
A Formal Proximity Model for RBAC Systems
Aditi Gupta

Department of Computer Science
Purdue University
aditi@purdue.edu

Michael Kirkpatrick
Department of Computer Science

James Madison University
kirkpams@jmu.edu

Elisa Bertino
Department of Computer Science

Purdue University
bertino@purdue.edu

Abstract—To combat the threat of information leakage through
pervasive access, researchers have proposed several extensions
to the popular role-based access control (RBAC) model. Such
extensions can incorporate contextual features, such as location,
into the policy decision in an attempt to restrict access to
trustworthy settings. In many cases, though, such extensions fail
to reflect the true threat, which is the presence or absence of other
users, rather than absolute locations. For instance, for location-
aware separation of duty, it is more important to ensure that
two people are in the same room, rather than in a designated,
pre-defined location. Prox-RBAC was proposed as an extension
to consider the relative proximity of other users with the help
of a pervasive monitoring infrastructure. However, that work
offered only an informal view of proximity, and unnecessarily
restricted the domain to spatial concerns. In this work, we
present a more rigorous definition of proximity based on formal
topological relations. In addition, we show that this definition
can be applied to several additional domains, such as social
networks, communication channels, attributes, and time; thus,
our policy model and language is more flexible and powerful than
the previous work. In addition to proposing the model, we present
a number of theoretical results for such systems, including a
complexity analysis, templates for cryptographic protocols, and
proofs of security features.

Keywords—access control, security, mobility, context awareness

I. INTRODUCTION

The rise of mobile and pervasive computing has made
it possible to devise context-aware systems that customize
the computing experience to the user’s environment. One
particular application for these systems is to facilitate the
design of access control systems that aim to mitigate the threat
of data loss by restricting permissions to appropriate settings.
As these concerns are more relevant to enterprise settings,
researchers often use RBAC as the foundation for designing
such access control models and systems. For instance, several
models have been proposed that consider the requesting user’s
location in the policy decision [8], [1], [2].

While such extensions to RBAC can provide a basis for
reasoning about contextual policies, they fail to reflect many
of the more interesting scenarios. Specifically, it may be
more important to consider the relative locations of other
users, rather than the requesting user’s location. For instance,
when preparing a financial deposit slip in a retail setting, the
presence of a supervisor may be critical, while ensuring that
the employee is in the store office is not. To enable the creation
of such policies, Prox-RBAC [17] was proposed to incorporate

proximity constraints into a spatial RBAC model. That is,
Prox-RBAC policies consisted of a spatial RBAC policy with
an additional clause specifying constraints on the locations of
other users; for instance, one can specify a constraint for a
military deployment that no civilians be present.

We have identified two shortcomings with Prox-RBAC as
previously proposed. First, the model relies on an intuitive
notion that “proximity” means the users are present (or not)
within the same physical space. This lack of a rigorous under-
standing of proximity can lead to surprising interpretations.
For instance, in Prox-RBAC, two users at opposite ends of
a building could be considered to be within proximity for
one policy; however, for another policy, two users standing
in adjacent rooms on opposite sides of the same door would
not be in proximity of one another. As such, this informal
approach allows for entities to be in proximity, despite the
fact that they are not physically close.

Second, we find the exclusive focus on the spatial domain
to be unnecessarily restrictive. The intuition that proximity
indicates relative closeness of two entities can be applied
in several domains with interesting results. For instance, a
temporal proximity restraint could require that two people
digitally sign a document within 24 hours. In attribute-based
proximity, an Assistant Professor and an Associate Professor
have professions (i.e., attributes) that are similar. Clearly, a
unified and formal definition of proximity can be applied to a
wide variety of settings.

We have analyzed five contextual domains, or realms,
namely geographic, attribute-based, social, cyber, and temporal
realms for defining proximity. We will start this work by
defining these realms and showing how they can be mapped
onto a unified abstract space model. We will then apply the
calculus-based method [5] for defining topological relations on
features in order to specify a formal distance metric. We then
use this metric to define two forms of proximity, specifically
weak role proximity and strong role proximity. In both forms,
proximity specifies that two entities must have a distance
measure (in the abstract space) that is less than some threshold
value.

In addition to defining the model, we also present a number
of theoretical results and practical advice for the creation of
proximity-based RBAC systems. We show that, given a single
policy with proximity constraints, determining whether or not
it can be satisfied is NP-hard. Furthermore, if the mapping
of users to features can be done in polynomial time, then the

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250453

problem is NP-complete. We also show that correct evaluation
of proximity constraints is impossible if the deployment allows
for asynchronous communication.

However, despite these results, practical deployments are
still feasible. Specifically, the NP-hard result depends on
the complexity of the proximity constraints; if only simple
proximity constraints are used, evaluating the policy design
becomes tractable. The impossibility result, on the other hand,
applies to the simultaneous evaluation of the constraint for a
request while another user changes features. That is, there is a
small window of time when the policy information point (PIP)
has an inconsistent view of the system. Note, though, that this
is only relevant if the user who is changing features has some
impact on the proximity constraint under consideration; if that
user is not relevant to the current policy, this inconsistency has
no effect on the policy decision. One can further mitigate this
threat of inconsistency with redundancy; that is, by repeating
the constraint evaluation after a small window of time. Thus,
while perfect guarantees are impossible, the system may be
able to enforce the policies well enough for practical concerns.

It is important to emphasize the advantages of this formal
approach. First, by grounding the notion of proximity in
terms of a distance and threshold values, we ensure that our
formalisms reflect the intuition of proximity as closeness. As
such, the mandatory specification of a metric reduces the
likelihood of surprising interpretations of proximity. Second,
by defining proximity in terms of an abstract space model,
our approach is very flexible and simplifies the adaptation of
policies for other realms beyond the five we consider. That
is, mapping the realms onto the abstract space model allows
us to define a common framework for enforcing the policy
constraints; adapting the model and policies for additional
realms would only require mapping the realm onto the abstract
space model. Finally, by defining a common enforcement ar-
chitecture, it is possible to develop reusable code libraries and
protocols that could be applied to any enforcement architecture
that maps onto our abstract space model.

