
A Collaborative approach to scaffold programming
efficiency using Spoken Tutorials and its evaluation

aKiran L.N. Eranki, bKannan M. Moudgalya
IDP Educational Technology

Indian Institute of Technology Bombay
Powai, Mumbai 400076, India.

Email: aerankikiran@iitb.ac.in, bkannan@iitb.ac.in

Abstract—Computer scientists and educators have argued that
teaching programming skills helps enhance thinking skills and
good problem solving aptitude. Learning to program is difficult
for many students. Although several factors that affect learning
have been identified over the years, we are still far from a full
understanding of why some students learn to program easily
and quickly while others flounder. This paper addresses this
challenge using spoken-tutorials as a collaborative scaffolding
tool to develop programming efficacy and evaluation of the
students programming abilities. The results of the study show
that programming self-efficacy is influenced by prior experience,
and the students’ mental models of programming influences their
self-efficacy, and both the mental model and self-efficacy have a
direct effect on overall perfomance of the students. Mastery of
programming skills in one these languages also contributed in
improved performances in other languages.

Keywords—Programming ability, spoken-tutorials, collabora-
tive learning, high-order thinking, constructivist approach

I. INTRODUCTION

The evidence of dropout and failure rates in introductory
programming courses at the university level is due to the
fact that learning to program is a difficult task. Decisions
about majoring in computer science and related fields are often
determined by a students success or failure in the introductory
course. According to [1] even after attending the introductory
programming classes many students fail to program at the
end of the course. And it was claimed that programming skill
acquisition happens from basic constructs to writing [2] and
building logical flow is an important precursor to acquire writ-
ing. It is also noticed that the result varies across universities.
And in order to assess the achievement of students, we think
that skills such as modifying an existing code or writing a
program from scratch are missing in the evaluation process
[3].According to [4], self-efficacy is considered as judgmental
decisions of ones capabilities to organize and execute courses
of action required to attain designated types of performance. In
learning situations, self-efficacy influences the use of cognitive
strategies while solving problems, the amount of effort needed,
strategy adaptation, the levels of perseverance in the face of
failure, and the ultimate performance outcomes [4]. According
to self-efficacy theory [5], [4], judgments of self-efficacy are
based on the individuals performance achievements, observing
the performance of others, verbal persuasion, and physiolog-
ical reactions towards others to judge their own capableness

and vulnerabilities.They are critical in debugging a process
when things go wrong because the mental models support
the person in reasoning about and localizing possible faults
[6].In this paper, we report the result obtained by assessing
conceptual understanding of basic programming concepts and
propose a method to evaluate self-efficacy based on the
scores obtained using spoken tutorials. These tutorials have
previously been shown to be an effective instructional material
[7], [8], [9].Although several studies have been conducted on
comprehension of programming skills, little work (if any) has
been applied to discover the individual traits of a particular
language that cause the most difficulty for novices. Studies
into whether the choice of a programming language affects
program apprehension is still not clear. It has also been found
that different notations facilitate the understanding of different
kinds of information found in programs [10]. Other studies
[11] have conducted research into the types of mental models
formed by both novice and expert programmers and how
such models affect their understanding of the problem and its
solution. This paper investigates an influence of programming
concepts on programming skills and their correlations using
Scilab [12], Python [13] and PHP [14] as programming
subjects of analysis. Cognitive and social cognitive theory[15]
proposes mental models and self-efficacy as two important
constructs to teach programming. This study also attempts to
address the influence of self-efficacy and mental models on
novice programmers, explore the relationship between these
concepts, and investigate the effect on course performance.

Spoken Tutorials

A spoken tutorial [16] is a screencast that captures an expert
demonstrating an activity along with narration. A ten minute
spoken tutorial can have more than about one hundred screen
transitions. As a result, the screencast is the most effective
way to create such an instructional material, compared to all
other methods, for example, demonstrating how to write a
program in Scilab to generate a matrix or a graph. Besides,
these tutorials can also be localized to reach large masses with
a very small effort, if the original is properly created [7]. This
makes spoken tutorials accessible even to people who are weak
in English. The use of English screen shots ensures that these
learners do not lose the employability. The recently launched
national mission on education through ICT [17] promotes such

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250466

initiatives.We try to analyze the efficacy of spoken tutorials to
teach programing courses

II. RESEARCH METHODOLOGY

Research Questions: Spoken tutorials have been chosen as
the candidate to understand the programming efficacy of the
learner. The research questions examined in this study are:

• Does programming by example or demonstration con-
tribute to programming efficacy and high order thinking
skills of students?

• Does programming self-efficacy contribute to program-
ming competency?

