
Adaptation of Single-user Multi-touch Components to

Support Synchronous Mobile Collaboration
Mauro C. Pichiliani and Celso Massaki Hirata

Department of Computer Science

ITA - Instituto Tecnológico de Aeronáutica

São José dos Campos, Brasil

{pichilia,hirata}@ita.br

Abstract - Mobile applications, which include calendars,

browsers, and text editors, are part of our lives nowadays. Most

of the mobile applications are single user, i.e. they do not allow

the cooperative work of group of users simultaneously.

Adaptation is a technique to transform single user application

into cooperative one. A form of adaptation is based on the reuse

of the manufacturers’ SDKs (Software Development Kits). In

general, adaptation is made manually; nonetheless, we conjecture

that some automation is possible. This paper investigates this

possibility for mobile applications by assuming that the target

SDK’s components comply with certain design guidelines. We

present a reference model to develop collaborative mobile

groupware applications by the modification of multi-touch user

interface components provided by the manufacturers’ SDKs. We

also present a process to convert and adapt those components.

We discuss two examples that illustrate our proposal.

Keywords: multi-touch, mobile, collaboration.

I. INTRODUCTION

Device manufacturers, dotcom companies, and
telecommunications carriers have provided many resources and
business opportunities that motivate developers to create,
publish, and distribute mobile applications. The current
communication and computation infra-structure for mobile
devices enable the collaborative work; i.e. users working
together on tasks and pursing a common goal at distinct places.
Real-time collaboration occurs when the users perform
simultaneously some cooperative work, such as synchronous
editing. The support for real-time collaboration that allows
interaction among geographically distributed participants at any
place is still a considerable software engineering challenge due
to the effort required to support properly the collaborative
requirements. Collaborative requirements include low
communication latency, awareness widgets, coordination
mechanisms, concurrency control techniques and others.

The mobile collaboration’s environment presents a broad
range of use of technology, novel social practices and
behaviors, and has potential for the exploration of the different
roles that cooperation, communication, and coordination
provide. Our work concentrates on the technical aspects of the
design, architecture, and organization of the mobile
application’s components.

The choice to focus on multi-touch components is due to
the fact that they are the most employed interface components
nowadays. Another reason is that previous research efforts
show that they allow user interactions more suitable to
synchronous collaboration.

Although the current SDKs (Software Development Kits)
provided by the two most popular mobile platforms, Android
and iOS, contain many components organized as standard
application architecture, the development of groupware in
mobile context is a challenging activity as it involves the
understanding of both technical and social factors. Some
research strategies to support collaborative features in mobile
applications include toolkits, Transparent Adaptation, and
Component-based development. These approaches aim to
reduce the design effort, but none of them focuses directly on
the automatic modification of the component's source code
organized in a specific architecture style.

We propose an extension to an abstract component model
for developing mobile groupware applications based on the
modification of the user-interface components. In order to
guide the developer that is adapting the application we propose
a process to construct prototypes of mobile applications with
collaborative requirements.

The rest of the paper is organized as follows. The next
section describes the existing approaches to create
collaborative applications. In section 3, we propose an
extension of the abstraction model, based on MVC, for
groupware application development, its technical
characteristics, design, and architecture. In section 4, the
component modification process is presented with two
examples of adaptation using the proposed process. The
examples aim to verify that our approach is sound. Section 5
presents an evaluation of our proposal. Finally, we conclude
with a summary and directions for future work.

II. RELATED WORK

The traditional research strategies to support collaborative
features into existing applications are based on the classical
techniques ad hoc modification [1, 9, 17, 18], Toolkits [3],
Transparent Adaptation [6], and Component-based
development (CBD). A technical comparison of these
approaches is presented by Pichiliani and Hirata [12].

The ad hoc modification, Toolkits, and the Transparent
Adaptation approaches reduce the design and development
effort, but they do not provide systematic features for the
automatic modification of the component's source code
organized in a specific architecture style. Also, they demand
considerable development and design efforts that result in
restricted collaboration styles.

The CBD approaches have been the focus of many research
efforts from the replacement of components [4] to new

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250449

frameworks [15], plug-ins [13] and architectures [5, 16]. They
represent the state of the art software engineering techniques
that alleviate the effort demanded for the development of
mobile applications.

Among the existing CBD approaches that address the
modification of legacy applications to support collaborative
features, the EXEC Framework [7] is an abstract model for
groupware applications and also a semi-automatic
transformation tool that converts existing components to
support collaborative requirements. The approach focuses on
components structured according the MVC (Model-View-
Controller) architectural style. MVC is a widely used
architectural style that separates the data underlying the
application (the Model) from the input handling code (the
Controller) and the display maintenance code (the View).

Although all the aforementioned approaches provide a gain
in terms of development effort, in general, they do not suffice
to meet the collaborative requirements due to the high level of
customization required by them. Therefore, some level of ad
hoc modifications of the source code to change the services
provided by the components according to the collaborative
requirements is required.

III. THE MULTI-USER MVC MODEL

This section describes the Multi-user MVC Component
Model followed by the presentation of the abstractions,
simplifications, and modeling elements based on the existing
Shared Component Model [7]. We focus on the characteristics
of the model including global identification, interception point,
coordination services, composite structures, and property
changes. The following subsection comments the specific
details of the model implementation on the Android and iOS
platforms. Then the aspects of the component's design are
presented from the perspective of the features they should
support. Finally, the characteristics of synchronous
collaboration infrastructure are described from the replicated
architectural standpoint.

A. The Model

We propose an extension and some adaptations of the
abstract collaboration model from groupware applications
presented by Li et al. [7]. The extension focuses on the mobile
platform and the MVC architectural style. In some aspects our
model reuses and combines many features and strategies
employed by the approaches described in the previous section.