II. CONCEPTS AND DESIGN

We begin this section by developing an intuitive understand-
ing of proximity and realms. Once we have sketched these
preliminary concepts, we define a formal proximity model and
show how to map the realms to it. In doing so, we illustrate
the flexibility of our model, which shows that one could adapt
the same ideas to other realms of interest.

A. Intuition of Proximity

The notion of proximity can be informally defined as the
nearness of two entities. These entities are active, that is they
can execute actions on protected resources. Traditionally, this
nearness of entities is understood in terms of physical distance,
though other frames of reference, such as time, may be used.
In order to use proximity as a foundational concept for access
control, it is necessary to provide a formal definition that is
flexible enough to accommodate various application scenarios.
Before providing our definition, we will first describe five

types of proximity so as to illustrate the intuition behind our
formalism. Specifically, we will discuss the following types of
proximity:

Geographical proximity indicates that two entities are lo-
cated within a certain distance in the physical space.

Attribute-based proximity indicates that two entities share
one or more common attributes, or are both located in
regions of physical space that share attributes.

Social proximity indicates that two entities (represented by
nodes in a social network graph) are less than a certain
number of hops apart.

Cyber proximity indicates that two entities are co-present in
the same online communication session.

Temporal proximity indicates that two entities are present
for events separated by a limited amount of time.

1) Geographical proximity: This type of proximity is per-
haps the most conventional. The entities reside at specific
locations in the physical world. The distance between the en-
tities may be measured in traditional terms, such as Euclidean
distance or Manhattan distance. Alternatively, the distance
may be measured in logical units that are defined based on a
partitioning of the reference space; for example, in an indoor
space, the number of rooms separating the two entities may
quantify the distance. Regardless of the measurement used,
the notion of proximity implies that the distance is less than
a certain threshold value. To illustrate access control based on
geographical proximity, consider a policy that specifies that
users must be present in the same room. A wireless sensor
network could be used to track users’ positions and verify
that the constraint is satisfied. Another policy could specify
that users must be within a certain number of meters of each
other. This policy could be enforced using a technology such
as Bluetooth, which indirectly vouches for the nearness of the
users.

2) Attribute-based proximity: In attribute based proximity
model, each entity has a set of attributes that characterize
certain properties or personal traits of this entity. These
attributes can be encoded in credentials such as certificates
that attest their validity. Attribute based proximity indicates the
similarity of attributes of two entities. For example, a person
with attribute ‘Assistant Professor’ is in attribute based prox-
imity with another person with attribute ‘Associate professor’.
Weighting values can be associated with both the credential
(i.e., to specify its trustworthiness) or the trait itself (e.g., to
quantify the similarity between values). In an alternate view,
attributes can be associated with the user’s environment, such
as the location in the physical world. The distance metric
for proximity, then, would be an empirical measure of the
difference between values, possibly weighted to reflect the
veracity of credentials presented. Our work allows for both
uses of attributes. Note that, unlike geographical proximity,
attribute-based proximity does not imply synchronicity of
actions, even if attributes of locations are used. That is, the
users’ presence in regions with similar attributes does not
have to occur simultaneously for attribute-based proximity. To

illustrate, consider an online dating service where a user can
choose to share his or her profile with similar users. Potential
mates with similar political views, religious backgrounds, or
hometowns could be automatically granted access; such a
system would be beneficial for helping users identify potential
matches more quickly.

3) Social proximity: The emergent popularity of social
networks introduces a new dimension to proximity. A social
network is traditionally modeled as a graph where each user is
represented by a node and the connections between users are
represented by edges connecting them. In the social realm, the
distance metric is based on the number of hops that separate
two entities within the social graph. Social proximity of two
user indicates that the distance between them is less than a
certain number of hops. In this case, the distance is relatively
static, as changes to the distance only occur when connec-
tions between users change. Although social connections may
change often, it is intuitive that the distance between any two
users would change more frequently in the physical world.
Policies based on social proximity are quite common. The
most popular is the restriction of shared data to friends or
contacts. In some cases, these restrictions can be loosened to
the next step in the network, such as friends of friends. In
other cases, data may be shared with other users within sub-
networks; for instance, users may share data with others from
the same school or employer.

4) Cyber proximity: Two users are said to be in cyber
proximity if they are simultaneously involved in an online
communication session. For example, users may be on the
same conference call or may be chatting with one another.
The distance metric could be binary, indicating co-presence
in the same session, or based on degrees of separation. In
the latter case, consider three users named Alice, Bob, and
Charlie. If Alice and Bob are chatting while Bob is connected
to a conference call with Charlie, then the distance from Alice
to Charlie would be two. Alternatively, if the binary metric is
used, Alice and Charlie would not be in cyber proximity, as
they are not present within the same communication session.

5) Temporal proximity: While the previous notions of prox-
imity can clearly be applied to users, temporal proximity
means that two events occur within a certain relative time
frame. The most natural metric would be the passage of units
of time. However, in asynchronous systems, absolute time
units may not be used or feasible. Instead, relative units,
such as vector clocks, may be used to specify the ordering
of events. In that case, the distance between two events
would be the number of events that occur between them.
An example of access control based on temporal proximity
would be the specification of an expiration date on a contract
signature. If another event, such as a signature by another
party, does not occur prior to the expiration date, then the first
signature is considered null and void. Another scenario where
temporal proximity could be applied would be a combination

of geosocial networks with missed connections.1 When a user
visits a public place, he may retrieve a token indicating his
presence at that location at that time. This token could then
be used to retrieve missed connections placed by others with
the same token.

B. Formal Proximity Model

Our formal definition of proximity is derived from con-
structing an abstract space model S from the reference space
models or realms (e.g., the physical world, social networks,
communication sessions, time) identified in the previous sec-
tion. Specifically, we apply the calculus-based method [5] that
has been widely used in GIS applications. We start by showing
that this approach is sufficient for modeling non-geographic
reference space models.2 We then show how it can be used
for proximity-based RBAC systems.

