
Chatty Things - Making the Internet of Things
Readily Usable for the Masses with XMPP

Ronny Klauck
IHP

Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
eMail: klauck@ihp-microelectronics.com

Michael Kirsche
Computer Networks and Communication Systems Group
Brandenburg University of Technology Cottbus, Germany

eMail: michael.kirsche@tu-cottbus.de

Abstract—An important challenge for the Internet of Things is
the gap between scientific environments and real life deployments.
Smart objects need to be accessible and usable by ordinary users
through familiar software and access technologies to facilitate any
interaction and to increase their acceptance rate. This work deals
with a seamless integration, discovery, and employment of smart
objects into the Internet infrastructure under Human-to-Machine
(H2M) communication aspects. We introduce an XMPP-based
service provisioning sublayer for the IoT to integrate resource
constrained devices seamlessly into the Internet by showing how
XMPP can empower the collaboration between humans and
smart objects. To meet the requirements of constrained devices,
we propose to extend XMPP’s publish-subscribe capabilities with
a topic-based filter mechanism to effectively reduce the number
of exchanged XMPP messages. We further present standardized
bootstrapping and handling processes for smart objects that
adapt automatically to infrastructure and ad hoc network en-
vironments and do not require predefined parameters or user
interaction. The applicability of XMPP for constrained devices
is further demonstrated with an XMPP client and mDNS/DNS-
SD service for the Contiki operating system.

Index Terms—Internet of Things, XMPP, H2M, Contiki

I. INTRODUCTION

The use of wireless-enabled mobile devices has grown
exponentially during the last couple of years and created
scenarios in which access to manifold services from ubiquitous
resources is desired without requiring specific knowledge [1].
Smartphones represent a programmable and flexible platform
with support for a wide range of applications while at the same
time leveraging from the human element when carried as ubiq-
uitous and pervasive commodity hardware [2]. Smart objects,
in contrast, are deeply embedded in the physical world and
therefore not always perceivable by users [3]. The integration
of smart objects into the Internet enables an interaction with
the physical world for humans through computer-based and
mobile devices [4], facilitating the Internet of Things (IoT)
vision [5]. This paradigm of interconnected (via ad hoc) as
well as Internet-connected (via infrastructure) objects and de-
vices (things) is fundamental for any pervasive and ubiquitous
networking and computing vision. A seamless integration of
smart objects into the current Internet infrastructure requires
at least two integral parts: in-network localization (discovery,
interoperability, addressability) through a standardized scheme
that complies with the Internet’s IP standard as well as self-
configuration (“arrive and operate”, scalability) to handle large

quantities of devices according to the IoT vision [6]. As
IP is no longer restricted to ordinary computers due to the
development of small IP stacks [7], embedded and resource
constrained devices can nowadays be directly connected to
IP-based networks for various application scenarios.

Integration should always focus on the user: instead of
requiring users to learn new interaction schemes to access data
from their environment, smart objects should be integrated
seamlessly into the Internet infrastructure with known and
standardized approaches. As users already use their smart-
phones for communication (e.g., messaging and chat) and
staying in touch with their (human) environment, we prefer
approaches that support the Internet’s end-to-end principle
and solutions that integrate into the software that a user is
familiar with. We therefore chose the Extensible Messaging
and Presence Protocol (XMPP) [8], which is standardized by
the IETF and widely deployed for real-time data stream and
Instant Messaging (IM) applications. XMPP itself is a set of
flexible and open XML technologies that are expandable by
protocol extensions (XEPs) to adopt to various environments
and scenarios. From the network point of view, using XMPP
as the default communication protocol allows us to realize
pervasive networking without the need for a protocol gateway
or a middleware. XMPP simplifies the interconnection of de-
vices [6] and it is the basis for our Human-to-Machine (H2M)
communication between various device classes. An important
aspect for pervasive networking is that XMPP provides ad hoc
(P2P) communication with XEP-0174 Serverless Messaging
[9] via Multicast DNS (mDNS) [10] and DNS Service Discov-
ery (DNS-SD) [11]. These technologies are based the IETFs
Zeroconf working group work that facilitates standards in the
field of service-oriented networking, also known as Bonjour.
Both, XMPP and Bonjour, offer a rich variety of open source
software for servers, clients and libraries, supporting several
mobile and desktop operating systems.

The rest of this work is structured as follows. Section II
discusses related work. Section III introduces Chatty Things
while Sections IV, V, and VI present technical requirements
and architectural solutions for H2M to discover and collaborate
with smart objects in IP-based networks through XMPP. Initial
performance evaluations are presented in Section VII while
concluding remarks in Section VIII complete this work.

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250464

II. RELATED WORK

Current application layer protocol solutions for resource
constrained devices (e.g., the Constrained Application Protocol
(CoAP) [12] or the Message Queuing Telemetry Transport
(MQTT) protocol [13]) focus on Machine-to-Machine (M2M)
communication to address and manage smart objects. Both
example protocols require application protocol gateways to
connect devices to the Internet since the protocols are not
compatible with the currently established infrastructure. Ap-
plication protocol gateways introduce additional complexity in
terms of message translation and protocol version support [14].
Message translation is typically time-consuming and failure-
prone [15] and involves a loss of flexibility and end-to-end
functionality from a protocol [6] and security [16] point of
view. Protocol gateways are a limiting factor we want to
omit when integrating smart objects in IP-based infrastructures
while providing “simple, yet powerful and generally usable
abstractions” for the development of IoT applications [17].

Approaches to overcome this issue are diverse, web services
and middlewares being two of them. The Devices Profile for
Web Services (DPWS) for embedded devices (uDPWS) [18]
resorts to standardized protocols like IP, UDP/TCP, and SOAP
to realize web services for embedded microcontrollers to
integrate them in existing infrastructure. Services like dynamic
discovery, subscribing to services, and receiving events from
web services are enabled with uDPWS. The main drawback at
the moment is that DPWS is only available for systems run-
ning Microsoft’s Windows operating system and Microsoft’s
Universal Plug’n’Play stack. An application- and network-
independent announcement of services to couple different
device types should be favored instead.

Sensor Web Enablement [19] is a standard developed by the
Open Geospatial Consortium. It represents a generic frame-
work for a platform- and protocol-independent interaction
between sensors to realize complex scenarios while at the same
time requiring large infrastructure support [19, Sec. 4.1.]. Its
appliances depend on a complex middleware for the sensor
network management, whereas different middleware versions
can disturb the cooperation if needed updates fail.

Our focus lies on the use and adaptation of established
protocols instead of introducing new protocols or complex
software architectures. We adapt the established XMPP and
mDNS / DNS-SD protocols to integrate smart objects seam-
lessly into the current infrastructure, to discover and locate
their offered applications and services, and to ease their
handling and employment by the user as well as to boost the
development of collaborative IoT applications at higher layers.
XMPP [8] is a widely deployed and standardized communi-
cation protocol that facilitates the publish-subscribe paradigm,
which enables entities to interact efficiently with each other
based on their own context. mDNS [10] and DNS-SD [11] are
parts of the Zeroconf initiative to standardize network discov-
ery mechanisms for devices ranging from desktop computers
to smartphones. Both protocols together enable an application-
and network-independent announcement of services and both

are nowadays supported on nearly every operating system.
Initial steps for running XMPP on resource constrained devices
were uXMPP [20] and the XMPPClient for mbed1, which
provided rudimentary and lightweight implementations but no
conclusive scientific results for the use of XMPP in the context
of the Internet of Things.