Sample: The sample for the study comprised 300 non-
computer science students from three different engineering
colleges belonging to three different universities with dif-
ferent non-computer-science disciplines. All of them had a
basic knowledge of computing and Internet skills. Sample
comprised of 252 male and 48 female participants.These
students underwent workshops to learn Scilab, PHP/MySQL
and Python. Each workshop comprised a two hour session with
pre and post workshop assessments and individual assignments
for each tutorial.The tutorials covered basic programming
concepts such as variable assignments, functions, constructs
(looping and non-looping), syntax and semantics of the lan-
guages.

Self Efficacy Questionnaire: The participants of the work-
shops answered a computer programming self-efficacy ques-
tionnaire [18]. To judge their abilities on programming skills
and the mental makeup to accomplish them, they were asked
32 questions on the following four topics: simple programming
abilities, complex programming abilities, perseverance and
self-regulation. The responses were recorded on a seven point
likert scale ranging from 1=not confident at all to 7=absolutely
confident. The same questionnaire was administered before the
workshop and after the workshop. Through this mechanism, it
is possible to assess the efficacy of the workshops, as perceived
by the students. Only after completing the questionnaire, could
the students participate in pre and post workshop assessment
tests. Only the students who did well in the post workshop
tests were eligible to receive a certificate.

Assessment Tests: All participants were evaluated through
pre and post workshop assessment tests. The post workshop
test comprised 30 questions, while the pre-workshop test
consisted of ten questions. All were randomly selected from
the same data bank of questions. The performance in the post
workshop tests gives rise to most of the data presented in
this article.Randomly selected questions were presented to five
experts for their feedback on the reliability of the tests. The
feedback suggests that the questions have a high inter-rater re-
liability(Cronbach α = 0.98). Basic programming, Sequence,
Prediction1, Prediction2, Explain, Generate1 and Generate2
were the question types used in the analysis. Multiple choice
type questions were posted in the assessment tests. We will
now present a few samples of these questions.

a) Predict1: The participants were asked to predict the
output of the given code to test their grasp of looping con-
structs:

Predict the output:
s=5;
while s>3
disp(sˆ3);
s=s-3;
end

Answer:s=125

As the answer is a number that the students have to arrive
at, random guessing is completely eliminated in this type of
questions.

b) PR2.Sequence: The participants were asked to iden-
tify the missing code by replacing A and B, with correct code
options to count the number of words in a string.

<?php
$string = ereg_replace(" +"," ",$string);
A
$numwords = explode(" ", $string);
B
?>
Options for [X]:
1. $string = strip($string);

$numwords = lower($numwords);
2. $string = round($string);

$numwords = upper($numwords);
3. $string = trim($string);

$numwords = count($numwords);
4. None of them;

Correct option: 3

c) PR4.Modification1: Spoken tutorials teach program-
ming through examples or demonstration. In addition, as a
part of the assignment, the students are provided a sample
code to effect suitable modifications. Both of these can be
assumed to be effective if the leaner does well in assessment
tests that check the programming capability. One way to check
the programming capability is to evaluate whether the students
can identify the correct program code from given codes.
The difference between Modification1 and Modification2 is
that Modification1 [MWL] is loop-free while Modification2
[ML] involves loops. A sample question on Modification1 is
shown below, where students were asked to identify the correct
program code:

Karan want to transfer value from i to j
without using a third variable.Select the
correct code option.

<?php
var $i, $j;$i=10; echo "The value of i: $i";
echo "Value of i, j is:", $i," ",$j;
?>

A.$i+=$j; $j=$i-$j; $j*=$j;
B.$i+=$j; $j=$i-$j; $i--;
C.$j=$i-$j; $i++;
D.$i+=$j; $j=$i-$j; $i+=$j;

Correct Answer: D

Unless the students selects the correct program code, their
answer is marked wrong.

d) PR6. Generat1: Generate1 [GWL] and Generate2
[GL] evaluate the capability of the students in writing correct
programs, with and without loops, respectively. A sample
generate1 is given below:

Write a program to sum the digits
of a five digit number.
(Hint: Use the modulus operator %).

This is a multiple choice question with each choice contain-
ing a different code. The students have to select the correct
option. We are working on improving the types of questions
so as to reduce the dependence on random marking.

