and on demand to aid in 

enhancing networking operations such as anomaly detection. 

Unlike work in [15], maintained data in NetMem are not 

restricted to Internet measurement data. NetMem maintains 

network semantics related to different network elements. 

V. CONCLUSION 

We presented NetMem, a semantics management system that 

mimics functionalities of the human memory with the 

objective of effectively and efficiently utilizing and learning 

spatiotemporal networking data patterns for smarter 

networking. NetMem provides capabilities of associative 

semantics storage/retrieval/matching at runtime and on-demand 

for supporting enhancement of running services' QoS 

guaranties and anomaly detection. NetMem integrates data 

virtualization, cloud-like data storage, associative rule learning 

and HMM. We provided via simulation a simple evaluation 

for networking operations with NetMem. Motivated by the 

preliminary results showing NetMem’s success in improving 

networking operations, we are currently investigating the 

formalization and optimization of NetMem as a generic 

scalable network memory and addressing its real 

implementation challenges and overhead. We also seek to 

motivate further research particularly leading to reference 

model and architecture and standardization of network 

memory. 
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