III. INTRODUCING CHATTY THINGS

An advantage of XMPP is that it will significantly improve
H2M communication, because users will be able to interact
directly with their environment through standard chat clients,
a software all users are familiar with today, in a way they
already know from interacting with friends in social networks
or chat rooms. Users can communicate with and gain access
to information from smart objects using standard technologies,
which are already available for every operating system nowa-
days. Example tasks are: organizing things in a contact list
(XMPP roster), subscribing to thing provided topics that users
are interested in (what happens in the user’s neighborhood)
or automatic interconnecting of things to control a monitored
environment (M2M). This introduced style of communication
via chat clients extends plain smart objects in the Internet
of Things to Chatty Things at the application layer. Chatty
Things use XMPP as the underlying communication protocol
to interact seamlessly with different device classes from the
established Internet. XMPP provides an intuitive information
handling and a central notification service for users on their
mobile devices and computers. As mobility becomes the most
important criteria in our daily lives, people are interested in
gaining information on their environment, which could affect
them at the moment (e.g., traffic jam, weather) or in the near
future (e.g., forecasts, earthquakes), as well as gaining control
over environmental conditions (e.g., room temperature, light).
The publish-subscribe paradigm of XMPP will help users to
filter information according to their specific interests or to
important events they have subscribed to, because there will be
a huge set of data which can be collected from environment-
embedded devices. For that reason, important data changes
can be announced with XMPP as presence updates in real-
time (e.g., a dedicated threshold is reached, a critical amount
of water is detected in the basement) to realize a target-
oriented communication between humans and their IoT-driven
environment. Nearby XMPP resources can appear dynamically
in a user’s roster and will advertise information that is of
interest for the user. Bookmarking Chatty Things in the XMPP
roster will allow users to permanently receive relevant updates
of things similar to presence updates of their friends, instead
of requesting links (polling) to get updates. This is a huge
benefit in contrast to the Web-of-Things approach, which only
presents information on a website and ensures the browse-
ability of resources “by clicking on links” [21, Sec. V.A].
Identifying required resources via links is inefficient because a
link is defined by a long string of characters, which is hard to
remember when accessing smart objects spontaneously [22].

1mbed XMPPClient [Online] http://mbed.org/cookbook/XMPPClient

A (not ideal) solution for this are short links [23], but they
require an additional shortening service, acting as a translator
from long to short links and vice versa, causing performance
and security issues (e.g., phishing [24], spam [25]).

A. H2M Collaboration Challenges

Based on our vision of Chatty Things, various challenges
for the H2M collaboration between humans (using ordinary
computational devices) and smart objects are exposed [6, IV]:

• Interoperability and Discovery: since the tasks of smart
objects in the IoT vision can be manifold, these devices
need a standardized communication schema to announce
their availability and their advertised services for being
identified automatically or found by nearby users via
discovery, look up or name services.

• Self-Configuration: users do not want to struggle with
a complicated setup or manual programming for large
numbers of devices. This requires support for the diversity
of smart object technologies as well as the integration
of a flexible bootstrapping process for any subsequent
interaction between devices in hybrid networks [4].

• Information Filtering: monitoring of real-world scenar-
ios produces huge data amounts. Users need a mechanism
to address information or events target-oriented, which
supports a low message overhead and a low data-rate.

B. Our XMPP-based Solution Approaches

As the integration of smart objects does not stop at the
network layer [17], we aim to provide a XMPP-based integra-
tion at the application layer to advertise advanced services to
enable consumer-friendly IoT applications with:

• Service Provisioning Sublayer (Section IV),
• Parameter-less Bootstrapping (Section V),
• Temporary Subscription for Presence (Section VI).

By using XMPP as the underlying communication protocol,
resource constrained devices can offer environmental informa-
tion for humans through standard chat clients and thus boost
the easy collaboration with smart objects in our daily lives.

IV. SERVICE PROVISIONING SUBLAYER FOR IOT

The main focus of our service provisioning sublayer (refer
to Fig. 1) is the ubiquitous collaboration of Chatty Things with
devices and standard applications to seamlessly integrate smart
objects in IP-based networks. Usability and user autonomy
shall be increased by abstracting specific devices as services
according to the concept of Service-oriented Architectures
(SOA) [26]. Such an abstraction of functionality into services
provided through a network is what non-technical users need
to get in touch with smart objects. The users’ interaction
with their environment will hence be simplified by browsing
through the network for published services and subscribing
to them for new information. Service provisioning here means
providing common services (discovery, authentication, identity
management, security), a bandwidth-efficient communication
(via publish-subscribe) and a high flexibility (i.e. expansion

Application Layer

Transport Layer

Internet Layer

Link Layer

Application 1 Application 2 XEP-based Application

TCP UDP

Ethernet 802.11 802.15.4

XMPP Core + XEP-0174 (as common service provisioning sublayer)

 uIPv6 & 6LoWPANIPv6

Fig. 1. XMPP-based Service Provisioning Sublayer for the IoT

with new protocol features) while omitting intermediate sys-
tems (gateway, proxy). Without a standardized application
protocol, each vendor would develop its own solution lead-
ing to fragmentation and non-interoperability, hindering and
lowering the acceptance rate of the IoT [27]. XMPP and
mDNS / DNS-SD ensure a network- and device-independent
interaction via unique Jabber IDs (JIDs) and automatic entity
detection. Protocol gateways are hence not necessary to offer a
transparent access. Moreover, the publish-subscribe paradigm
of XMPP, a highly scalable, bandwidth and energy efficient
event distribution system [28], announces only changes in
sensed data to interested entities. XMPP, as a standardized pro-
tocol, will increase the acceptance rate of smart objects for IoT
vendors, network administrators and application programmers,
because XMPP-empowered Chatty Things can be seamlessly
integrated at the application layer allowing programmers and
administrators to use existing tools and handling expertise
while reducing integration costs and compatibility tests with
currently used software. This boosts the development of a
consumer-friendly interaction via a standardized communica-
tion scheme with the Internet of Things.