Self-efficacy Analysis: The score obtained in the ques-
tionnaire is considered to be the self efficacy score (SES)
of a participant of this study. The 600 SES scores of the
300 participants in both pre and post questionnaire were
analyzed. The results of analysis of varience (ANOVA) was
significant, F(3,296) = 14.96, p<.0001. This may be because
of the following two possibilities: (1) the participants are
heterogeneous (2) there is a significant difference in the pre
and post SES scores.The 300 students who participated in this
study were randomly put into four different groups, called, A,
B, C and D. We have found that there is a significant difference
between group B and the other groups. Tukey range test
confirmed this observation.The results indicate that the group
with the highest PreSE (B, group mean = 141.35) experienced
the least increase in PostSE. This group differed significantly
(p<.05) from groups A, C and D, which experienced much
larger increases in efficacy. Groups A, C and D did not differ
significantly from one another. The members of group B,
with the highest PreSE, claimed that they had exposure to
some other programming languages previously, for example,
through their schools or through some workshops. The other
groups showed larger improvements in SES, with the values
for the groups A and D being much larger. This shows
that the novice learners improved much more significantly,
compared to experienced learners. The improvements are in
perception, comfort to handle programming situations such as
writing, modification and sequencing.As the SES improved for
everyone and for about half the population significantly, we
believe that the spoken tutorial based learning of programming
is effective.

Collaborative approach to scaffolding: Evaluation of stu-
dent programming skills requires a lot of questions to assess
their competency. Covering all FOSS systems and also the
various programming topics is a Herculean task. The only

way to achieve any meaningful progress in this effort is to
resort to collaborative question bank generation and review.
Where students can contribute as well as review the questions
and this approach also scaffolds the programming skill of the
learner by engaging them in continous learning process. This
also helps to support peer-reviews and collaborative learning.
Though we had 85% and above performance in post-tests as
against the 46% performance in pre-tests. We have found that
students who scored above 80% in post-tests contributed more
number of questions and showed interest in review and rating
of the questions with reasons to support their rating.

III. INFLUENCE OF PROGRAMMING CONCEPTS ON SKILL
ACQUISITION

We further discuss the influence of programming concepts
on skill acquisition of an individual by performaing a compar-
ative correlation study of each and every concept selected for
the study and its impact on the corresponding programming
skill.

Skill Analysis

We observe that skill related to writing functions [WF]
is correlated with Generate1 (0.42) skills. Writing is simple
and has some similarity with Generate1. Modification1 is
correlated with Generate1 (0.41) and Identify (0.58) skills.
Modification2 is correlated with Generate2 (0.55) and Explain
(0.51) skills. Generate1 is correlated with Modification2 (0.72)
and Explain (0.62), Modification2 is correlated to Explain
(0.57), and Generate1 (0.33). Recall that in the Modification
questions, the student has to interpret the logical flow of the
code to predict the output. As it is correlated to the code
writing (Generate), the student has to visualize the code to the
answer these questions. On the other hand, these four skills
are only weakly correlated with Predict1 (0.06 to 0.16) and
Predict2 (0.07 to 0.39). Possible interpretation of this is that
for solving Modification and Generate, students need some
construction ability and Predict is less useful for it.In the
pre-test, the correlations are as follows. Writing is correlated
with Generate1 (0.26), Programming2 (0.36). Modification1
is correlated with Generate1 (0.46), Modification2 (0.36),
and Generate2 (0.33). Modification2 is correlated with Mod-
ification1 (0.36), Generate1 (0.46). Generate1 is correlated
with Modification1 (0.46), Modification2 (0.33). Generate2 is
correlated with Identify[IDE] (0.36). These four skills are less
correlated with Predict1 (0.07 to 0.33). Correlation patterns in
the pre-test are less visible than those in the post-test. Possible
interpretation of this is that in the pre-test students were not
familiar with the question types and skills were not adequately
developed. So the students solved the questions from mainly
clues. In the post-test the skills of the students were developed
and the proper skills were used to solve the questions.

Comparative Study of Concepts

Descriptive statistics using correlations above 0.7 (p=0.05)
among the concepts and concepts to skills, one can make

the following predictions: Constructs(Looping)(C7) has a sig-
nificant correlation effect on the Assignment(C5),and Func-
tions(C8). The understanding of the nested loop can enhance
the understanding of C8 and C5. Similarly, Logical Flow(C4)
has a significant correlation with Functions(C8), Call by
value/reference(C1). because understanding the logical flow
of data also helps in writing better functions and use of
call by value/references(C1). Significant correlation effect is
also shown in between Data type validation(C3) concept and
Syntax and Semantics(C10). because the data type of the
variables defined while writing a program also vary according
to the syntax and semantics of a language. So a better under-
standing of C10 helps in implementing the correct C3 concept.
Similarly,understanding of the logical expression (&, ||, and
!) may be considered supplemental, but the understanding is
important for understanding C10 and C3, C8, C7 (maybe,
conditional part of it) concepts.Students taught with PHP
concepts on functions, constructs (Loop/Non-Loop) would
actually contribute to better understanding of similiar concepts
in Scilab and Python. The converse, however, is not necessarily
true, as Scilab is not really a programming language. More-
over, Scilab closely resembles the popular Matlab.Students
who have gained proficiency in basic programming skills such
as assignments, constructs, functions, sytax and semantics of
any one of these languages would actually be performing well
in any of the other languages, because the conceptual idea of
implementation is the same though it varies in the keywords,
syntax and semantics of the languages.