The reasons to choose MVC are two-fold. MVC is the most
accepted architectural style to organize the components of
mobile applications. MVC also provides the developers with a
common framework for single-user architecture. This is
corroborated by fact that the current mobile's SDKs
recommend that developers organize the structure of the
applications and their components according to MVC.

Applications built with the MVC architectural style are split
into three parts: Controller(s) responsible for input handling,
View(s) responsible for output, and Model that implements the
underlying application and data. Controller(s) translates user
inputs into updates to the Model state. When the state is

modified, Model notifies View(s) that view updates may be
necessary. View(s) then recomputes what (if any) display
updates must be made. This architecture style frees Model from
details of how View(s) are updated, and frees Controller(s)
from having to determine which View(s) must be modified as a
result of user inputs.

Starting from a generic MVC-based application, we can
assume that a logical and consistent distribution of functional
components on the application has been made. For the View
part it is common to find elements that handle the display of
data and allow the capture of the user interactions with the
Graphical User Interface (GUI). The Controller part contains
components that handle data validation of the user inputs and
management of the single-user’s session data. The Model part
usually contains persistence and customized components that
represent specific domain rules. Infrastructure components are
spread across all the parts of the architectural style.

Fig. 1 shows the traditional single-user MVC architecture
style and our reference model with the MVC parts mapped
inside the original Shared Components Model. In this
extension, named Multi-user MVC Model, the groupware
application contains GUI elements, which display replicated
data for each user by the multi-touch and multi-user interface
components contained in View(s). The data flow occurs by the
interaction of the user with multi-touch controls such as
buttons, text boxes, radio buttons, maps and others that contain
data object structures. The multi-user aspects of these controls
require changes and modifications on the Controller(s) and
View(s) parts, thus the components are grouped as the
Modified Collaborative Components label shown in Fig. 1.

Figure 1. (a) Single-user MVC and (b) the Multi-user MVC model (b). In (b)

the MVC is mapped over the original component model proposed by Li et

al.[7].

The collaborative components in our model are found in the
Views and the Controllers parts, since mobile applications
separate their features in more than one pair of
View/Controller. If we model the components of the Model
part as Persistence, Domain rules and Application Model our
reference model must not consider them as components that are
involved directly in the collaboration because they do not
contain the original data objects handled by the user-interface
controls, which are the main data that the model aims to share.

As in the original model, we also consider a runtime system
that dynamically provides access to services such as event
interception and execution, events broadcasting and
notification, data replication and persistence, session
management and network communication. We model this
runtime system, named Collaboration functions, as a group that
encloses the Controller(s) of the application.

One important aspect that must be taken into consideration
is the fact that most multi-touch components do not separate
the data and the control with well-defined interfaces as required
by the original abstract component model. However, they
provide means to obtain the data that must be replicated and the
mechanisms to modify how the component interacts with the
user through events, methods and properties.

To better understand how the local communications flow
between the components let us consider a graph editor
application as an example. This application has a View that
contains user interfaces to work with the edges and vertices of
the graph being edited. The Model contains a data structure that
stores the graph's edges and vertices along with other
information. Controller handles events that perform actions
such as the creation, update or deletion of edges and vertices.
When the user wants to create a new edge, she interacts with
the interface of View that produces an event to be handled by
Controller. Controller sends a message to Model that updates
the internal data structure that represents the graph. Model also
notifies Controller and View that a new edge is persisted and
can be visually presented on the user interface. A similar
interaction between the parts occurs when an element (vertices
or edge) is changed or excluded upon user's commands in the
application interface. This example describes a local processing
that happens between the MVC parts.

Our model represents the components of the Model part by
its functional features, i.e. Persistence, Domain Rules and
Application Model. These components contain core
programming logic and inner working algorithms required for
the correct data manipulation according to the application
requirements. Unlike the traditional approaches, our proposed
model considers that the replication of the user interface data
are handled directly by the Controller(s) components and the
Model components are not involved for data synchronization.
This approach may lead to a number of conceptual and
technical problems such as data that is not represented in user
interface components or the synchronization of applications
that adapt GUIs on different devices.

We consider that the only data demanded to be replicated
by our pre-defined collaboration style is held at Controller(s)
and View(s) and not in the Model part. For instance, suppose
that in the graph editing application, Model contains a

component with the following domain rule: the value for a
property associated with an edge cannot be less than a specific
value computed from an internal algorithm, such as the logic
employed for fluid flow control analysis on graphs. This rule is
coded inside the Model’s components and its logic and internal
data do not need to be replicated since only the original value
stored with the edge is relevant for our collaboration style. The
synchronization of the value stored in the edge of the graph and
collected by a GUI control reflects the data change to the
Model components of the other users in the collaboration, thus
the same data value is sent to the Model at a remote site that
performs the correct domain rule execution. Furthermore, the
data that is not stored within the properties of the user interface
components is not an issue according to the defined
collaboration style that our model and process focus on.

The synchronization of data for GUI elements that depend
on specific characteristics of the device is not addressed
directly by our model since this synchronization is handled by
the concurrent control mechanism chosen for each UI element.
The fact that the same control is represented in different ways
for each device involves the aspect of dynamic generated GUI
controls. This aspect is a technical issue that our automated
modification process handles by scanning, analyzing, and
considering the possible ways that dynamic GUI controls are
rendered in the user interface of the device when the
application is being executed. Also, our modification process,
as described in the next session, contains a repository of
control’s template that catalogs required event modifications,
mapping of properties, and behavior of the user interface
elements separated by each variation of device for the same
platform that can occur when the same application is adapted
for different devices. At the worst case scenario, when the
automated modification process cannot detect the creation of
dynamic GUI components, the process highlights the source
code area to be manually changed and provides means to
implement ad hoc modifications on the main events of
Controller(s) that handles data manipulation for dynamic
generated GUI controls.