A. Technical Requirements and Architectural Solutions

Embedded microcontrollers have limited memory and com-
puting resources as well as low bandwidth (e.g., 127 Bytes
max. packet size for IEEE 802.15.4). The XMPP-based service
provisioning sublayer for resource constrained devices must be
memory-efficient and extremely lightweight while including
the most essential functions (using existing or possibly new
XEPs) for typical IoT appliances and H2M / M2M commu-
nication, such as presence and message exchange, group-
ing of devices, information filtering, and support for hybrid
smart object networks. For this reason we chose a building
blocks concept for replaceable XMPP features to ensure a
predictable memory consumption and to support different use
cases: the service provisioning sublayer consist of a modular
XMPP stack that implements XMPP Core / IM and XEP-0174
Serverless Messaging as common services for smart objects.
Additionally required XEPs can be implemented on-top on
demand (refer to Section IV-C). The XMPP software stack
consists of different components and modules that can be
activated during compile time. Figure 2 depicts the appropriate
software stack. The displayed components (e.g., XMPP client,
XEP-0174 client) can either be combined or used separately
as stand-alone modules. Both clients implement the API of
the available XMPP function set.

mDNS / DNS-SD

TCP UDP

IEEE 802.15.4

 uIPv6 & 6LoWPAN

Sensor Application

 uIPv4 & RIME

XEP-0174 Client

XEP-0174XEP-0045Core / IM

XMPP Client

Fig. 2. Sensor Application with XMPP Software Stack

We use the uXMPP project [20] as a starting point for
the development of our modular XMPP software stack. The
initial version of uXMPP (v0.1) was released in 2009 for
the Contiki operating system as an early proof-of-concept,
implementing only certain XMPP Core functions. XMPP Core
[8] specifies the use of TCP connections for the exchange of
XML elements between XMPP entities over XML streams. As
long as the XML stream is established, any number of XML
elements (e.g., XMPP message, presence) can be transmitted
in an efficient manner and in near-real-time. As the original
code of uXMPP v0.1 is in an early developing state, no
further controlling options, memory optimizations or low data-
rate enhancements for smart objects are implemented while
all implemented XMPP Core functions are fixed and hard-
coded. To fulfill our goal of a highly memory-efficient and
flexible service provisioning sublayer for the IoT we optimized
the uXMPP prototype in several ways to realize a modular
and lightweight XMPP software stack enriched with a useful
feature set as the basis for the development of Chatty Things:

• Message Flow Optimization: Version 0.1 of uXMPP
sends each XML element of a specified XMPP message
in a separate and independent TCP packet. This leads to a
strong increase of sent packets which we avoid by using
the full available TCP payload length (refer to Table I);

• Reduced Definition of Functions: As the code footprint
of an image increases with additional function definitions
and external calls [29], we restructured the original code
by using only one single file to avoid external calls and
minimize function definitions as much as possible;

• External API Calls: Connecting both clients in the
sensor application can be done through activating the
external API calls which will consume more memory
than the standalone versions of each client. But this offers
a dynamic interface of selectable XMPP features which
is accessible from outside of the modules and highly
extensible (new XEPs can be easily integrated);

• Compiler Flags: We use several compiler flags2 to
reduce the firmware size of our improved uXMPP.

With these code optimizations, the improved uXMPP stack
works very memory-efficient (using only a third of its original

2Reducing Contiki OS’ Firmware Size [Online] http://www.sics.se/contiki/
wiki/index.php/Reducing Contiki OS’ Firmware Size

memory size) and leaves memory for additional XEPs and
intuitive sensor applications on resource constrained devices
while offering a dynamic API for IoT application developers.

B. New Features of our Modular XMPP Software Stack

Our improved uXMPP stack follows the building blocks
concept that enables an appliance and sensor-specific protocol
support. The XMPP client component uses the Core / IM
module, which is an integral part of the client, as a basis.
The publish-subscribe paradigm is used here and a simple
XMPP (chat) client on notebooks or smartphones can be used
to directly interact with smart objects. The XEP-0045 (used
for device grouping) and XEP-0174 modules (includes the
mDNS / DNS-SD module) are optional and can be selected on
demand. Each feature is therefore realized as an independent
module and can simply be enabled or disabled during compile
time, depending on the actual duties and scenarios:

• IPv6 Support: Offers the possibility to manage and
connect up to billions of devices via uIP over XMPP;

• XEP-0045 Multi-User Chat (MUC): Implements enter-
ing and leaving of chat rooms as well as sending of group
chat messages;

• ANONYMOUS3 JID Cutting for MUC: Uses only a
specified length of a JID as an alias for a chat room.
This shortens the displayed name in a MUC of a smart
object and reduces the size of a group message;

• XEP-0174 Serverless Messaging: Enables endpoint dis-
covery via zero-configuration networking and implements
the negotiation of a serverless communication via XML
streams for the XMPP message exchange. This specific
component is introduced in Section IV-C;

• Temporary Subscription for Presence (TSP): Enables
a topic-based publish-subscribe mechanism for smart
objects in a XMPP network to reduce network traffic and
to offer more filter options for the user. This component
is explained in detail in Section VI.

Our improved uXMPP implementation can easily be extended
with additional features and XEPs, one of the main advantages
of XMPP. Normal XMPP connections are covered by today’s
security standards (TLS/SSL) to provide an adequate solution
for end-to-end security. At the moment, secure connections via
SSL/TLS are not implemented in uXMPP. In future work, we
want to integrate embedded SSL and TLS implementations to
provide end-to-end security for IoT scenarios by using solu-
tions like MatrixSSL4, which is designed for small footprint
applications and devices. No secure login is hence available
for uXMPP yet, we instead prefer ANONYMOUS as the login
method for our uXMPP implementation because connecting
nodes get a randomized and unique JIDs from the server. This
ensures that no hard-coded or double-assigned JIDs for smart
objects have to be programmed and that JIDs do not need to
be pre-configured on a XMPP server.

3XEP-0175: Best Practices for Use of SASL ANONYMOUS [Online]
http://xmpp.org/extensions/xep-0175.html

4MatrixSSL OpenSource Embedded SSL [Online] http://www.matrixssl.org

C. Sensor Application and Feasible XEPs

The sensor application addresses the built-in sensors of
smart objects and uses the XMPP stack to send presence data
to the network if a threshold value of a sensor is exceeded.
A status icon in the XMPP roster is used to represent the
condition of a sensor’s measured value to the user. Thus, the
status icons can be depicted (exemplary) like traffic lights and
indicate changes of a monitored environment:

• Green: The measured sensor data is below the threshold
value, no presence notification is necessary.

• Yellow: The sensor data exceeds the threshold value, a
presence message will inform all registered users.

• Red: The sensor data overloads the threshold value, a
presence or a chat message with the actual sensor value(s)
is announced to all interested users.

Interacting with smart objects is realized with XMPP messages
from an ordinary XMPP client: threshold values for the sensors
can be adjusted, current values of each available sensor can be
received, and the battery state can be monitored. The sensor
application announces a command list when an XML stream
is opened (XEP-0174 Serverless Messaging) or when a XMPP
chat message arrives (XMPP IM). The concept is inspired by
XEP-0050 Ad-Hoc Commands, which allows users to initiate
a command session and to interact with an automated process
through the XMPP client. A control and access mechanism
could be provided with user interaction via remote com-
mands while advertising and executing application-specific
commands as defined in XEP-0050 to realize a simple way to
adjust thresholds (e.g., for alarming), to view historical mea-
sured data (e.g., exceeded thresholds, max. reached values),
and to access the currently measured sensor data. Interacting
with a set of smart objects can be realized with XEP-0045
Multi-User Chat through an automatic grouping of devices in
a chat room during bootstrapping according to their integrated
sensors. Sending a command message to a sensor-specific chat
room will execute the command on all related devices. This
eases the management of a set of smart objects by relying on
a simple XMPP chat client.