1) Proximity model: Let S denote a discrete set of closed
regions, called features, of the reference space model. For the
feature λi ∈ S , ∂λi denotes the set of boundary points while
λ◦ denotes the interior of the feature. Table I summarizes the
formal definitions of these sets for each realm. For instance,
in the geographical space, S would consist of regions of space
that may or may not overlap; e.g, if λi is a room, then ∂λi
would be the points that constitute the walls.3 The temporal
realm would have events–closed time intervals–as features.
Attribute-based proximity is similar, but extends the linear
model to a multi-dimensional one. Features in the social realm
would consist of sub-portions of the social network.

Before we elaborate on our model with additional defini-
tions, we must address the complexity of the cyber realm. The
difficulty lies in the fact that the most natural reference space
model would be a hypergraph, with a hyperedge connecting
all of the vertices (users) in the communication session, which
cannot be directly mapped onto our abstract space model
as it introduces inconsistencies in the topological relations.
Our solution is to create a parallel hypergraph such that
each vertex in the original is replaced by distinct vertices
for each connected hyperedge. The interior would include the
new vertices connected to the hyperedges of interest, and the
boundary would be the other new vertices. For instance, if a
user was simultaneously communicating in a Skype session
and two chat sessions, then the feature λi containing the chat
sessions would include the new vertices for the chat sessions
in the interior, and the new vertex for the Skype session would
be in the boundary.

1Missed connections are popular features in publications such as alternative
newspapers. One person sees another in a public place but the opportunity
to meet never arises. Instead, the first person places a missed connection
advertisement with enough contextual information in the hopes that the other
person will read the description and desire to make contact.

2While the original work only defines the method for two-dimensional
geographic space, the definitions of the topological relations can be extended
for multi-dimensional space, as well.

3Readers familiar with the calculus-based method will note that our abstract
space model only focuses on area/area relationships. This is deliberate, as
defining access control policies on single points or lines seems infeasible in
general.

Geographical
Elements of S: Sets of points p in physical space
Sample types: Room, Building, Hospital
λi = {p | p is in a featured region }, λ◦i = {p | p is an interior point }, ∂λi = {p | p is on the region’s boundary }

Attribute
Elements of S: Attribute vectors a = 〈a1, . . . , ak〉 representing a collection of values for considered attributes. We also write
ai ∈A a to indicate ai is one of a1, . . . , ak.
Sample types: {Age, School}, {Age, Profession, Employer}, {Hometown}
λi = {a | ∀ ai ∈A a, ai is within a specified range of values for that attribute}
λ◦i = {a ∈ λi | ∀ ai ∈A a, ai is strictly within (< max and > min) the specified range}
∂λi = {a ∈ λi | ∃ ai ∈A a, ai has a borderline (maximum or minimum) value for that attribute}

Social
Elements of S: Sets of edges e ∈ E and vertices v ∈ V such that G = 〈V,E〉 forms a social network
Sample types: Friends, Colleagues, Conference attendees
λi = {v ∈ V | v represents an individual in the desired group } ∪ {e = 〈v1, v2〉 | v1 ∈ λi ∨ v2 ∈ λi},
λ◦i = {v ∈ λi} ∪ {e ∈ λi | e = 〈v1, v2〉 ∧ v1 ∈ λi ∧ v2 ∈ λi}, ∂λi = {e ∈ λi | e = 〈v1, v2〉 ∧ (v1 6∈ λi ∨ v2 6∈ λi)}

Cyber
Elements of S: Sets of hyperedges ĥ ∈ Ĥ and vertices v̂ ∈ V̂ given a hypergraph G = 〈V,H〉 where h ∈ H denotes a
communication session and v ∈ V denotes a user.

Definition of V̂ : ∀ vi ∈ V, ∃ hj ∈ H s.t. vi ∈ hj ⇒ v̂i,j ∈ V̂
Definition of Ĥ: ∀ hi = {v1, . . . , vk} ∈ H, ĥi = {v̂1,i, . . . , v̂k,i} ∈ Ĥ

Sample types: VOIP, Skype
λi = {ĥi | hi represents a session} ∪ {v̂l,i ∈ ĥi ∈ λi} ∪ {v̂l,j ∈ ĥj 6∈ λi | ∃ ĥi ∈ λi s.t. v̂l,i ∈ ĥi}
λ◦i = {ĥ ∈ λi} ∪ {v̂l,i ∈ ĥi ∈ λi}
∂λi = {v̂l,j ∈ ĥj 6∈ λi | ∃ ĥi ∈ λi s.t. v̂l,i ∈ ĥi}

Temporal
Elements of S: Typed time intervals [ti, tj]
Sample types: Examination, Meeting, Football game
λi = {e | e is an event associated with some time interval [ti, tj]} λ◦i = {t | t ≥ ti ∧ t ≤ tj} ∂λi = {ti, tj}

TABLE I: Mapping of Realms to Abstract Space Model

Central to our model is the notion of feature type, which
can be organized in a hierarchical manner. Table I provides
examples of types for each realm. Types allow for system
administrators to distinguish between, for instance, a physics
exam and a chemistry exam that occur simultaneously. Feature
type can be either conceptual or unit-based. Conceptual feature
types assign a semantic label to a feature while unit-based
feature types are defined by reference space, such as meters
(geographical), hops (social), or minutes (temporal). Realms
can have multiple units, but all units would be considered
to be types, and units can only be sub-types of other units;
furthermore, units would be instantiated as distinct features.
For instance, in a temporal space, a feature representing
8:00:00 – 8:00:59 would denote the first minute at 8:00. Let
types denote the set of application-specific feature types for
the realm, and let v denote a sub-typing partial order.

Definition 1. τ : S → types denotes a typing function
that maps a feature in abstract space S to feature type. If
τ(λi) = ti, then ti is the type of λi.

Definition 2. S|t denotes the restriction of features of
S ⊆ S to those features with a sub-type of tj ∈ t ⊆ types:

S|t = {λi ∈ S | ∃ tj ∈ t s.t. τ(λi) v tj}

For instance, S|{exam,mathematics} would contain only time
frames representing mathematics exams in a temporal discus-
sion. In a geographical discussion, S|{room} could denote the
rooms in a building.

