
Towards Timed Requirement Verification for Service Choreographies

Nawal Guermouche1,2
1 CNRS, LAAS, 7 avenue du colonel Roche,

F-31400 Toulouse, France
2 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France

nguermou@laas.fr

Silvano Dal Zilio1,2
1 CNRS, LAAS, 7 avenue du colonel Roche,

F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

dalzilio@laas.fr

Abstract—In this paper, we propose an approach for ana-
lyzing and validating a composition of services with respect
to real time properties. We consider services defined using an
extension of the Business Process Execution Language (BPEL)
where timing constraints can be associated to the execution
of an activity or define delays between events. The goal is
to check whether a choreography of timed services satisfies
given complex real time requirements. Our approach is based
on a formal interpretation of timed choreographies in the
Fiacre verification language that defines a precise model for the
behavior of services and their timed interactions. We also rely
on a logic-based language for property definition to formalize
complex real-time requirements and on specific tooling for
model-checking Fiacre specifications.

Keywords-Timed BPEL processes, choreography analysis,
asynchronous services, real-time requirements, formal verifi-
cation.

I. INTRODUCTION

Web Services are a set of standards that enable the defini-
tion of complex software systems based on the composition
of autonomous and heterogeneous services. Web Services
programming relies on a set of XML based standards,
such as the Web Service Description Language (WSDL)1,
for the description of services interface, or the Business
Process Execution Language (BPEL)2, for defining service
orchestration. The notion of choreography (see e.g. [4]) is
useful to reason about the collaboration of services from
a global viewpoint. Basically, a choreography provides a
way to specify the overall behavior expected from the
composition of services. Since time plays a crucial role when
reasoning about business processes, we need to be able to
express the time related attributes of a choreography and we
need to be able to check timing requirements on them.

Taking into account temporal (quantitative) aspects in the
specification of services improves expressiveness. However,
it makes reasoning about service composition much harder
and makes known problems more challenging such as timed
conformance [15] and timed compatibility problems [19].
While timed conformance and compatibility are important,
alone they are not sufficient. In fact, in addition to these

1http://www.w3.org/TR/WSDL/
2http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

features, it is crucial to check time related properties of
compositions. For instance, it is useful to check the “worst-
case execution time” of a composition [24] or to check that
a partial deadline is met. Particularly, in the context of our
work, we are interested in checking complex time related
properties of a choreography, such as verifying that once an
event evt1 arises, if an event evt2 does not occur within a
delay, then an event evt3 must not occur before a given de-
lay. To do so, we define a formal model for the semantics of
timed choreographies and propose a model-based approach
for checking complex real-time requirements, which extends
our previous work on compatibility analysis [17]. Complex
requirements we consider are defined using a logical-based
formalism that is able to express real-time constraints be-
tween the occurrence of events; we use a property pattern
language that defines a fragment of Metric Interval Temporal
Logic (MITL), a real-time extension of Linear Temporal
Logic. As a result, our framework can be used to check
very general (complex) properties, that go beyond the mere
absence of deadlocks or the worst-case execution time. We
give some examples of real-time requirements that can be
checked automatically in Section III.

More precisely, in this paper, we consider timed services
extended with timing constraints. Our goal is to check
whether a timed choreography, obtained from the composi-
tion of timed services, satisfies given complex requirements.
We choose a rich model for expressing timing information
where constraints can be associated to the execution time
of (basic and structured) activities as well as on the delay
between two events. In our context, an event may be local
to a given service—for instance an invocation or the end
of an activity—or may be global, associated to a message
crossing service boundaries.

The formal semantics of timed choreographies is defined
using an interpretation of services in Fiacre [8], [9], a
formal modeling language that can be used to represent
the behavioral and timing aspects of a system. The use
of Fiacre is well adapted for this context since it captures
efficiently timing and concurrency aspects of systems. It
has been designed both as the target language of model
transformation engines—interpretation have been defined
for system description languages such as SDL, UML or
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AADL—and as the source language for formal verification
toolboxes, such as CADP or Tina [10], the TIme Petri
Net Analyzer. In Section V we show how we can use our
interpretation of timed BPEL processes in Fiacre and the
Tina model-checking tools in order to check complex real-
time requirements of timed choreographies.

The paper is organized as follows. In Section II we
describe related works in the domain of the formal analysis
of Web Services and outline our contributions. In Section III
we define an example of timed choreography that is used to
give an informal overview of our framework. Section IV
presents our formal framework. Before concluding, we re-
port on some experimental results obtained using a prototype
implementation of our framework.