XEP-0174 allows two entities to establish an XML stream
without the need of a XMPP server while using mDNS [10]
and DNS-SD [11] to discover entities that support XMPP
and to identify their IP addresses and preferred ports, using
the _presence._tcp DNS SRV service type. We devel-
oped our own tiny XEP-0174-based communication stack
working with Contiki’s integrated IP stack and consisting of
a mDNS / DNS-SD service, called uBonjour, and a XEP-
0174 client for Contiki. uBonjour supports the resolving of
hostnames and services as well as the registering, removing,
and updating of services. It consumes (with optimizations
enabled - OWT) 3.89 kBytes of ROM / 0.3 kBytes of RAM
while the XEP-0174 client handles incoming session requests
and XMPP messages. Refer to [30] for a detailed introduction
of uBonjour and its mode of operation.

Our implementation of the XEP-0174 client for Contiki is
also based on uXMPP with an added TCP listener process,

because users should be able to initiate a chat session. The
TCP handler will manage incoming TCP connection requests
via a connection state and will accept opening XML streams
from other entities in the network. The implementation of our
XEP-0174 client can be used in combination with uBonjour
to easily establish XEP-0174 Serverless Messaging between
smart objects and ordinary computers without the need for
application protocol gateways. This gives users the possibility
to interact spontaneously with nearby smart objects (e.g., if
they are entering a room) by initiating an ad hoc chat session
with a simple XMPP chat client to one of these devices. XEP-
0174 is mainly used in situations where no XMPP server exist
(ad hoc network) or the connection to the XMPP server fails
(i.e. a fall-back mechanism for XMPP Core/IM).

V. PARAMETER-LESS BOOTSTRAPPING

Self-configuration is essential for Chatty Things to realize
a network-independent localization of smart objects and to
integrate them seamlessly as described in Section III-A. This
allows users to place Chatty Things everywhere – if no infras-
tructure network (e.g., no fixed access point) is available or
devices are mobile, smart objects should automatically adapt
to their environment by forming ad hoc networks and route
information towards the infrastructure or to a dedicated smart
object that is accessible by users [27]. Automated bootstrap-
ping of Chatty Things is hence mandatory, independent from:
user interaction, the used network environment (infrastructure
or ad hoc), hard-coded start-up addresses (e.g., IP address of
a XMPP server), and other pre-configurations (e.g., JIDs to
log in on XMPP servers). If infrastructure services are either
failing (e.g., router crashes, no connection to XMPP server)
or not available during bootstrap (e.g., no XMPP server in the
domain), smart objects should still be accessible for users via
ad hoc communication (XEP-0174).

Failure-resistant network bootstrapping can be enabled by
SOA [31]. SOA provides transparency with service abstraction
for specific device functions as well as seamless interaction
with various device types while devices browse their network
domain for neighbors and newly published services [32]. With
uBonjour (refer to [30]) we have implemented such a powerful
tool as a lightweight service for resource constrained devices
to discover and address devices and their provided services in
different network environments. In combination with our XEP-
0174 client a parameter-less bootstrapping for hybrid networks
can simply be realized for Chatty Things while communication
between smart objects and humans can be established in ad
hoc and infrastructure networks. Connecting a Chatty Thing to
a server requires the IP address and port of the XMPP server.
Since smart objects should be usable in different network
environments and thus adapt themselves automatically, no pre-
configured IP addresses can be used. Adding a new Chatty
Thing to a network is possible by requesting services (e.g.,
XMPP server) or by receiving information from surrounding
devices. A corresponding device responds with its list of
DNS resource records that contains host / domain name(s),
IP address, port, and assigned service(s).

Due to the scarce resources of constrained devices, not all
parts of our XMPP software stack (introduced in Section IV-A)
can be activated at bootstrap and run-time, because the dy-
namic memory use is a limiting factor. An intelligent handler
process for both clients and uBonjour is therefore very im-
portant to combine memory-efficiency with flexibility. We use
multi-level bootstrapping to reduce the memory consumption
of uXMPP by enabling its components stepwise:

I: uBonjour will be activated to discover a XMPP server
in the current network environment. If a XMPP server is
found follow step II, else follow step III;

II: Infrastructure mode: deactivate the uBonjour client and
connect to the XMPP server as ANONYMOUS;

III: Ad hoc mode: activate the XEP-0174 client.
During run-time an automatic switching between infrastructure
and ad hoc mode is triggered depending on incoming mDNS
messages. The switching process follows these rules:
IV: In infrastructure mode: if the connection to the server

gets lost and a predefined number of reconnect attempts
failed then deactivate the XMPP client, follow step I;

V: In ad hoc mode: if a XMPP server joins the network then
deactivate the XEP-0174 client, follow step II.

These states allow us to realize a hybrid environment detection
on resource constrained devices. The incremental activation
of components is a resource-efficient way for the discovery,
the self-configuration, and the seamless integration of Chatty
Things in IP-based networks without the need for any user
interaction or configuration. The devices will automatically
discover their network environment and react autonomously
on topology changes and un/available services. Compared to
CoAP and MQTT, which always rely on a connection to a
gateway (single point of failure), Chatty Things can be placed
everywhere and can collaborate in every situation with users.

VI. TEMPORARY SUBSCRIPTION FOR PRESENCE (TSP)
As the flexibility and the extensibility of XMPP is based

on XML, the heavy use of XML in low data-rate networks
can cause a high network traffic through a large message
overhead. Minimizing the overhead of XML-based messages
can either be realized through XML compression techniques
or through a simple reduction of the number of exchanged
messages. XML compression techniques, expensive in terms
of memory usage and CPU load, are not urgently necessary
for the XMPP interaction of IoT components, because Chatty
Things and users can actively reduce the number of messages
by subscribing only to events and information they are really
interested in (i.e. publish-subscribe [33]). This Temporary
Subscription for Presence (TSP) approach implies a reduction
of message overhead in terms of fewer retransmissions and re-
frains from using fragmentation while being compatible to the
XMPP Core / IM standard. The TSP extension supports a real
topic-based publish-subscribe for XMPP to reduce the network
traffic of constrained Chatty Things by using small presence
messages to signalize status updates (traffic lights). Extended
information can be requested via remote commands. A topic-
based filter to search for specific sensors (e.g., accelerometer,

temperature) and a simple access control are provided on top
of XEP-0045, which ensures the backward-compatibility of
TSP to all existing XMPP chat clients. TSP allows users to
retrieve updates about their local environment (temporarily)
or events of specific sensors they have subscribed to (XMPP
roster) without getting bombarded by information they are not
interested in, while reducing the number of sent messages.