B. Required Data Object Characteristics

One aspect that must be detailed in our model is how the
data object structures of the user-interface components are
accessed, replicated and modified to support synchronous
collaboration. The model addresses the data object replication
aspects by describing five required characteristics in the
component model referred to as global identification,
interception point, coordination services, composite structures,
and property changes.

The global identification characteristic deals with changes
in the property of components that must be eventually applied
in all replicas to maintain consistency across cooperating sites.
Therefore, any distributed environment infrastructure must be
able to uniquely identify divergent instances of the same shared
data component.

Since we deal with a well-structured application with
components already separated by the MVC, the global
identification characteristic is maintained in our abstraction and
we extend it further by modeling that besides the component

global identification we also must be able to globally identify
the component by a full description of the container (i.e. the
specific View or Controller), the application device, the
platform, the collaborative session and the users. To achieve
this goal we propose a fully-qualified global identification that
allows the developer to rapid access all the path for reaching
the required data. For instance, a device D that runs on the
platform P is executing the application A that is in the
collaborative session S when the user U changes the property R
with the value E of the component C stored in the View V. The
complete fully-qualified global identification for this scenario
could be accessible by the developer in the form of a suitable
object notation similar to D.P.A.S.U.V.C.R.E.

The interception point characteristic is seen as a mechanism
supplied by the component to allow read and write access of
the properties values in order to reflect the user interaction with
the GUI. It is a common practice to implement coding
techniques that creates a hooking point allowing the
interceptions of properties changes before and after they take
the desired effect that the component perform on the data.

One specific aspect that originates from the MVC
architecture style concentrates on the mechanisms for
communication of data and events from the three parts of the
application. Our modeling builds upon these mechanisms in
such a way that data are sent though updates, notifications, and
requests already performed between the components of the
Model, View(s) and Controller(s) parts of the application.

The coordination services are the mechanisms responsible
for the implementation of different techniques involved in
coordination of work according to the data and the adopted
style of coordination, i.e. pessimistic or optimistic concurrency
control techniques. We keep our model flexible enough to
support the coordination services similar to the ones presented
in the components provided by the Flexible JAMM [4] and we
also follow the design recommendations proposed by the
design of an API as in the Transparent Adaptation approach
[8].

An object representing some user-interface component may
recursively contain many other objects with different structures
and requires its own way of expressing the relationships
between the internal objects. This is especially true for multi-
touch components that do not have a clean and simple
separation of data and control as indicated by Yang and Li [19].

Some standard components available to the developers in
the SDK have to follow specific rules to communicate their
data through the internal MVC component’s structure of the
control, thus increasing the design and developer effort to read
and write the data inside the underlying object structure. For
instance, a visual component that allows the selection of an
item in a list demands some lines of code to connect the View
part of this control to the Model part and also the manual
assignment of the control’s instance to a variable that allows
the programmer to access the data object structure via
properties. However, the source code is available and the
application is already built so all the required coding
infrastructure for the component is ready and can be accessed
by the recommended public interface and mechanisms
provided by the SDK.

The property changes characteristic focuses on
distinguishing the type of property that a component possesses,
i.e. the components have properties that allow the replacement
of an old value with a new one or properties that allow
incremental changes. This abstraction is based on the fact that
the mechanisms for replication and concurrency must know the
interface so they are aware of how properties work and how to
handle different types of data reading and writing.

Unlike the original approach, our model does not require
differentiation of properties since we do have the source code
and most user interface components we focus on communicate
of the properties changes in organized and systematic ways,
which are implemented with well-known techniques that glue
the parts of Model and View thus abstracting the details to
obtain and change property values.

C. SDK Specific Details

Nowadays the two main platforms for mobile development
are Android and iOS. In order to understand how to employ the
Multi-user MVC Model and the automatic component
conversion tool one must first understand how the SDK of
those platforms organize the application and its components.

The implementation of a new mobile application begin
from a starting point that is usually a new empty project based
on an existing template provided by the IDE (Integrated
Development Environment) that comes with the SDK. While
the documentation and the official development guidelines
recommend this step, many developers create their own custom
project with specific organization of the components or
instantiate a third-party framework. In these scenarios our
automatic conversion process is not able to automatic recognize
the required components and modify them. Therefore, a pre-
condition to implement our model and employ the automatic
component conversion process, described in the next session, is
to follow the standard development practices and use the
library provided by the SDK for default application creation.

Both Android and iOS platforms structure the application in
the MVC style. In general, they rely on XML files that contain
the user-interface components definitions represented as tags
that allow the customization of the visual and functional
properties of the component. To address the dynamic aspects it
is required to link the components to a section in the source
code where the developer can program the components’
behavior. The Views are represented by XML files that are
connected to a specific class of the project allowing the
developer to access all the components by the source code of
the class that corresponds to the Controller. The Model part is
implemented exclusively with other source code files of the
project.

The Android platform uses the Java language and has the
concept of Activity that corresponds to a View representing a
single screen within the user interface. For example, an email
application might have three activities: one to show a list of
new emails, one to compose an email, and one to read emails.
Although the activities work together to form a cohesive user
experience in the email application, each one is independent of
the others. As such, a different application can start any of
these activities (if the user has the correct access rights). For

example, a camera application can start the activity in the email
application that composes new mail, so that the user can share a
picture via email.