II. RELATED WORK

We list a series of works related to the formal analysis
of Web Services. In [13], a Web service (peer) is modeled
as non-deterministic communicating finite state machine.
In this work, a choreography of services is specified as
a collaboration diagram. In order to verify the reliability
of a choreography, the authors propose to check if the
peers realize the collaboration diagram. In this work, the
authors are not interested in timed properties, which are
very important. In [22], Hwang et al focus on the problem
of verifying the conformance of a set of Web services
to a given choreography model. This problem consists in
checking whether a set of Web services respects the specified
choreography interaction model. As the work presented
in [13], Hwang et al do not cater for timed properties.

In [6], [7], [11], the authors address the problem of check-
ing compatibility between two services. Their approach is
restricted to synchronous services and is exclusively based
on the sequences of messages that can be exchanged by a
service. These assumptions are quite restrictive since, for in-
stance, two services may engage in a successful conversation
even if their behaviors do not have the same branching struc-
ture. On the other hand, compatible services may exhibit
very different behaviors when time is taken into account.
Compatibility between timed services has been first studied
by Benatallah et al. [5]. This work has been latter extended
in [28]. In these approaches, it is only possible to specify
the delay between two messages inside the same service,
whereas we consider richer time constraints. Moreover, these
works address only one specific requirement—absence of
deadlocks—while we allow the verification of more general
complex properties.

Eder and Tahamtan introduce the notion of time confor-
mance in [15]. This is defined as the problem of check-
ing whether a timed orchestration satisfies a given timed
choreography. In this framework, time constraints are lim-
ited to expressing the execution time of basic activities.
This approach is different in nature from the one followed
in our work. Indeed, our goal is to check properties of

choreographies; we do not suppose that a given choreog-
raphy “is correct” and that parts of its implementation—a
timed orchestration—should conform to this specification.
We should point out that, in our case, we solve a model-
checking problem for a real-time extension of temporal
logic, since we consider timed models, and for a dense
time model. Another instance of a “behavior conformance”
problem is studied by Ham et al [21], [20] that focuses on the
problem of substituting a service by another. These works
address both the temporal and financial costs of operations.
The authors do not consider time constraints over structured
activities or across service boundaries and are not interested
in checking complex properties of timed choreographies.

Kazhamiakin et al. [24] adopt a formalism closely re-
lated to timed automata to model the behavior of a timed
orchestration. This work is based on a discrete-time variant
of the Duration Calculus for expressing requirements, while
we work with a dense model of time. Furthermore, they
consider—other than timeouts—the temporal cost of manual
activities and deal with synchronous services, while, in our
framework, we propose a richer temporal model. Another
difference is that we allow the declaration of more complex
and expressive real-time requirements, like those related to
the absence pattern, that states that parts of a system’s
execution are free of some events (e.g., once an event evt1
arises, if an event evt2 does not occur within a delay, so an
evt3 must arise after a duration).

In [23], Kallel et al adopt the formalism of XTUS-
Automata to formalize the behaviour of services extended
with timed constraints related to relative and absolute time.
Based on this model, the authors present a verification
process which aims at checking absence of deadlocks. In the
same context and using Petri net theory, in [26], the authors
address the problem of assigning and verifying conformance
constraints of deadlines. Although these approaches consider
timed properties, they do not allow checking complex timed
requirements.

Our approach extends previous works based on timed
automata [18], [17] that are concerned with the compatibility
analysis of timed services. In this work, verification is
restricted to checking the absence of deadlock in a com-
position of services. Moreover, the model can only express
temporal constraints on the delays between the exchange of
messages and not on the duration of activities.
Our Contributions. Our first contribution lies in the defini-
tion of a rich model for timed services. This model integrates
efficiently the real-time and concurrent characteristics of
timed services and is compatible with both synchronous and
asynchronous services.

Our second contribution consists in defining new class
of real-time requirements that goes far beyond the mere
absence of deadlock or the worst-case execution time. In
Section III we illustrate the use of this model in the context
of a healthcare scenario and show how time constraints and



requirements can be expressed. We also explain where this
information could be reasonably stored: WSDL and BPEL
for local constraints and Service Level Agreement (SLA)
contracts for global constraints.

Our final contribution is the definition of a set of trans-
formation rules of timed business processes into Fiacre, a
formal verification language with native support for express-
ing concurrency and time-constrained interactions. By using
the result of the transformation, we apply model-checking
primitives in order to automatically check complex real time
requirements. The proposed approach has been implemented
in a tool that takes a collection of annotated BPEL processes
and a set of real-time requirements as input, and as a result
it validates the set of specified requirements.

III. GLOBAL OVERVIEW OF THE MODELING
FRAMEWORK

This work is part of the National Project ITEMIS3 and
the European JU Artemisia CESAR4 project.

ITEMIS aims at defining a reference architecture, method-
ologies, and a set of techniques and tools for the verifica-
tion and systems development. CESAR aims at providing
techniques and methodologies to develop reliable embed-
ded systems. To do so, multi-viewpoint based development
processes must be considered to tackle not only functional
aspects but also safety, costs, robustness, timed constraints,
etc. These properties must be captured and formalized to
allow validation and verification to be performed [1]. In our
work, we tackle the problem of verifying complex timed
properties of service based systems.