We can now use the notion of types, in combination with
topological relations, to define our abstract distance metric.
That is, let T = {disjoint, in, touch, equal, cover, overlap},
the six traditional topological relations [5]. We define a
connectivity chain as a sequence of features where no two
consecutive features satisfy the disjoint topological relation.

Definition 3. The sequence 〈λ0, λ1, . . . , λn−1, λn〉 denotes
a connectivity chain from the feature λ0 to λn, such that
¬〈λi−1, disjoint, λi〉 for 1 ≤ i ≤ n. Let χ(λi, λj) denote the
set of all connectivity chains from λi to λj , and let λk ∈ c
mean that λk occurs in the chain c ∈ χ(λi, λj).

Definition 4. χ|t(λi, λj) denotes the restriction of connec-
tivity chains connecting features λi and λj to include only
intermediate features with a sub-type of tk ∈ t ⊆ types:

χ|t(λi, λj) = {c ∈ χ(λi, λj) | ∀ λk ∈ c,∃ tl ∈ t s.t. τ(λk) v tl}

Conceptual feature types provide logical measurement
(where connectivity chain is a sequence of features). For in-
stance, χ|{room}(λi, λj) would only consist of chains of rooms
that connect the two features. Alternatively, unit types provide
physical measurement. For instance, χ|{minute}(λi, λj) would
contain chains whose intermediate features are the minutes
that occur between the start of λi and the end of λj . Letting
c denote the length of a chain (as measured in the number of
intermediate features), we can define a basic distance metric as
length of smallest connectivity chain connecting two features.

Definition 5. δ(λi, λj , t) denotes the distance metric be-
tween features λi and λj where the intermediate feature types
are restricted to t ⊆ types and is defined as:

δ(λi, λj , t) = min(c) ∀c ∈ χ|t(λi, λj)

The final element of our proximity model is how to incor-
porate users. Specifically, we require some method of mapping
users to features. Let U denote the set of users.

Definition 6. µ : U → 2S denotes a feature mapping
function that maps a user to set of features.

The power set is required for the codomain as a result of
the hierarchical typing of features. For instance, a user in the
social realm may belong to a group of friends, as well as a
group of colleagues. Hence, µ(u) = {friends, colleagues}.
It is important to note that applying µ to the temporal realm is
somewhat unintuitive. From a formal perspective, µ maps that
user to all events in which that user participated at any time.
This is due to the nature of the temporal realm. In practice,
the temporal µ would restrict the focus to events within a
designated time frame.

Definition 7. µ|t denotes the restriction of the feature
mapping function to types t ⊆ types such that

µ|t(u) = {λi ∈ µ(u) | ∃ tj ∈ t s.t. τ(λi) v tj}

Based on the preceding definitions, we can define a prox-
imity model M = {S, T ,U , τ, µ, δ}.

2) Role Proximity: Using the model M, we can define the
notion of role proximity. We start with the traditional RBAC
concepts of roles (R) and users (U). When a user logs into the
system, he is associated with a new session. Let SES denote
the set of sessions, SU : SES → U the mapping of sessions
to users, SR : SES → 2R the mapping of sessions to possible
roles that could be activated, and Act : U → 2R the mapping
of users to active roles. Observe that, for any u ∈ U

Act(u) ⊆
⋃

s∈SU−1(u)

SR(s)

where SU−1(u) denotes the preimage of u under SU , i.e.,
the set of sessions associated with the user. That is, every one
of a user’s active roles must be associated with some session.
We can define two distinct types of role proximity using these
definitions.

Definition 8. A user u ∈ U is said to be in (t1, d, t2)-weak
role proximity ((t1, d, t2)-wrp) of a role r for t1, t2 ∈ types
and d ∈ R+ if ∃û ∈ U , û 6= u such that all of these hold:

1) r ∈ Act(û)
2) λi ∈ µ|{t1}(u)
3) λj ∈ µ|{t1}(û)
4) δ(λi, λj , t2) ≤ d

Weak role proximity, then, considers only users’ active roles.
Observe that two feature types are necessary, as the unit
separating the features will most likely have a different type
than the features themselves. For instance, in social proximity,
a manager at one company may be in (org, 1, friend)-wrp of
the CTO of another company if there are employees of both

companies that are friends. In a temporal setting, if a user
signs a document at some meeting, (meeting, 4, hour)-wrp is
satisfied if a manager signs the document at another meeting
with no more than 4 hours separating the meetings.

Definition 9. A user u ∈ U is said to be in (t1, d, t2)-strong
role proximity ((t1, d, t2)-srp) of a role r for t1, t2 ∈ types
and d ∈ R+ if ∃û ∈ U , û 6= u such that all of these hold:

1) r ∈
⋃

s∈SU−1(û) SR(s)
2) λi ∈ µ|{t1}(u)
3) λj ∈ µ|{t1}(û)
4) δ(λi, λj , t2) ≤ d
That is, strong role proximity considers roles that could

be activated during some session for the user, but may not
currently be. The rationale for strong role proximity is that it
may be desirable to base policies on roles that are not currently
active. For instance, if a military environment demands that
there are no civilians present, strong role proximity can be
used to meet this demand, because it does not require users
to explicitly activate the civilian role.