The applications developed for the iOS platform rely on the
Objective-C language and have a clear separation between the
GUI (the View) and the actual code that provides the
application logic (the Controller). In general, each View has a
ViewController class behind it that reacts to user-interface
events such as button presses, table row selection, or tilting the
device. As in the Android platform, the View and the
components are defined in a XML file called nib, whereby the
developer creates the description of the GUI he/she is building.
The developer also needs to connect the nib file to the
ViewController class allowing hooking points to handle the
event’s behavior of the View elements.

Although our approach focuses on the implementation of
synchronous collaboration features in existing applications for
the Android and iOS platforms, our model and process are not
limited by the UI elements provided by the SKDs/IDEs for
mobile development. By performing some adaptations it is
possible to extend the abstractions, modeling elements and the
systematic modification process to other contexts where the
synchronous collaboration features may benefit the group
work. Here we concentrate our efforts on the mobile platforms
due to the large established database of applications found on
the online app stores, the exploration to provide social aspects
in mobile scenarios, and collaboration opportunities to not only
support traditional cooperation, communication, and
coordination requirements but also promote novel approaches
to those collaborative features.

D. Collaborative Component Design

The multi-user version of the user interface components are
based on the existing controls of the GUI provided by the SDK
and available to mobile application developers. The
modifications to make them collaboration-aware should be
based on a pre-defined collaboration style in order to simplify
and reduce the design and development effort required to create
prototype applications with simple collaborative features
restricted to the user-interface controls.

Traditionally work on Transparent Adaptation and other
CTS (Collaboration Transparent Systems) [17] focuses on
applications that allow the editing of documents, most notably
the collaborative editing of text by transforming and converting
single-user editors to multi-user applications. The Flexible
JAMM [4] is an exception since it provides a complete network
infrastructure and replacement classes to switch standard
controls for collaborative ones in the Java platform whereby
the components of the graphic library Swing are employed.
Here we follow this approach in the sense that our modified
controls present a pre-defined collaboration style that is
implemented automatically in the development phase by direct
modification of the source code.

Following the Flexible JAMM approach, the system must
allow collaborators to work together closely or independently.
To that end, the system should support the features that
include: (i) Simultaneous work when desirable; (ii) Use
implicit floor control as the default, and allow explicit control

when required; (iii) Location-relaxed WYSIWIS; and (iv)
General group awareness information.

The component design also should maintain all the existing
features to keep the user expertise and experience with the
application. To illustrate the final behavior of the components
suppose we have a simple mobile application that catalog
books read by the user. This application contains two Views:
one for listing the books already read and another View for
inserting and editing book information. Both Views contain
standard controls such as buttons, text boxes, date pickers and a
list that shows the books as items that can be selected.

In our approach the main user interface components must
retain its existing features if the user does not want to
collaborate, thus keeping the application the same. If the user
starts a collaborative session the controls must be collaboration
aware. In this scenario the text boxes must allow multi-user
editing, the buttons must allow any user in the session to press
them and the list should allow local and remote users to select
items. The specific awareness, group information, concurrency
control and relaxed WYSIWIS are available to each control in
a standard setting, i.e. already defined, but it is possible to
change these settings in execution time.

The standard settings for the collaboration controls are
based on the multi-users features of Flexible JAMM. However,
we do not provide specific awareness widgets such as radar
views or telepointers, since our goal is to keep the user
experience with the application that the users already have.
Also, the insertions of such awareness widgets require layout
and aesthetic considerations that could not be suitable to
existing mobile applications, thus specific design is
recommended in order to accommodate those widgets.
Nonetheless, since we do change the source code directly, our
approach still keeps the option to manually change the
appearance, behavior and other aspects according to the
developer and designer requirements.

Multi-touch controls can provide new styles of interaction
when they allow more than one user at the same time. These
controls represent possibilities to interact and perform gestures
together by considering local and remote gestures in the
interface that can increase the awareness and yield a further
sense of collaboration. For instance, the traditional pinch or
spread gestured required for zooming out and zooming in an
image, respectively, can now be performed by a pair of users
that must coordinate and collaborate to reach the desired
visualization effect on the image. While we believe that this
scenario can confuse users at first, the collaboration at the
control level for mobile applications presents interesting
possibilities that already have been explored in others contexts
such as table-touch interactive surfaces [11].

E. Synchronous Collaboration Infrastructure

The implementation of the requirements that share the
object data to adapt existing controls for multi-user interaction
is addressed in our model by a runtime system that contains
features for event handling (interception, execution,
notification, and broadcast), data replication, concurrency
control, serialization and deserialization of objects, and session
management. The source code of this runtime layer is

automatically injected in the application and it is the
synchronous collaborative infrastructure needed to perform all
the implicit data communication among the participants of the
same collaborative session.

The replicated distributed architecture is highly
recommended to foward the actions that change the Model and
to handle the collaborative sessions across remote sites since no
structural modifications are required to the MVC architectural
style. The host server of the replicated architecture, hereafter
referred to as the Collaboration Server, is based on a
client/server architecture hosted in a server computer. It
encapsulates from the developer all the technical details
involved in sharing the components and their property changes
by employing additional support from the environment that the
components lives in.

Fig. 2 shows the distributed replicated architecture of our
runtime infrastructure where two users are communicating with
the Collaboration Server by sending local changes in their
Models to the Master model and receiving notifications from
the server’s Model. The runtime infrastructure wraps the
Controller(s) and View(s) parts of the application and it is the
software layer that provides communication through the
network between the local and remote devices with the
Collaboration Server.

Figure 2. Replicated architectural view for two mobile users with a modified

MVC application collaborating over a network.