A. Presence Subscription Dilemma

The starting point of our TSP approach is the fact that
presence messages (max. 38 Bytes) fit in a single TCP/IP
packet (max. 48 Bytes – measured for IPv6 packets) within
IEEE 802.15.4 radio frames (max. 127 Bytes). The reason
is that presence information (not to confuse with directed
presence [34, Sec. 4.6] or presence for entering a chat) is
sent from a client without a ’from’ or ’to’ attribute. Table I
shows the sizes of typical XMPP messages (e.g., presence
[34, Sec. 4.4.1], one-to-one chat session [34, Sec. 5.2.1],
presence to join a chat room [35, Example 18], and group
chat message [35, Example 44]) and the number of used IP
packets in Contiki for both uXMPP versions. The dilemma
is that receiving this kind of presence message requires a
manual subscription by the user to each sending entity for
each joined network. As the network can change (e.g., smart
objects leave, join, are dis/enabled) and a user can get in touch
with different network environments (e.g., by just walking by),
the subscriptions to objects are neither fixed nor stable and
the number of publishing objects can increase considerably
(according to the IoT vision). The XMPP roster of the user’s
chat client can thus become outdated very fast. Our solution
to this problem is a dynamic and up-to-date roster that holds
topic-related Chatty Things of the current network (XMPP
domain) only temporarily to display their presence. If the user
leaves the network, the temporary Chatty Things are removed
automatically from its roster to keep it clean and up-to-date.

TABLE I
SIZE OF TYPICAL XMPP MESSAGES AND SENT IP PACKETS

Message Type Size (in Byte) uXMPP v0.1 Improved uXMPP

Presence (max) 38 5 Packets 1 Packet
One-to-one Chat 164 12 Packets 4 Packets
Chat Join 101 - 3 Packets
Group Chat 164 - 4 Packets

B. Topic-based Publish-Subscribe

For the realization of the dynamic XMPP roster (TSP), we
have implemented a topic-based publish-subscribe for XMPP
to achieve a subscription of topic-based interests for users,
because subscriptions of XMPP are bound directly to a node
at the moment (XEP-0060 Publish-Subscribe). Therefore, we
use XEP-0045 as a basis for our access control: users can
search for available chat rooms (the room name represents
the topic of interest) and join them. By entering a chat room
the user actively subscribes to a topic of interest. All Chatty
Things in the topic-related chat room will be automatically

added to the user’s roster, so that the user will only receive
published information and events (sensor values) that he is
currently interested in. This has the advantage that all XEP-
0045-compliant XMPP chat clients can be used without mod-
ifications, because TSP has to be implemented only by the
Chatty Thing and the XMPP server (refer to the following
Subsections). The XMPP chat client Pidgin5 remembers the
last used chat rooms and rejoins them automatically if the user
reconnects to a XMPP domain, so that the user will always
be informed about events of nearby Chatty Things. Pidgin is
available for a wide range of operating systems and can be
used for free when no XMPP chat client is pre-installed.

The behavior of XEP-0060 could cause bottlenecks in the
message flow of a smart object network because such a
network might consist of a large number of devices while
utilizing only a small part of the bandwidth: a node always
takes on the role of a subscriber when publishing data and will
hence get information about every update just like a normal
subscriber, which produces a large number of exchanged
messages. With TSP enabled, Chatty Things can only take
the role of a publisher: uninterested objects do not need to be
informed about value changes of sensors, they just collect data
and provide it to interested objects and users while lowering
the network traffic. Users and Chatty Things (without activated
TSP) can still act as subscribers and publishers, as defined in
XEP-0060, with the enhancement of filtering information by
topics. Our TSP extension enables Chatty Things to act only as
publishers without getting updates from the XMPP network.
Chatty Things with enabled TSP will receive no group chat or
presence messages from the XMPP server.

C. Announcing Enabled TSP

The availability of TSP will be announced from a smart
object by adding the type attribute to a presence message,
which is used to join a chat room. The type attribute is
already defined for this message type [35, Example 23] and
will be recognized but not handled by unmodified XMPP
servers. Adding the type attribute is automatically done by
activating the TSP module in uXMPP. The following listing
depicts an example (according to [35, Example 20]) of a TSP-
enabled presence message:

<presence
from=’hag66@shakespeare.lit/pda’
id=’n13mt3l’
to=’coven@chat.shakespeare.lit/thirdwitch’
type=’tsp’>

<x xmlns=’http://jabber.org/protocol/muc’/>
</presence>

The TSP flag is only a small addition to the original presence
message and extends the message size with just a small amount
of Bytes, as depicted by type=’tsp’ in the listing.

D. XMPP Server Modifications

We implemented a prototypical handling of TSP presence
messages for the XMPP server Prosody (version 0.8.2) with

5Pidgin - Universal Chat Client [Online] http://www.pidgin.im/

modifications of its roster manager and its MUC plug-in.
When a TSP-enabled presence message to enter a chat room
is received by the XMPP server, it is going to check the
type attribute for TSP. If the attribute is set, then the server
will save the joining smart object as a new group member
flagged with TSP to the room list. The server will also add
the smart object to the roster and forward its presence message
to every non-TSP-enabled room member. Afterwards, a roster
update will be send to these XMPP clients and the smart object
appears remotely in the user’s roster. Incoming group chat or
presence messages will not be forwarded to room members
with enabled TSP. Removing the smart object from the list
is done automatically by the XMPP server when the node or
the user is leaving the chat room while sending a presence of
type “unavailable”, so no obsoleted smart objects will be held
in the user’s roster. Overall, TSP only requires modifications
of the XMPP server and the XMPP client of the smart object.
The advantage is that existing XMPP clients do not need to be
adapted while users can benefit from the topic-based filtering
and smart objects from the reduced network traffic.

VII. EVALUATION

We evaluated our XMPP software stack for Contiki in terms
of memory footprint and TSP in terms of achievable message
optimization. Therefore, our real world test setup seamlessly
interconnects various stationary computers and workstations,
mobile devices (e.g., netbooks, notebooks, smartphones), as
well as embedded devices, sensors, and actuators over IP links.
Figure 3 depicts this exemplary use case.

IEEE 802.11
Radio Links

=
IEEE 802.15.4

Radio Links
=

Complex Sensors
(e.g., Power Meter)

=
Simple Sensors

(e.g., Temperature)
=

Actuators
(e.g., Control Unit)

=

Ethernet
Switch

IEEE 802.15.4
Bridge Device

Local Access Remote Access

WLAN Access
Point

XMPP

XMPP XMPP

IEEE 802.15.4
USB Adapter

=

Fig. 3. Test Setup: Smart Home Use Case

A basic anchor point in our testbed is the general purpose
access point [36] that provides physical links between different
network access technologies of smart objects, ordinary com-
puters, and smart phones. We use commodity router hardware
that runs with embedded Linux systems like OpenWrt6 to
realize the physical interconnection, because OpenWrt WLAN
router are low-priced and widely applicable while also support-
ing additional software packages. The router runs a Prosody7

6OpenWrt - Wireless Freedom [Online] https://openwrt.org/
7Prosody IM [Online] http://prosody.im/

XMPP server and a Avahi [37] daemon. Prosody servers are
Internet-connected as well as interconnected with each other.
All devices can communicate locally and be accessed remotely
at the same time. This strengthens the scalability and reliability
of the system: it can be extended with local or remotely
available XMPP servers while traffic bottlenecks and multi-
hop scenarios can be bypassed by a direct integration of
smart objects in IP-based networks. The Avahi daemon is
responsible for the forwarding of mDNS / DNS-SD messages
to the different network interfaces that are interconnected by
the router, which enables the discovery of smart objects.