3) Proximity Constraints: Using M = {S, T ,U , τ, µ, δ}
and the definitions above, we can now define proximity con-
straints that can be used in a policy language. Our language
is similar to that defined in [17], except that we remove the
assumption of geographical proximity and spatial roles. The
simplified grammar for a proximity constraint clause is written
as:

C ::- C ∨ C
— C ∧ C
— ¬C
— S Q n role unit thr

S ::- weak | strong
Q ::- at most | at least | ε

The semantics of such a constraint dictate that satisfaction
requires separate users. That is, the semantics for the basic
constraint (weak n r unit thr) dictate that there is a set
Û ⊆ U such that

1) |Û | = n
2) (t, thr, unit)-wrp holds for some type t ∈ types
3) ∀u ∈ Û r ∈ Act(u)
4) ∀u 6∈ Û r 6∈ Act(u)

Semantics for the strong variant would replace the last two
criteria as

3) ∀u ∈ Û ∃s ∈ SU−1(u) such that r ∈ SR(s)
4) ∀u 6∈ Û 6 ∃s ∈ SU−1(u) such that r ∈ SR(s)

Semantics for the other possible constraints are straight-
forward variations. Note that t is specified independently of
the proximity constraint and is determined according to the
remainder of the policy. Let C denote the set of proximity
constraints in this language.4

4Observe that this syntax only supports a single realm per constraint.
Intuitively, the syntax could be extended to specify the realm and the
type t within the constraint. This would allow for complex policies that
consider multiple dimensions (e.g., a policy could simultaneously have spatial,
temporal, and social constraints). As each realm would define its own distance
metric δ, we believe this approach is feasible. However, we have not fully
considered the implications of this approach, and leave such composition of
proximity realms for future work.

Geographical
Example: An officer is allowed to read a secret file only if no civilian is present within 500m and at least one senior officer
is present in the same room.
types = {room,meters}, O = {SecretFile}, A = {read}, R = {SeniorOfficer,Officer, Civilian}
Proximity Constraints C1 = 〈strong, at most, 0, Civilian,meters, 500〉,C2 = 〈weak, at least, 1, SeniorOfficer, room, 0〉
Proximity tuple p = 〈Officer, room,C1 ∧ C2〉
Policy: {p, read, SecretFile}

Attribute
Example: A dating site member can view my profile if they have same profession and are no more than 10 years older.
types = 2{profession,age}, O = {MyProfile}, A = {view}, R = {Member, Self}
Proximity Constraints C1 = 〈weak, ε, 1, Self, {profession}, 0〉, C2 = 〈weak, ε, 1, Self, {age}, 10〉
Proximity tuple p = 〈Member, {profession, age}, C1 ∧ C2〉
Policy: {p, view,MyProfile}

Social
Example: A member of IEEE network is allowed to view my conference album only if he is a friend of a friend or closer.
types = {individual, network, hops}, O = {ConfAlbum}, A = {view}, R = {Self, IEEEMember}
Proximity Constraints C = 〈strong, ε, 1, Self, hops, 2〉
Proximity tuple p = 〈IEEEMember, individual, C〉
Policy: {p, view,ConfAlbum}

Cyber
Example: A manager can edit a shared Google document only if he is in a GoogleTalk session with a senior manager.
types = {GoogleTalk}, O = {document1}, A = {write}, R = {Manager, SeniorManager}
Proximity Constraints C = 〈weak, at least, 1, SeniorManager,GoogleTalk, 0〉
Proximity tuple p = 〈Manager,GoogleTalk, C〉
Policy: {p, write, document1}

Temporal
Example: A supervisor can only sign an employee’s time card within 24 hours after the employee did.
types = {hours, card signature}, O = {time card}, A = {sign}, R = {Employee, Supervisor}
Proximity Constraints C = 〈weak, at least, 1, Employee, hours, 24〉
Proximity tuple p = 〈Supervisor, card signature, C〉
Policy: {p, sign, time card}

TABLE II: Example policies for various realms

4) Proximity-based RBAC model: We can now conclude
this section with our formal definition of a proximity-based
RBAC model. LetM = {S, T ,U , τ, µ, δ} denote a proximity
model as defined previously. Policies would be based on
proximity tuples p = 〈r, t, c〉, where c ∈ C is a proximity
constraint, t ∈ types is a type associated with the requesting
user’s feature, and r is the requested role. Specifically, if P
denotes the set of all such tuples, A denotes the set of actions,
and O denotes the set of objects, a proximity-based RBAC
policy would be the relation Pol : P × A × O. That is, a
policy specifies the actions allowed on an object, such that
the proximity constraint (which includes the subject’s role) is
satisfied. The proximity-based RBAC model Φ would consist
of the set of all such policies. Table II presents examples of
policies for the five proximity realms.

III. ENFORCEMENT

Designing a generic architecture that works across different
applications and realms is a crucial but challenging task.
Different types of proximity and organizational settings have
different requirements and a single architecture may not work
for all cases. However, if an architecture is defined carefully
then a major part of it can be common and only a small
portion of it may need to be changed across realms. For
instance, the method for acquiring feature mapping for a user

is realm-specific. We propose a generic architecture and dis-
cuss changes that are required in it to accommodate different
types of feature acquisition and communication strategies.
Further, we prove some properties of this system and discuss
its limitations.

A. System architecture

In this section, we will define an enforcement architecture
for enforcing proximity-based RBAC. While different appli-
cation scenarios will employ different technologies, our goal
in this section is to highlight common features of principals
and define required behaviors. The purpose in defining such an
abstract architecture is to establish a framework for reasoning
about the feasibility of designing and building proximity-based
RBAC systems.

For simplicity, we assume a centralized server with uni-
versal knowledge of the user-feature mapping. In our current
approach, we emphasize the necessity of correctly mapping
each user to a feature (or a set of features) in the reference
space model. We refer to this process as feature attestation,
and is the responsibility of the Policy Information Point
(PIP) [18]. Feature attestation could be accomplished using
cryptographic techniques, such as digitally signed proofs of
location, timestamps, or credentials. The Policy Decision Point
(PDP) uses the result of the constraint evaluation to facilitate
the proper functioning of the Policy Enforcement Point (PEP).

(a) No FM, External portal (b) Independent FM, No communication (c) FM direct communication

Fig. 1: Enforcement architecture

• User: The User represents the entity that is assigned roles
and initiates access request.

• Feature management server (FMS): This server maintains
the current feature mapping of every user in the system.
Given a proximity query, in which the PDP submits
a proximity constraint and the requesting user, FMS
computes the proximity distances and determines if the
constraint is satisfied. It serves as the main component of
the PIP and responds to queries from the authorization
server.