The Master model is created from a subset of the main
classes and components found on the Model part of the
application. This subset is abstract enough to contain the
property changes that must be forwarded to all participants and
handle data replicas, concurrency control data structures and
operations, session management, and security features. The
development of the Master model must be guided by the
possible collaboration styles that the multi-user version of the
application is based on, including how to support the
coordination and cooperation requirements. Traditional
technical challenges of the mobile platform, such as
connectivity management, ad hoc routing, dynamic service
discovery, limited bandwidth, unreliable synchronicity among
the devices, and network communication in heterogeneous
networks also are addressed by the Master model.

The Master model is dependent of the local Models in a
sense that it forward and exchange data instead of centralizing
all the data/state inside a single Model. This approach may
cause a lack of synchronization among the local and remote
collaborating users, but it provides a flexible operation of the
application when they are not collaborating. Only a set of the
Model features found on the application is implemented in the
Masters mode instead of the duplication of the entire
application’s Model.

From the components’ perspective the fully-qualified
global identification id is assigned when the object that
represents the user-interface control is instantiated. Next, the
concurrent control mechanism chosen decides how to apply
property changes on all data replicas. Then the property
changes are pushed over the network to be applied on the
modified collaborative components. Due to the fact that
property changes are intercepted by the runtime infrastructure
at distinct event levels, e.g. key pressed, mouse moved, and
tilted device events, both pessimistic and optimistic
concurrency control can be implemented. The runtime
infrastructure is responsible to accommodate late-joining users
and synchronize their sessions by using a combination of the
direct state transfer and event history replay techniques [6].

By employing a replicated architecture with a Master model
that is updated when the local modifications are broadcasted by
the collaborating users it is possible that some participants may
lose the synchrony between their local Models and the Master
model at a given moment, thus generating an inconsistent
collaboration state. This effect can be mitigated by the
concurrency control mechanism employed and by the use of a
social protocol that supports the negotiation of actions through
the communications channels found in the mobile devices.

IV. THE PROCESS FOR MODIFICATION AND ADAPTATION

The process that converts and adapts the user-interfaces
multi-touch components of an existing mobile application in
order to support collaboration requires that the specification of
how the collaboration takes form must be already well defined
by the developers. This is valid for almost every automatic
process that performs actions when the goal is to alleviate the
developer's work by reducing the development time and effort.
The amount of automation that can be performed, especially
those that involve generation of source code, can be seen as a
function of how accurate the specification reflects the
requirements that are addressed by the application's features.
We stress that even with a pre-defined collaboration style and
the options available to customize the collaboration behavior,
the specification and the needed expertise on the domain must
be anticipated and obtained before any automatic or manual
developer action for the implementation of collaborative
features is carried out.

Starting from our requirements regarding the availability of
the source code and the organization of the application
according to the MVC architectural style, we develop a
process, named MVC UI Component Modification Process,
which specifies the sequence of activities required to apply the
transformation in the interface components. By following the
activities of the process, the developer can reuse applications
saving both time and effort when creating prototypes that allow
synchronous collaboration.

The adaptation process is depicted in Fig. 3 as an UML’s
activity diagram where each activity is linked to commentaries
that describe its inputs and outputs. In the following, we detail
the activities from the perspective of the developer that want to
adapt existing projects. In order to describe and facilitate the
understanding of how to apply the process, the inputs and
outputs of each activity are detailed by applying it to a simple

case study mobile application that catalog books read by the
user. This application contains two Views: one for listing the
books already read and another View for inserting and editing
book information.

Figure 3. The MVC UI Component Modification Process.

The process starts by loading the application source code
from the project files. Since we aim to convert existing
applications we suppose that they have already been created by
the recommended IDE (Integrated Development Environment)
provided by the platform, so we take advantage of the existing
structure and load all the required source codes, resources,
XML configuration files, manifests, project, and other files that
compose the entire project. This activity only requires that the
user informs the path that contains the files created by the IDE
during the original development phase. The platform (Android
or iOS) identification of the project is performed at this stage,
therefore automatically preparing the further activities of the
process accordingly.

Our book catalog application is based on the Android
platform and was developed using the Eclipse IDE. This
application was created by the standard mobile application
template that automatically created a project root folder with
subfolders named assets, bin, gen, res and src to store the
application resources. In this first activity we must provide the
project root folder as an input and expect the loaded project in
memory as output.

The next activity injects the source code files of the
infrastructure demanded for remote collaborative features with
all the programming elements (classes, methods, events,
delegates, and others) needed to exchange the data with remote
applications and the Collaboration Server. This activity also
injects a new menu option and a View/Controller pair that
allows the configuration of network-related authentication and
collaboration aspects.

The injection of the infrastructure runtime source code does
not require any user input besides the source file that already
has been provided in the previous activity. This step finds the
application's main Activity, adds a new option in the menu bar
of the application (or creates a new menu bar if it does not
exists), inserts a new activity (a View), and injects two source
code files responsible to handle network communication.

Immediately after the injection of the infrastructure runtime
layer, the next activity of the process inspects the project files,
finds each interactive user-interface multi-touch control in each

view and marks them to be modified latter. This inspection
activity identifies the View, the Controller, the objects that
represent the control, the events and also other elements such
as its scope, visibility and visualization properties in order to
select only the GUI elements that need adaptation for
collaboration. This activity does not require any user input and
produces an internal data structure filled with locations of the
View and GUI components that are used in the next activity.

The actual modification on the selected GUI components is
performed in the following activity of the process. The
modifications for each type of component are stored in a
template repository that contains the required event
modifications that are injected directly in the source code in a
control-by-control basis. Again, the modifications provide a
pre-existing collaboration style according to each control, but it
is possible to customize and configure later on the behavior of
the controls such as a specific concurrency control technique,
the amount of replicated events and other control interactions
that affect collaborative aspects.