Our smart object prototype is based on the Zolertia Z18,
which represents a typical resource constrained device with
limited memory (92 kB of ROM / 8 kB of RAM), built-in
sensors (temperature, accelerometer, battery level) and com-
munication capabilities with an IEEE 802.15.4-compliant RF
transceiver and a microUSB connector. For our embedded and
memory-constrained hardware, we favor the lightweight and
highly portable open source operating system Contiki [38]
that runs on small networked sensor boards and provides IP
connectivity with its integrated uIP stack [7]. The uIP stack
is an embedded IPv4 / IPv6-compatible stack that enables
TCP and UDP connections. An event-driven kernel with on-
demand preemptive multithreading facilitates communication
and memory sharing between all processes while inter-process
communication is performed by posting events. All imple-
mentations and tests were performed with Contiki 2.5 and
corresponding firmware images were built with msp430-gcc
(GCC) 4.4.5 for the Zolertia Z1 platform. Each prototype runs
our XMPP stack on top of uIP through which it can advertise
its current presence, publish measured data, and receive control
commands (Chatty Thing). For our XMPP software stack,
we measured the memory footprint and successfully tested
its protocol behavior against Pidgin and Empathy9, both well
known XMPP chat clients for Linux. The evaluation of TSP
was performed with the COOJA network simulator (included
in Contiki), which allows to execute a native image of real
nodes in a simulation [39]. The simulated nodes can run the
same native image that we used for our smart object prototype
while test results can be easily reproduced with a wide range
of network topologies and any number of nodes. COOJA was
directly connected via SLIP to our real world testbed.

A. uXMPP Memory Footprint

The memory footprint is very important for a lightweight
and memory-efficient implementation because smart objects
only have limited resources. Additional measurements were
made with the firmware images of a TelosB and a Tmote
Sky, which use the same compiler and are both based on
the MSP430 microcontroller family. The compiled images for
each device differ only in the size of the Contiki device driver
abstraction of their used hardware components. Binary sizes of
the realized modules for our improved uXMPP implementation
are listed in Table II.

8Zolertia Webpage [Online] http://www.zolertia.com/
9Empathy [Online] http://live.gnome.org/Empathy

TABLE II
MEMORY FOOTPRINT OF UXMPP FOR THE MSP430 (IN KBYTE)

Component / Module ROM RAM

uXMPP Core / IM 4.17 0.19
uXMPP XEP-0045 module 1.19 0
uXMPP TSP module 0.01 0

uXMPP XEP-0174 2.96 0.14
uBonjour (OWT enabled) 3.89 0.3

uXMPP Total 12.21 0.63

As the results proof, we were able to reduce the memory
consumption of uXMPP while adding new features at the
same time. The uXMPP Core/IM is an optimized version of
uXMPP v0.1 and provides the same feature set. Its memory
consumption could be reduced to a third of its original size
and uses only 4.17 kBytes of ROM / 0.19 kBytes of RAM,
compared to 12.42 kBytes of ROM / 0.65 kBytes of RAM
for version 0.1. The memory use of our XEP-0174-based
communication stack (including uBonjour) is 6.84 kBytes of
ROM / 0.44 kBytes of RAM. We extended uXMPP with a
variety of features useful for H2M communication while keep-
ing the memory consumption (12.21 kBytes of ROM / 0.63
kBytes of RAM) comparable to version 0.1 of uXMPP. The
current uDPWS implementation10 uses 10.03 kBytes of ROM
/ 3.07 kBytes of RAM on a TelosB, but this implementation
misses some features (e.g., WS-Eventing capabilities, HTTP
Chunked Mode, and HTTP keep alive are not supported). Our
uXMPP implementation is therefore very competitive in terms
of memory consumption and feature coverage.

B. TSP Message Optimization

For this test, we used the system image of the Tmote
Sky (MSP430), because it can be used directly in COOJA
and it is the only native image with hardware specifications
comparable to the Zolertia Z1. The setup consisted of sim-
ulation nodes (programmed with uXMPP) and a simulation
node programmed with a 6LoWPAN border router running
in COOJA. The border router forwarded all packets from the
COOJA simulation environment via the Serial Line Internet
Protocol (SLIP) to the network of the host computer running
our modified XMPP server and vice versa. This enabled a
direct interconnection from COOJA to the real world while we
were able to extend our testbed with virtual nodes and to use
COOJA’s integrated data logger for a detailed analysis of our
experiments. As a single border router has scarced resources
and needs to share its low bandwitdh with all connected nodes,
the test runs were limited to max. 10 nodes booting in parallel
to prevent a denial of service and to overcome this network
traffic bottleneck of a border router. During each test run every
node connected to the XMPP server (logged in, joined the test
room, and sent a group chat message). Three different test runs
were done: MUC (no node ran with TSP), TSP (all nodes ran

10uDPWS - The Devices Profile for Web Services (DPWS) for deeply
embedded devices [Online] http://code.google.com/p/udpws/wiki/Introduction

with TSP), and Mixed (50% of the nodes ran TSP while the
rest switched TSP off).

1) Bootstrap Time: The bootstrap time for nodes with TSP-
enabled are reduced as Figure 4 shows, because less packets
need to be exchanged between the node and the XMPP server.

2 4 6 8 10
0

50

100

150

200

250

300

350

TSP
MUC
Mixed (50%)
uXMPP v0.1

Number of Nodes

B
o

o
ts

tr
a

p
 T

im
e

(i
n

 s
ec

o
n

d
s)

Fig. 4. Bootstrap Time – Comparison of TSP, MUC and Mixed

Figure 4 also contains the bootstrap time of uXMPP v0.1 as
a reference. In a scenario of 10 nodes, which were connected
over one 6LoWPAN border router to the testbed, TSP reduces
the bootstrap time by 24.86% for a mixed setup and by 54.04%
when running on all nodes. The effort for handling more than
10 nodes in parallel on one 6LoWPAN border router rises
as our measurements show. In general, the bootstrap time
increases with the number of joining nodes, because a lot of
packets will be sent for parallel joining nodes over the border
router, which needs to serialize these packets to process them.
To overcome this bottleneck, joining nodes could perform
delayed bootstrapping or the maximum number of assigned
nodes for a 6LoWPAN border router could be restricted.

2) Number of Sent Packets during Bootstrap: TSP reduces
the network traffic of Chatty Things significantly during boot-
strap, as shown by Figure 5. Reference values of uXMPP v0.1
are given to show its higher use of sent messages.