• Feature monitor (FM): This optional component is used
to communicate with the user as a means of maintaining
the feature mapping. If present, this component may issue
a feature proof to the user, such as a digital certificate
avowing the claimed feature, that the user can submit
as a credential along with the request as shown in Fig-
ure 1b. In an alternate architecture (Figure 1c), FM may
pervasively monitor the user and communicate with the
FMS to ensure the user-feature mapping is updated in a
timely manner. Alternatively, this monitor may be absent
entirely, in which case the user would communicate with
an external portal that pushes feature update to FMS as
discussed later (Figure 1a).

• Authorization server (AS): This serves as PDP and is
responsible for evaluating policy. It consults FMS by
issuing proximity queries. Using the results of the queries,
it evaluates the remainder of the policy and determines if
the request is to be granted.

• Resource manager (RM): The resource manager serves
as the PEP and is responsible for controlling access
to protected resources. The resource manager may hold
the resources itself, or it may serve as a ticket-granting
service.

In some cases, an external service portal, which is a
trusted third party, can replace the FM. For instance, in social
proximity, the proximity-based RBAC system may rely on an
independent social network service. That is, the proximity-
based RBAC system consults the external social network and
overlays the feature mapping on top of the existing network. In
these types of cases, the user interacts with the service portal

to make changes, and the service portal pushes these updates
to the proximity-based RBAC system. This is the architecture
shown in Figure 1a.

1) Feature acquisition and communication: Most of the
interaction between principals is straightforward and functions
like a typical RBAC architecture that consists of users, PEP,
PDP, and PIP. What is unique about proximity-based RBAC
is the acquisition and communication of feature mapping that
is achieved via the interaction between users and the PIP.
Although the precise interaction would be application specific,
we identify three fundamental approaches that are illustrated
in Figure 1.

1) No FM, external portal – In this approach, illustrated
in Figure 1a, the user explicitly interacts with an external
service portal (e.g., a social network web site or a trusted
third-party attribute certification service) that is indepen-
dent of the proximity-based RBAC system in order to
update his or her associated feature(s). For instance, in
social proximity, the user makes changes to his or her
profile in a social network application, and these changes
are pushed to the FMS by the application. In temporal
proximity, events are logged by some application, and
the FMS receives this data accordingly. This approach
is applicable for all realms, though the geographical
realm is challenging, as users typically do not have to
interact with a centralized software portal in order to
move. Instead, the other two approaches more accurately
describe approaches for geographical proximity.

2) Independent FM, no communication – In this ap-
proach, users interact with a distributed set of devices
(feature monitors) that have no direct communication
links to the FMS. Instead, the devices provide the
user with a credential (feature proof) that asserts the
correct feature mapping. User includes this feature proof
in access request and can be validated by the FMS
as shown in Figure 1b. For instance, in geographical
proximity, the user may have a Bluetooth-enabled device
that exchanges data with a receiver as the user moves.
As the user moves, the credential updates are performed
locally, and only pushed to the FMS when the user

makes a request. As such, in order to enforce proximity
constraints correctly, the system must force users to
push their credentials sufficiently often. For instance, in
the geographic realm, doors separating rooms may be
considered objects. Thus, in order for the user to change
features (i.e., move from one room to another), he must
push his credentials before the door can be unlocked.

3) FM direct communication – In this approach, a
distributed sensor network (FM) continually monitors
changes to the user’s feature mapping. When the map-
ping changes, the sensor pushes the updated information
to the FMS accordingly (refer Figure 1c). This approach
is more appropriate for real-time geographical proximity
This approach is also good for temporal proximity.
For instance, the sensor may consist of a program that
monitors updates to log files, and sends updates when
the file changes.

In all above communication protocols, FMS is responsible
for evaluating if the proximity constraints are satisfied. In the
subsequent section, we present an algorithm for evaluating
these constraints and discuss its complexity.

B. Complexity analysis

Algorithm 1 describes one approach to evaluating a sin-
gle complex proximity constraint. Specifically, assume the
constraint c ∈ C consists of m primitive weak proximity
constraints, each of the form (weak n role unit thr).5 This
algorithm will evaluate each primitive constraint to yield a
Boolean value to replace the constraint. Once all constraints
are evaluated, the resulting Boolean expression is evaluated.
If the return value is true, then the constraint was satisfied.
Note that handling variations allowed by the policy language
involves trivial changes that do not affect the complexity of
the algorithm.6

Let D denote the decision problem that answers whether or
not a proximity constraint can be satisfied. That is, assume µ
maps a user to a feature in polynomial time. Then D takes
as input M− µ (i.e., the model with no current mapping of
users to features) and a policy p ∈ Φ. D returns “yes” if there
exists a mapping µ such that the proximity constraint c ∈ C in
the tuple 〈r, t, c〉 for the policy p is true. If no such mapping
exists, D returns “no.”

Lemma 1: Given a candidate mapping µ and a distance
function δ that run in polynomial time, verifying µ satisfies
p can be done in polynomial time. That is, D is in NP.
Proof: Let n be the maximum of |U|, |R|, and m, where m
is the number of primitive constraint clauses in p. Executing
Algorithm 1 without the mapping µ|t(t) can be done in
O(n3) time.

Theorem 1: D is NP-hard.

5For simplicity, we ignore the use of parentheses to shape the Boolean
expression.

6For instance, supporting at most and at least requires adding else checks
to the final if-then-else block. These cases can be enumerated and do not
vary with the size of n.

Algorithm 1: Evaluate (weak n role unit thr) constraints
Input: c ∈ C: a proximity constraint, consisting of m

primitive constraints, joined using Boolean
connectives ; u ∈ U : the requesting user ; t ∈ T :
requesting user’s feature type

Output: true or false
/* break c into its primitive
constraints */
〈c1, . . . , cm〉 ← c
Featureu ← µ|{t}(u)
ActiveRoles← ∅
for ci := c1 to cm do

Matches← 0
foreach û ∈ U − {u} do

/* weak proximity semantics */
foreach r ∈ Act(û) do

if r = ci.role then
Featureo ← µ|t(û)
distance←
δ(Featureu, Featureo, ci.unit)
if distance ≤ ci.thr then

Matches←Matches+ 1

if Matches = ci.n then
bi ← true

else
bi ← false

return EvaluateBoolean 〈b1, . . . , bm〉

Proof: Our proof is by reduction from Boolean satisfiability
(SAT). Given an arbitrary Boolean expression, one can replace
each independent variable with a unique primitive proximity
constraint in polynomial time. Based on the complexity of
SAT [6], D is NP-hard.