This activity automatically modifies the delete button in the
list contained in the first activity and modifies all the text
boxes, buttons, sliders and date time pickers in the book editing
View. The definition of how to modify these components is
stored in the events repository provided by the process and
does not require any user input. The output of this activity is
the changed source code files that represent the Control part of
the GUI components.

The following activity is the one that does the compilation
of the project. This activity relies on external tools for
performing automatic builds and also executes any test suite
that the developer created. The necessary commands to
compile and build the application should be stored in a XML
configuration file or provided by the user in the form of
command-line parameter since the tool that materializes the
entire process accepts this form of execution. If the build fails,
the process flow is redirected to the activity that shows to the
user the report with compilation errors including detailed
information about the problems in the compilation (compiler
error, line numbers, callstacks etc), step by step guides to
manually implement the needed modifications for synchronous
collaboration, recommendations for refactoring, and
suggestions provided by static code analysis tools. If the build
succeeds the next activity that generates a XML configuration
file is performed.

The compilation activity requires a XML file as input for
the automatic build and test process. The result is a text file that
contains the building and testing results with a flag that
indicates if the build process returns successfully or not.

The next activity creates a XML configuration file for the
entire project that describes all the automatically modified GUI
components and their default values for the control’s behavior.
This file is stored within the application project and at the first
collaborative session it is uploaded to the Collaboration Server.
With the configuration of the components stored in the
Collaboration Server the developers can change some aspects
of the component by modifying behaviors in execution time
without redoing all the process activities again. However, if the

developer changes the user interface the entire process must be
followed from the first activity.

No manual input is required in this activity and a file named
CTRL.XML is generated with the default collaboration setting
for each control modified, which is the default locking
mechanism for the text boxes, buttons, sliders and date time
pickers of the book catalog application. This file represents the
output of the process and is stored in the project's folder.

Finally, the MVC UI Component Modification Process
finishes by providing a report containing detailed information
covering the modifications performed, the changed and
included files in the project, and the compile and tests results.
This final activity presents a summary to the developers that
can further inspect and modify the source code files in order to
check or review exactly what and where the modifications on
the application were automatically performed.

V. EVALUATION

We manually modified two existing applications according
to our process in order to evaluate our model and the MVC UI
Component Modification Process. In the following sub-
sections, we discuss how we followed the process to change the
applications, how some components behave with synchronous
collaboration, the level of flexibility that is achieved in our
work, and how our approach compares with techniques for
modification of existing applications.

A. The CoMathDoku and CoFingerPaint prototypes

The creation of the first prototype was based on a popular
open source Sudoku application for the Android platform
named MathDoku [10] that was renamed as CoMathSudoku
after the modification of its components. This application is
based on the same rules as KenKen game and is composed of
two main activities: (i) MainActivity which dynamically creates
textboxes for the game; and (ii) OptionsActivity which allows
the modifications of the game options. The GUI elements are
the input textboxes components used to fill the empty spaces
with correct numbers required to solve the puzzle.

The first step of the process, load the application source
code, is trivial since we are using the Eclipse IDE to change the
application’s project. Then, the execution of the second activity
of the process, injection of the infrastructure runtime source
code, is manually made by importing two new classes that
contain the synchronous collaboration infrastructure
components to support the collaboration.

Following our process the next activity involves the
identification of the View, Controller and GUI components.
First, the identification and modification of the textbox controls
demanded the inspection and understanding of the source code
since these controls were created dynamically depending of the
difficulty level of the game, i.e. harder levels created more
controls in a bigger puzzle. Second, each time the user touches
the control it executes specific programming logic in the
OnSelect event to notify the interface that the user is editing the
selected place. Third, the replicated data needed to be carefully
handled to simulate a remote data entry without changing the
focus of the control that the local user is currently positioned.

The modification of the component’s events, the following
activity of the process, demanded the replication of the input on
the textboxes controls of the user interface. The modifications
in the Controller part assume the form of some lines of codes
inserted into the OnSelect and TouchStart events of the
dynamically created text boxes stored in the MainActivity class.
The code inserted is responsible to assign a global
identification id for each control, collect, and transmit the data
value to the other participants in the same collaborative session.
This modification is simple once the exact places, i.e. the
control’s events, needed to be changed are found. We also
changed the Controller to receive the data from other
participants and call new methods that redirect the execution
flow to the local OnSelect and TouchStart events.

Once the modification in the Controller part for a single
text box was made we reused this control in any variation of
the game such as new levels of difficulty and other game play
configurations. The compilation and build activity was
performed directly from the Eclipse IDE that successfully
generated the files necessary to deploy it to a device. Then we
manually performed the last two activities of the process by
creating a XML configuration file for the text box and
reviewing the modified project files.

From this prototype we learn that a single control's
modification can provide enough flexibility and reusability for
the user interface sufficient to cover variations of the game.
The manual creation of this first prototype required the
modification of one class, six methods, and one XML
configuration file. Two new classes were inserted to support
the network communication and synchronization infra-
structure. The overall man-hour effort was 16 hours performed
by a senior Java programmer that spent more than half of the
time analyzing the application before the coding phase. Fig. 4
shows the result of our CoMathDoku prototype where two
users are playing the game.

Figure 4. Two users playing a CoMathDoku game simultaneously.

The second example is the drawing application named
FingerPaint provided by the SDK samples of the Android
Platform [2]. This simple application allows the user to freely
draw using touch and the traditional drag and draw action
performed directly in the drawing canvas area of the
application. The first two activities of the process were
performed in the exactly same way as the previous
CoMathDoku example.