2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

TSP
MUC
Mixed (50%)
uXMPP v0.1

Number of Nodes

P
a

ck
et

s
(1

2
7

 B
yt

e
s)

Fig. 5. Network Traffic Comparison of TSP, MUC, and Mixed

As each XMPP login requires a series of messages (at
least 9 XMPP messages for ANONYMOUS), a large number
of packets is exchanged during bootstrapping including ACK
messages to the server and vice versa. It is assumed that the

network traffic for smart objects with enabled TSP will not
increase further after this point, because these nodes will not
receive any messages related to the topic (joined chat room).
In general, we demonstrated that TSP can lower the network
traffic without the need for XML compression techniques
while being standard-compliant to existing XMPP chat clients.

VIII. FINAL REMARKS

Most sensor application protocols use UDP nowadays with
additional reliability and sequence number support. But ac-
cording to [40, Sec. 3.3.2], a TCP reinvention must be omitted
since most application layer protocols are based on TCP and
need to be redesigned to work with UDP. This would also
counter our main idea: using already established protocols and
standards to seamlessly integrate smart objects in IP-based net-
works at the application layer. We explicitly wanted to avoid
extensive adaptations of XMPP clients, libraries, and servers.
To overcome the performance issue of TCP, approaches like
the TCP support for sensor nodes [41] were successfully tested
to enable a energy-efficient usage and to increase the data
throughput of TCP while caching TCP segments and executing
local retransmissions, eventually making TCP applicable for
low data-rate networks.

In conclusion, this paper presented a XMPP software stack
for smart objects (Chatty Things) running on Contiki OS. We
implemented an optimized uXMPP client supporting XEP-
0045 Multi-User Chat for infrastructure networks and XEP-
0174 Serverless Messaging with a mDNS / DNS-SD service
for ad hoc networks. These implementations can be used to
bootstrap smart objects without pre-configured parameters or
user interventions for hybrid network environments. Chatty
Things can be integrated seamlessly in current infrastructures
while inexperienced users can access them through ordinary
notebooks or computers with any familiar and available XMPP
chat client at the application layer. Smart objects can thus
be simply deployed and handled comparable to consumer
electronics. We also developed and evaluated a solution to
reduce the network traffic for XMPP-driven smart objects
called TSP. TSP uses small presence messages, which fit into
one single IP packet, to signalize topic-related status updates
of Chatty Things to subscribed XMPP entities in the whole
network through temporary presence subscription. It realizes
a XMPP-compliant message reduction without using complex
and costly techniques like XML compression.

Further work resides in the investigation of timing features
for XMPP messages, as defined in [42], to reduce notification
frequencies for idling Chatty Things.

REFERENCES

[1] R.-C. Wang, Y.-C. Chang, and R.-S. Chang, “Design Issues of Semantic
Service Discovery for Ubiquitous Computing,” in Proceedings of the
International Conference on Multimedia and Ubiquitous Engineering.
IEEE Computer Society, 2007, pp. 880–885.

[2] S. Giordano and D. Puccinelli, “The Human Element as the Key
Enabler of Pervasiveness,” in Proceedings of the 10th IFIP Annual
Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net). IEEE
Computer Society, 2011, pp. 150–156.

[3] J. Bardin, P. Lalanda, and C. Escoffier, “Towards an Automatic Inte-
gration of Heterogeneous Services and Devices,” in Proceedings of the
IEEE Asia-Pacific Conference on Services Computing. IEEE Computer
Society, 2010, pp. 171–178.

[4] T. Teixeira, S. Hachem, V. Issarny, and N. Georgantas, “Service Oriented
Middleware for the Internet of Things: A Perspective,” in Towards
a Service-Based Internet, ser. Lecture Notes in Computer Science,
W. Abramowicz, I. Llorente, M. Surridge, A. Zisman, and J. Vayssire,
Eds. Springer Berlin / Heidelberg, 2011, vol. 6994, pp. 220–229.

[5] K. Ashton, “That ’Internet of Things’ Thing,” RFID Journal, July 2009,
[Online]. Available: http://www.rfidjournal.com/article/view/4986.

[6] F. Mattern and C. Floerkemeier, “From the Internet of Computers to the
Internet of Things,” in From Active Data Management to Event-Based
Systems and More, ser. Lecture Notes in Computer Science, K. Sachs,
I. Petrov, and P. Guerrero, Eds. Springer Berlin / Heidelberg, 2010,
vol. 6462, pp. 242–259.

[7] M. Durvy, J. Abeille, P. Wetterwald, C. O’Flynn, B. Leverett, E. Gnoske,
M. Vidales, G. Mulligan, N. Tsiftes, N. Finne, and A. Dunkels, “Making
Sensor Networks IPv6 Ready,” in Proceedings of the 6th ACM Confer-
ence on Networked Embedded Sensor Systems (SenSys), Nov. 2008.

[8] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” IETF, Request for Comment 6120, Mar. 2011. [Online].
Available: http://www.ietf.org/rfc/rfc6120.txt

[9] ——, “XEP-0174: Serverless Messaging,” XMPP Standards Foundation,
Standards Track, Nov. 2008. [Online]. Available: http://xmpp.org/
extensions/xep-0174.html

[10] S. Cheshire and M. Krochmal, “Multicast DNS,” IETF, Internet-
Draft, Dec. 2011. [Online]. Available: http://tools.ietf.org/html/
draft-cheshire-dnsext-multicastdns-15

[11] ——, “DNS-Based Service Discovery,” IETF, Internet-
Draft, Dec. 2011. [Online]. Available: http://tools.ietf.org/html/
draft-cheshire-dnsext-dns-sd-11

[12] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Constrained
Application Protocol (CoAP),” IETF, Internet-Draft, Mar. 2012.
[Online]. Available: https://tools.ietf.org/html/draft-ietf-core-coap-09

[13] IBM, “MQ Telemetry Transport,” [Online] http://mqtt.org/, 2012.
[14] M. Isomura, C. Decker, and M. Beigl, “Generic Communication Struc-

ture to Integrate Widely Distributed Wireless Sensor Nodes by P2P
Technology,” in Proceedings of the 7th International Conference on
Ubiquitous Computing, Sept. 2005.

[15] J. Schoenwaelder, T. Tsou, and B. Sarikaya, “Protocol Profiles for Con-
strained Devices,” [Online]. Available: http://www.iab.org/wp-content/
IAB-uploads/2011/03/Schoenwaelder.pdf, 2012.

[16] M. Brachmann, O. Garcia-Morchon, and M. Kirsche, “Security for
Practical CoAP Applications: Issues and Solution Approaches,” in
Proceedings of the 10th GI/ITG KuVS Fachgespraech Sensornetze
(FGSN11), Sept. 2011.

[17] M. Hauswirth, D. Pfisterer, and S. Decker, “Making Internet-Connected
Objects readily useful,” in 25th Workshop of Interconnecting Smart Ob-
jects with Internet. Prague, Czech Republic: The Internet Architecture
Board, March 2011.