Corollary 1.1: Given a candidate mapping µ and a distance
function δ that run in polynomial time, D is NP-complete.
Proof: From Theorem 1, D is NP-hard. Under the assumption
of polynomial run time for µ and δ, by Lemma 1, D is in
NP. Thus, it is NP-complete.

These complexity results illustrate a warning for building
and maintaining proximity-based RBAC systems. Clearly, the
latter result shows that attempting to build an automated tool
that determines if a set of policies can be evaluated would
require heuristics to be tractable. Furthermore, the complexity
of Algorithm 1, while polynomial-time, is not particularly
efficient and may present scaling challenges. Thus, designers
of proximity-based systems should plan carefully to streamline
the operation of the PIP.

C. Properties of protocols

Before describing a general approach to constructing en-
forcement protocols, we first present some theoretical results
that illustrate the limitations of such systems. In real systems,
communication between various components of the architec-
ture may entail some delay. This communication delay may
lead system into a state where the evaluation of proximity
constraints at a certain time is not consistent with the current
feature mapping of users. For example, the feature mapping
of a user involved in a proximity constraint may change while
the constraint is still being evaluated by FMS. The following
results use impossibility of distributed consensus [10] to show
that correct evaluation of constraints cannot be guaranteed
unless FMS has correct mapping of all users and these
mapping don’t change until FMS has completed the evaluation
of proximity constraint. Theorem 2 presents the proof for the
deployment scenario illustrated in Figure 1a. Corollary 2.1
presents this proof for the scenario in Figure 1b, while the
Figure 1c case is handled by Theorem 3.

Theorem 2: Given a deployment with no feature monitor
such that µ is updated only through explicit interaction with
a service portal. Correct proximity constraint evaluation can
be enforced only if access to the service portal (by the users
and FMS) is synchronous.
Proof: Assume that evaluation can be enforced correctly.
To prove that access must be synchronous, we will map
proximity constraint evaluation onto a consensus protocol P .
Specifically, let p1, . . . , pn denote asynchronous processes
representing users and the service portal would consist of
a buffer for P . Each pi for a user would respond with a
1 if the user’s feature has changed, 0 if unchanged, and b
denotes the request is still pending. The goal of P would
be to have a response of 0 for all users, indicating that the
portal has the correct mapping of users to features. However,
if a single pi fails without notice (e.g., the user’s network
connection gets dropped), then no such P can exist [10].
Thus, if users are granted asynchronous access to the service
portal, no protocol involving the portal and FMS can exist
that guarantees constraint evaluation is correct. Therefore,
by contradiction, correct evaluation requires synchronous
access.

Corollary 2.1: Given a deployment with asynchronous
feature monitors, correct proximity constraint evaluation
cannot be enforced.
Proof: Similar to the preceding.

The above results address the effect of limitations of com-
munication channel between users and FM/FMS on correct
evaluation of proximity constraints. Inconsistency in constraint
evaluation may also stem from asynchronicity of communi-
cation between the components of our architecture. That is,
assuming that the channel between users and FM/FMS is
synchronous and FMS has all correct mappings, it is still not
possible to achieve correct evaluation of proximity constraints.

This is because by the time the proximity evaluation decision
reached RM and RM accepts/denies the request, the feature
mapping of some user may have changed in a way that it
changes the outcome of proximity constraint evaluation. The
following theorem proves this result.

Theorem 3: Assuming communication between RM, AS,
and FMS is asynchronous, it is impossible for a deployment
with feature monitors to guarantee correct evaluation of
proximity constraints, even if the monitors have synchronous
access to FMS.7

Proof: Similar to the preceding Lemma, except the consensus
protocol is now to be executed between the principals of
our architecture. That is, as communication between RM,
AS, and FMS is asynchronous, these three principals cannot
achieve consensus. Formally, let σ = 〈σ1, . . . , σn〉 denote a
sequence of events in the evaluation of the constraint and the
resulting data exchange. Assume FMS completes evaluation
at σi and sends the result at σi+1 to AS, who forwards the
result to RM at σi+2. Let σ̂i+2 denote the reception by FMS
of a message from some FM that would change the result of
the proximity evaluation. As communication between FMS
and FM is independent from communication between AS and
RM, σ̂i+2 can occur simultaneously as σi+2. As such, when
RM grants (or denies) access at σi+3, the proximity constraint
may evaluate to a different value. Hence, the principals cannot
achieve consensus, and correct policy enforcement cannot be
guaranteed.

We wish to emphasize that these impossibility results do
not mean that one cannot build a proximity-based RBAC
system that functions correctly. Rather, any such system will
have brief moments when policy decisions will be incorrect.
Specifically, when a user-feature mapping changes at the same
time that a related constraint is evaluated, a race condition
occurs. For instance, in geographical proximity, if a policy that
requires the presence of a supervisor is evaluated immediately
after the supervisor enters the room, it is possible that the sys-
tem would have a false negative, denying access unnecessarily,
as the supervisor’s new location had not been propagated to the
FMS yet. Thus, designers of proximity-based RBAC systems
should account for such cases.

Best-guess protocols: Despite these impossibility results,
system designers can achieve generally accurate proximity
constraint evaluation, provided one can tolerate brief moments
of erroneous results. We refer to this phenomenon as a best-
guess assumption. The general approach is that communication
proceeds as illustrated in Figure 1. In addition, FMS stores a
cache of the most recent proximity queries for continual re-
evaluation over a designated period of time. The frequency of
the re-evaluation would be an application-specific parameter.
Within the designated time window, if the constraint evaluation
changes, FMS would forward this new information to PDP. If
this result changes the policy decision, PDP would inform the

7One should be careful to note that Theorems 2 and 3 are not contradictory.
Rather, Theorem 2 disproves, in essence, the converse of Theorem 3.