IV. CONCLUSIONS

Using the data collected from students who underwent spo-
ken tutorial based workshops on Scilab, PHP and Python, we
studied self efficacy, and skill and concept analysis.Students
who have prior experience in programming seem to show high
self efficacy. Novices have found the spoken tutorials to be
more useful than those who had prior experience. Pedagogical
aspects of self efficacy have also been studied.A statistical
approach has been used to discover relationships between
programming skills and programming concepts taught to stu-
dents using spoken tutorials. Results of the descriptive analysis
shows that programming skills such as Modify1, Modify2,
Programming1, and Programming2 are very different kind of
skills from sequencing. Some of these observations are in
line with the earlier findings [2]. The skills also get matured
with the development of abilities of students.Spoken tutorial
based approach of programming by examples or demonstration
helps students practise several times till they get a mastery
of the underlying concepts. For a novice, programming by
demonstration provides a constructivist approach to understand

concepts and to encourage self-learning. This is because the
spoken tutorials do not restrict the learners by time, location
and resources. More work is required to form concrete conclu-
sions relating to programing skills and concepts and interplay
between different programming languages.
Acknowledgments

This work was partly funded by the National Mission on
Education through ICT, MHRD, Government of India, through
the Talk to a Teacher project. We thank the project staff
members of spoken tutorial project and the participants of the
study for their time and efforts.

REFERENCES

[1] R. McCartney. A multi-national study of reading and tracing skills
in novice programmers. In Working group reports from ITiCSE on
Innovation and technology in computer science education, ser., pages
119–150. ITiCSE -WGR’04, ACM, March 2004.

[2] P. Robbins J. Whalley. Relationships between reading, tracing and
writing skills in introductory programming. In Proceedings of the Fourth
international Workshop on Computing Education Research, ser, pages
101–112. ICER’08, ACM, March 2008.

[3] E. Thompson and R. Lister. Code classification as a learning and
assessment exercise for novice programmers. In Proceedings of the 19th
Annual Conference of the National Advisory Committee on Computing
Qualifications, pages 291–298. NACCQ’06, ACM, July 7-10 2006.

[4] A. Bandura. Social Foundations of Thought and Action. Prentice Hall,
Englewood Cliffs, NJ, 1986.

[5] A. Bandura. Self-efficacy: Toward a unifying theory of behavioral
change. Psychological Review, 84(2):191–215, April 1977.

[6] Robert Allen and David Garlan. A formal basis for architectural
connection. ACM Trans. Softw. Eng. Methodol., 6(3):213–249, July
1997.

[7] K. M. Moudgalya. Spoken Tutorial: A Collaborative and Scalable
Education Technology. CSI Communications, 35(6):10–12, September
2011. Available at http: //spoken-tutorial.org/CSI.pdf.

[8] K. L. N. Eranki and K. M. Moudgalya. Evaluation of student perceptions
and interests using spoken tutorials in online courses. In International
Conference on Advanced Learning Technologies, ICALT 2012, Rome,
Italy, 4-6 July, 2012. IEEE.

[9] K. L. N. Eranki and K. M. Moudgalya. Evaluation of web based
behavioral interventions using spoken tutorials. In Technology for
Education, T4E 2012, Hyderabad, India, 18-20 July, 2012. IEEE.

[10] S. Wiedenbeck. Novice comprehension of small programs written in
the procedural style. International Journal Human-Computer Studies,
51(1):71–87, June 1999.

[11] J.M. Burkhardt. Mental representations constructed by experts and
novices in object-oriented program comprehension. In Human Computer
Interaction, pages 339–346. INTERACT’97, July 1997.

[12] SCILAB. www.scilab.org. seen on 20 Sept 2012.
[13] Python. www.python.org. seen on 20 Sept 2012.
[14] PHP. www.php.net. seen on 20 Sept 2012.
[15] J.J. Canas and P Gonzalvo. Mental models and computer programming.

International Journal of Human-Computer Studies, 40(5):795–811, June
1994.

[16] Spoken Tutorials. www.spoken-tutorial.org/new. seen on 21 May 2012.
[17] NMEICT. http://www.sakshat.ac.in/. seen on 20 Sept 2012.
[18] Wiedenbeck S. Ramalingam V. Development and validation of scores

on a computer programming self-efficacy scale and group analyses of
novice programmer self-efficacy. Journal of Educational Computing
Research, 19(4):365–379, June 1998.