[18] E. Zeeb, G. Moritz, D. Timmermann, and F. Golatowski, “WS4D:
Toolkits for Networked Embedded Systems Based on the Devices Profile
for Web Services,” in Proceedings of the 39th International Conference
on Parallel Processing Workshops (ICPPW 2010). IEEE Computer
Society, Sept. 2010, pp. 1–8.

[19] A. Broering, J. Echterhoff, S. Jirka, I. Simonis, T. Everding, C. Stasch,
S. Liang, and R. Lemmens, “New Generation Sensor Web Enablement,”
Sensors, vol. 11, no. 3, pp. 2652–2699, 2011.

[20] A. Hornsby and E. Bail, “uXMPP: Lightweight Implementation for
Low Power Operating System Contiki,” in Proceedings of the Interna-
tional Conference on Ultra Modern Telecommunications and Workshops
(ICUMT 2009). IEEE, Oct. 2009, pp. 1–5.

[21] D. Guinard, V. Trifa, and E. Wilde, “Architecting a Mashable Open
World Wide Web of Things,” Department of Computer Science, ETH
Zurich, Technical Report 663, Feb. 2010.

[22] B. Ostermaier, M. Kovatsch, and S. Santini, “Connecting Things to the
Web using Programmable Low-Power WiFi Modules,” in Proceedings of
the 2nd International Workshop on Web of Things (WoT 2011). ACM,
2011, pp. 2:1–2:6.

[23] D. Antoniades, I. Polakis, G. Kontaxis, E. Athanasopoulos, S. Ioannidis,
E. P. Markatos, and T. Karagiannis, “we.b: The Web of Short URLs,” in
Proceedings of the 20th International Conference on World Wide Web
(WWW 2011). ACM, 2011, pp. 715–724.

[24] S. Chhabra, A. Aggarwal, F. Benevenuto, and P. Kumaraguru,
“Phi.sh/$oCiaL: The Phishing Landscape through Short URLs,” in
Proceedings of the 8th Collaboration, Electronic messaging, Anti-Abuse
and Spam Conference (CEAS 2011). ACM, 2011, pp. 92–101.

[25] F. Klien and M. Strohmaier, “Short Links under Attack: Geographical
Analysis of Spam in a URL Shortener Network,” in Proceedings of the
23rd ACM Conference on Hypertext and Social Media (HHT 2012).
ACM, 2012, pp. 83–88.

[26] R. Zender, U. Lucke, and D. Tavangarian, “SOA Interoperability for
Large-Scale Pervasive Environments,” in Proceedings of the Interna-
tional Conference on Advanced Information Networking and Applica-
tions Workshops. IEEE Computer Society, 2010, pp. 545–550.

[27] A. Bassi and G. Horn, “Internet of Things in 2020 - Roadmap for
the Future,” in Workshop on RFID / Internet-of-Things. INFSO D.4
Networked Enterprise & RFID INFSO G.2 Micro & Nanosystems in
co-operation with the Working Group RFID of ETP EPOSS, May 2008.

[28] T. Eugster, A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
Faces of Publish/Subscribe,” ACM Comput. Surv. 35 (2), 2003.

[29] G. Oikonomou and I. Phillips, “Experiences from Porting the Contiki
Operating System to a Popular Hardware Platform,” in Proceedings
of the International Conference on Distributed Computing in Sensor
Systems and Workshops (DCOSS). IEEE Computer Society, Jun. 2011.

[30] R. Klauck and M. Kirsche, “Bonjour Contiki: A Case Study of a DNS-
based Discovery Service for the Internet of Things,” in Proceedings
of the 11th International IEEE Conference on Ad-Hoc Networks and
Wireless (ADHOC-NOW 2012), ser. Lecture Notes in Computer Science
(LNCS), X. Li, S. Papavassiliou, and S. Ruehrup, Eds. Springer Berlin,
July 2012, vol. 7363, pp. 317–330.

[31] M. Hammoudeh, S. Mount, O. Aldabbas, and M. Stanton, “Clinic:
A Service Oriented Approach for Fault Tolerance in Wireless Sensor
Networks,” in Proceedings of the IEEE International Conference on
Sensor Technologies and Applications (SENSORCOMM 2010). IEEE
Computer Society, 2010, pp. 625–631.

[32] D.-K. Chen, “Systematic Review of Applying Service Oriented Archi-
tecture in Networking,” in Proceedings of the International Conference
on Intelligent Information Hiding and Multimedia Signal Processing.
IEEE Computer Society, 2010, pp. 167–170.

[33] P. Costa, G. Picco, and S. Rossetto, “Publish-Subscribe on Sensor
Networks: a Semi-Probabilistic Approach,” in Proceedings of the IEEE
International Conference on Mobile Adhoc and Sensor Systems Confer-
ence. IEEE Computer Society, 2005, pp. 323–332.

[34] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Instant Messaging and Presence,” IETF, Request for Comment 6121,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6121.txt

[35] ——, “XEP-0045: Multi-User Chat,” XMPP Standards Foundation,
Standards Track, Dec. 2008. [Online]. Available: http://xmpp.org/
extensions/xep-0045.html

[36] E. Dressler and D. Tavangarian, “Heterogeneous Communication in
Smart Ensembles,” in Intelligent Interactive Assistance and Mobile Mul-
timedia Computing, ser. Communications in Computer and Information
Science, D. Tavangarian, T. Kirste, D. Timmermann, U. Lucke, and
D. Versick, Eds. Springer Berlin, 2009, vol. 53, pp. 155–166.

[37] The Avahi Team, “More About Avahi - Details about mDNS, DS-DNS
and Zeroconf,” [Online] http://avahi.org/wiki/AboutAvahi, 2012.

[38] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in Proceedings
of the 29th IEEE International Conference on Local Computer Networks
(LCN 2004). IEEE Computer Society, 2004, pp. 455–462.

[39] T. Voigt, J. Eriksson, F. Österlind, R. Sauter, N. Aschenbruck, P. J.
Marrón, V. Reynolds, L. Shu, O. Visser, A. Koubaa, and A. Köpke,
“Towards Comparable Simulations of Cooperating Objects and Wire-
less Sensor Networks,” in Proceedings of the 4th International ICST
Conference on Performance Evaluation Methodologies and Tools (VAL-
UETOOLS 2009). ICST, 2009, pp. 77:1–77:10.

[40] G. Moritz, “DPWS for 6LoWPAN,” IETF, Internet-
Draft, Jun. 2010. [Online]. Available: http://tools.ietf.org/html/
draft-moritz-6lowapp-dpws-enhancements-01

[41] T. Braun, T. Voigt, and A. Dunkels, “TCP Support for Sensor Networks,”
in Proceedings of the 4th Conference on Wireless On demand Network
Systems and Services (WONS 2007). IEEE/IFIP, Jan. 2007.

[42] G. Chen, “XMPP Pubsub Extension for Long-lived TCP Services,”
IETF, Internet-Draft, Jul. 2011. [Online]. Available: http://tools.ietf.org/
html/draft-chen-xmpp-pubsub-extension-00