PEP, which would revoke access accordingly.

IV. RELATED WORK

Role based access control (RBAC) [20] is a permission
model that grants access based on roles that users have as
a part of an organization. Several extensions to RBAC have
been proposed that attempt to incorporate various contextual
factors while making access decisions. Previous works have
incorporated location [8], [16], [13], [1], [19], [3], [2], [7],
[4] and time [1], [3] of the user requesting access as a factor
in decision making. Prox-RBAC [17] extended the notion of
spatially aware RBAC to consider the relative locations of
other users within an indoor space model [15], [14], and
is the closest paper to the current work. However, Prox-
RBAC relied on an intuitive, informal notion of proximity
that allowed for surprising and contradictory interpretations
of proximity; furthermore, Prox-RBAC focused exclusively on
the geographic realm, whereas our own work is applicable to
a wider range of contextual factors.

While Prox-RBAC is unique in combining proximity con-
straints with RBAC, it is not the first work to consider
contextual similarity between users when requests are eval-
uated. TMAC [11] incorporates contextual information into
team-based access control by actively monitoring ongoing
interactions. PBAC [9], [12] models focus on efficiently grant-
ing authorizing emergency service providers in time-critical
settings. However, all of these works are restricted to the
geographic realm, unlike our own.

V. CONCLUSION

In this paper we have explored various notions of prox-
imity. Specifically, we have discussed five types of proximity:
geographical, attribute-based, cyber, social and temporal. We
have developed a formal model of proximity that is generic
enough to specify all these types of proximity. We have
presented theoretical results illustrating the challenges inherent
in implementing a proximity-based RBAC system, and we
have also described approaches to overcome these difficulties.
In summary, we argue that it is feasible to deploy a practical
proximity-based RBAC system for a variety of contextual
factors.

VI. ACKNOWLEDGMENTS

The work reported in this paper has been partially supported
by a grant by Sypris Electronics.

REFERENCES

[1] S. Aich, S. Sural, and A. K. Majumdar. STARBAC: Spatiotemporal role
based access control. In OTM Conferences, 2007.

[2] V. Atluri and S. A. Chun. A geotemporal role-based authorisation
system. In International Journal of Information and Computer Security,
volume 1, pages 143–168, 2007.

[3] S. Chandran and J. Joshi. LoT RBAC: A location and time-based RBAC
model. In Proc. of 6th International Conference on Web Information
Systems Engineering (WISE), pages 361–375. Springer-Verlag, 2005.

[4] L. Cirio, I. F. Cruz, and R. Tamassia. A role and attribute based access
control system using semantic web technologies. In Proc. of 2007 On
the Move to Meaningful Internet Systems - Volume Part II, OTM’07,
pages 1256–1266, Berlin, Heidelberg, 2007. Springer-Verlag.

[5] E. Clementini, P. D. Felice, and P. v. Oosterom. A small set of formal
topological relationships suitable for end-user interaction. In Proc. of
3rd International Symposium on Advances in Spatial Databases (SSD),
pages 277–295, London, UK, 1993. Springer-Verlag.

[6] S. A. Cook. The complexity of theorem-proving procedures. In Proc.
of 3rd Annual ACM Symposium on Theory of Computing, STOC ’71,
pages 151–158, New York, NY, USA, 1971. ACM.

[7] I. F. Cruz, R. Gjomemo, B. Lin, and M. Orsini. A location aware
role and attribute based access control system. In Proc. of 16th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (ACM GIS), pages 84:1–84:2, New York, NY, USA,
2008. ACM.

[8] M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca. GEO-RBAC: A
spatially aware RBAC. In ACM Transactions on Information and System
Security (TISSEC), 2007.

[9] S. M. Didar-Al-Alam, H. Mahmud, and M. A. Mottalib. Modifications in
proximity based access control for multiple user support. International
Journal of Engineering Science and Technology, 2:3603–3613, 2010.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32:374–382,
April 1985.

[11] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K. Thomas. Flexible
team-based access control using contexts. In Proc. of 6th ACM
Symposium on Access Control Models and Technologies (SACMAT),
pages 21–27, New York, NY, USA, 2001. ACM.

[12] S. K. S. Gupta, T. Mukherjee, K. Venkatasubramanian, and T. B.
Taylor. Proximity based access control in smart-emergency departments.
In Proc. of 4th Annual IEEE international Conference on Pervasive
Computing and Communications Workshops (PERCOMW), pages 512–,
Washington, DC, USA, 2006. IEEE Computer Society.

[13] F. Hansen and V. Oleschuk. SRBAC: A spatial role-based access control
model for mobile systems. In Proc. of 8th Nordic Workshop on Secure
IT Systems (NORDSEC), pages 129–141, October 2003.

[14] C. S. Jensen, H. Lu, and B. Yang. Graph model based indoor tracking.
In 10th International Conference on Mobile Data Management (MDM),
pages 122–131, 2009.

[15] C. S. Jensen, H. Lu, and B. Yang. Indoor–a new data management
frontier. IEEE Data Eng. Bull., 33(2):12–17, June 2010.

[16] M. S. Kirkpatrick and E. Bertino. Enforcing spatial constraints for
mobile rbac systems. In Proc. of 15th ACM Symposium on Access
Control Models and Technologies (SACMAT), pages 99–108, New York,
NY, USA, 2010. ACM.

[17] M. S. Kirkpatrick, M. L. Damiani, and E. Bertino. Prox-RBAC: A
proximity-based spatially aware RBAC. In Proc. of 19th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information
Systems (GIS), pages 339–348, 2011.

[18] Oasis. Oasis extensible access control markup language (xacml) tc.
Spring, 2009(May 5):1–16, 2004.

[19] I. Ray, M. Kumar, and L. Yu. LRBAC: A location-aware role-based
access control model. In Proc. of Internation Conference on Information
Systems Security (ICISS), pages 147–161, 2006.

[20] R. Sandhu. Role-based access control models. In IEEE Computer, Feb.
1996.