To find the View, Controller and GUI components we
explored the application and found that it is composed of a
single view named FingerPaintActivity. The touch interactions
are handled by the Controller in the touch_start, touch_move,
and touch_up events which perform graphics directives to draw
according to the coordinates of the touch. The main user
interface control in this application is a Canvas object that act
as a drawing area and responds to touch events.

The modifications required the localization and
modification of the programming block for the touch events in
the GUI control that actually performs the drawing. Since this a
free drawing application and there is no elaborated selection or
concurrency actions that could affect user interaction during the
drawing, we did not employ any concurrency control technique
to coordinate the user actions. The build, generation of the
XML configuration file, and report generation activities of the
process were performed manually without further difficulty
since this is a simple example application which goal is teach
new Android developers how to handle touch events.

The manual creation of this second prototype required the
modifications in one class, five methods, and one XML
configuration file. Again, two new classes were inserted to
support the network communication and synchronization infra-
structure. The overall man-hour effort was 10 hours performed
by a senior Java programmer. Fig. 5 shows two users drawing
together with the CoFingerPaint prototype.

Figure 5. Two users drawing together with CoFingerPaint.

Overall, the modifications demanded in this prototype were
classified as simple and were implemented with little effort.
The implementation of the process was performed manually in
order to evaluate the usefulness of the process and learn key
technical issues before turning it into an automatic process that
require little manual adaptation when modifying existing
mobile applications to support synchronous collaborative
requirements. The two applications chosen for the adaptation,
MathDoku and FingerPaint, may be simple and did not pose
significant design and programming challenge for the proposed
modifications, but they represent well the characteristics the of
applications found on the online app stores and provided
valuable insights and relevant programming experience to
show the results of this research.

B. Comparison of the Approaches

The comparison of our approach with other strategies, such
as ad hoc modification, toolkits, Transparent Adaption and
Component-based Development, must consider aspects that
include effort, feasibility, and assessment of the convenience of
that adaptation.

Ad hoc modifications do not provide an application
reference model, systematic code modification, and the
organization of components in an architecture style. The
Transparent Adaptation do not change the source code directly,
therefore the implementation of collaboration requirements are
rather simplistic and focused on screen-sharing. In a sense, the
characteristics of our approach shares more aspects with the
original shareable model proposed by Li et al. [7] than other
strategies due to the details and elaboration of our components’
modification, automation level, and organization. Therefore,
the comparison concentrates in these two strategies.

There are some key conceptual aspects that differentiate our
model from the original Shareable Component Model. First, we
focus only on the data and control features of the GUI
components instead of all the application’s components.
Second, the MVC architectural style is mapped onto the shared
components thus increasing the semantic of the model. Third,
we assume that we have the source code of an existing
application so it is possible to access all the definitions of the
components such as events, properties, interfaces, data
structures and internal members. Fourth, our reference model is
abstract enough to represent multi-touch mobile applications
without being restricted to a set of component models, a
platform or a specific technique to reuse the components.

As with any abstract component model, our approach
imposes restrictions that define which applications can and
cannot be adapted to support synchronous collaboration
requirements. These restrictions are represented by the
abstractions and modeling elements employed that include
organization of components, architectural style, and
synchronization of GUI control’s data. These restrictions must
be met by the applications. Also, the class of the mobile
application that can fit into our approach is a subset of the
general application model represented by the MVC pattern and
that also corresponds to applications eligible for the original
Shared Component Model.

The feasibility and convenience of the adaptation must be
evaluated by the comparison of the resources and effort
demanded to adapt legacy applications. Nowadays the rapid
expanding growth of applications found in online app stores
imply that the time to market should be reduced as much as
possible in order to make the responsible for the development
of a new app a competitive player in this overgrowing market.
Therefore, techniques that alleviates and reduces the
development effort of collaborative features that aggregate
social aspects in already developed and deployed products may
provide a convenient resource for the development phase when
a prototype must be created in timely manner.

Although the argument that the complete re-design of the
single user application to support new collaboration
requirements may be a suitable approach, we believe that re-
design and start-from-scratch actions require more effort,
resources, and time than adaptation techniques. This belief is
supported by our initial evaluation and analysis of previous
research. Further experimental procedures must be conducted
to gather in the field development effort data to validate this
conjecture.

Other aspects regarding the collaborative environment, such
as user privacy, data security, adoption, social behavior, among
others represent important factors that influence the insertion of
collaborative features on existing mobile applications.
Although these issues have a relevant impact from a
collaborative adoption and use perspective, they must be
evaluated and planned as in any development processes that
focus on groupware applications.

VI. CONCLUSIONS & FUTURE WORK

According to Schuckman et al. [14], the step from single-
user application development towards groupware development

requires more than just sharing common artifacts or connecting
a set of distributed user interfaces. Therefore, in this paper we
presented a model and an adaptation process that allows a
uniform handling of the groupware specific aspects on a high
abstraction level, which provides a valuable resource for
developers and designers that wish to consider prototype
collaborative features in their existing mobile applications.

The MVC Multi-user Component Model presented
abstractions, simplifications and modeling elements from the
context of MVC applications built for mobile scenarios. Our
model is based on the Shared Component Model and details the
global identification, interception point, coordination services,
composite structures, and shared property changes
characteristics. The aspects related to the details of the
synchronous collaborative infrastructure originated from the
replicated architecture employed were discussed.

The implementation of the synchronous collaborative
features take the form of a process that is defined as a sequence
of activities that cover all the operations that load, modify,
compile and customize the source code of the application's
component that is going through the activities of the process.

The reusability, flexibility and feasibility of implementation
for the modification of the applications according to our
proposed model and process were evaluated in two prototypes
focusing on the analysis of its components, internal structures,
and programming logic that compose the original applications.
Our findings indicated that the model and the adaptation
process can assist developers during the implementation of
synchronous collaborative features when the goal is create
prototype applications as a proof of concept of synchronous
collaboration coupled with existing features.

Although our reference model and adaptation process are
implemented by several known techniques, they provide a
novel approach that allow automated development in mobile
contexts and collaborative features.

Future work includes the development of an automatic
conversion tool that embodies the proposed process in real
world scenarios, a set of interfaces in a general framework
embodiment, the validation and evaluation of the model with
other platforms SDK, and a formal experiment to gather
quantitative and qualitative data about the work produced using
the adapted applications through our approach. The evaluation
of the data in other collaborative scenarios, such as map
navigation, music playing, video editing among others, can
increase the knowledge of mobile development patterns, user
interaction and attitudes in the context of collaborative work.

ACKNOWLEDGMENT

The authors wish to thanks the anonymous reviewers that
made suggestions to significantly improve the presentation of
this paper. This work has been funded by FAPESP/Brazil
under grant No. 2012/04260-4 provided to the authors.

REFERENCES

[1] Agustina, A., Liu, F., Xia, S., Shen, H., Sun, C. CoMaya: Incorporating
Advanced Collaboration Capabilities into 3D Digital Media Design

Tools. In: Proceeding of the 8th ACM CSCW Conference. New York,
USA, pp. 5-8 (2008)

[2] AndroidSamples, http://developer.android.com/resources/samples/

[3] Bartel, J., W., Dewan, P. Towards multi-domain collaborative toolkits.
In CSCW '12 Proceedings of the ACM 2012 conference on Computer
Supported Cooperative Work, pp. 1297-1306 (2012)

[4] Begole, J., Smith, R., B., Struble, C., A., Shaffer, C., A. Resource
sharing for replicated synchronous groupware. IEEE/ACM Transactions
on Networking 9 (6), pp. 833-843 (2001)

[5] Cook, C., Churcher, N. Constructing real-time collaborative software
engineering tools using CAISE, an architecture for supporting tool
development. In: Proceedings of the 29th Australasian Computer
Science Conference. Darlinghurst, Australia, pp. 267-276, (2006)

[6] Li, D., Li, R. Transparent sharing and interoperation of heterogeneous
single-user applications. In: Proceedings of the 5th ACM CSCW
Conference. New York, USA, pp. 246-255 (2002)

[7] Li, D., Yang. Y., Creel, J., Dworaczyk, B. A Framework for Building
Collaboration Tools by Leveraging Industrial Components. Proceedings
of the 2006 Confederated international conference on the Move to
Meaningful Internet Systems. Montpellier, France, pp. 605-624 (2006)

[8] Lin, K., Chen, D., Dromey, R. G., Xia, S., Sun, C. API design
recommendations for facilitating conversion of single-user applications
into collaborative applications. In: Proceedings of the 3rd International
Conference on Collaborative Computing: Networking, Applications and
Worksharing. New York, USA, pp. 309-317 (2007)

[9] Lin, K., Chen, D., Sun, C., Dromey, R. G. Leveraging Single-User
Microsoft Visio for Multi-user Real-Time Collaboration. In: Proceedings
of the 4th International Conference of Cooperative Design, Visualization
and Engineering. Shanghai, China, pp. 353-360, (2007)

[10] MathDoku, http://code.google.com/p/mathdoku/

[11] Morris, M. R., Cassanego, A., Paepcke, Winograd, T., Piper, A. M.,
Huang, A. Mediating Group Dynamics through Tabletop Interface
Design. IEEE Computer Graphics and Applications Vol. 26(5), pp. 65-
73 (2006)

[12] Pichiliani, M. C., Hirata, C. M. A Technical Comparison of the Existing
Approaches to Support Collaboration in Non-Collaborative
Applications. In: Proceedings of the 10th International Symposium on
Collaborative Technologies and Systems. Maryland, USA, pp. 314-321
(2009)

[13] Roy, B., Graham, N., Gutwin, C. DiscoTech: a plug-in toolkit to
improve handling of disconnection and reconnection in real-time
groupware. In Proceedings of the ACM 2012 conference on Computer
Supported Cooperative Work, pp. 1287-1296 (2012)

[14] Schuckmann, C., Kirchner. L., Schümmer, J., Haake, J., M. Designing
object-oriented synchronous groupware with COAST. In: Proceedings of
the 3rd ACM CSCW Conference. New York, USA, pp. 30-38 (1996)

[15] Schuster, D., Springer, T., Schill, A. Service-based Development of
Mobile Real-time Collaboration Applications for Social Networks. In:
Proceedings of the 8th IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOM Workshops),
Mannheim, Germany, pp. 232-237 (2010)

[16] Springer, T., Schuster, D., Braun , I., Janeiro, J., Endler, M., Loureiro,
A., A., F. A Fexible architecture for mobile collaboration services.
Proceedings of the ACM/IFIP/USENIX Middleware ’08 Conference.
New York, USA, pp. 118-120 (2008)

[17] Sun, C., Xia, S., Sun, D., Chen, D., Shen, H., Cai W. Transparent
adaptation of single-user applications for multi-user real-time
collaboration. ACM Transactions on Computer-Human Interaction 13,
pp. 531-582 (2006)

[18] Xia, S., Sun, D., Sun, C., Chen, D., Shen, H. Leveraging single-user
applications for multi-user collaboration: the CoWord approach. In:
Proceedings of 9th ACM CSCW Conference. Chicago, USA, pp. 162-
171 (2004)

[19] Yang, Y., Li, D. Separating data and control: Support for adaptable
consistency protocols in collaborative systems. In: Proceedings of the
10th ACM CSCW Conference. New York, USA, pp. 11–20 (2005)