Next, we will present the underlying features of our
framework with the help of an example of timed chore-
ography. Our modeling framework relies on a syntax for
expressing services (based on BPMN); temporal constraints
annotations; and a requirement language based on real-time
property specification patterns. The verification framework
is defined in the next section. We opted for a scenario from
the healthcare domain related to patient handling during a
medical examination. The scenario involves three entities,
each one managed by a service: (1) the medical consultation
clinic; (2) a medical analysis laboratory; and (3) a pharmacy.

The choreography is depicted in Fig. 1, where each
service is in a different swimlane. With the aid of the
medicalConsultationService (MCS), a doctor can check the
social security number (ssn) of a patient. If the ssn is valid,
then the MCS may ask the medicalAnalysisService (MAS)
to perform some medical analyses and, in parallel, asks for
a radiography. Once the medical analyses are fulfilled—and

3ITEMIS: Integrated information and embedded systems. It is an ANR
(National Research Agency) project (2009-2012).

4CESAR: Cost-efficient methods and processes for safety relevant em-
bedded systems. It is a European funded project from ARTEMIS JOINT
UNDERTAKING (JU) (2009-2012).

after analyzing the different medical data—a medical report
is compiled and drugs can be ordered.

Temporal Constraints

The services may interact using asynchronous and syn-
chronous exchange of messages. As usual, the choreography
imposes constraints on the order of these messages. It also
defines temporal constraints through the use of annotations.
We consider two kinds of temporal constraints in our frame-
work, local and global.

Local temporal constraints: are associated to the execu-
tion of a service. They are used to specify the duration and/or
the delays required to perform an activity. We consider two
kinds of local constraints:

(1) temporal costs are used to define the estimated ex-
ecution time of an activity, say A, and are of the form
d(A) ∈ I , where I is a time interval5. For instance, the
medical report operation in the MCS requires at least 2
hours: d(medicalReport) ∈ [2, ..[. The most suitable place
to store these constraints is in the WSDL file that describes
the operations;

(2) temporal delays are used to specify the expected delay
between two activities and are of the form d(A1, A2) ∈
I . For instance, the Pharmacy Service performs the
drugsChecking activity between 6–12 hours after the start
of the service: d(drugsRequest , drugsChecking) ∈ [6, 12].
A temporal delay expresses a commitment from the service,
much like a timeout; it is not a requirement that should
be checked a posteriori. The most suitable place to store
temporal delays is to add annotations in the BPEL file that
describes the service.

Global temporal constraints: are used to specify the
temporal contract of a service and are associated to pair of
messages (dotted lines in our diagram) that cross service
boundaries. For example, the Pharmacy Service promises
that the drug order is delivered within 24–48 hours of the
drug request: d(msg3,msg4) ∈ [24; 48]. Global constraints
live at the same level than Service Level Agreement
contracts.

Given these services, our goal is to verify if their chore-
ography satisfies a set of real-time requirements, such as:

• Once drugs are requested, if the request is not canceled
within 6 hours, then they should not be changed for
another 48 hours.

• Two medical analyses are not allowed for a patient in
less than 10 days.

• Once the medical examination starts, drugs must be
delivered within 48 hours.

In the following section, we will present our framework.

5Time intervals may be open, like ]2.5, 3], or unbounded, like [1, ..[.
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Figure 1. Global view of the health-care application

IV. VERIFICATION FRAMEWORK

In this section, we consider the framework used to define
the formal semantics of timed choreographies. Our approach
is based on an interpretation of services in Fiacre [8], [9], a
formal verification language that can model the behavioral
and timing aspects of a system. This method has some
advantages compared to related work where the semantics of
services is given using a dedicated formalism (see e.g. [25])
or a low-level formalism, like timed automata [18]. Indeed,
Fiacre provides high-level operators, special support for dif-

ferent concurrency paradigm and a hierarchical (component-
based) structure that simplify the encoding of system de-
scription languages. Moreover, the language comes equipped
with a set of dedicated tooling: compilers to different model-
checking tool suite (like CADP or Tina [10]); support
for the real-time requirement language described in the
section IV-C; and support for Model-Driven Engineering. In
particular, Fiacre is the intermediate language used for model
verification in Topcased [8], [16]—an Eclipse based toolkit
for critical systems (http://www.topcased.org/)—where it is



used as the target of model transformation engines from
various languages, such as SDL, UML or AADL.

A. The Fiacre Language

Fiacre offers a formal representation of both behavioral
and timing aspects of systems for formal verification and
simulation purposes. The design of the language is inspired
from decades of research on concurrency theory and real-
time systems theory. For instance, its timing primitives are
borrowed from Time Petri nets [27], while the integration
of time constraints and priorities into the language can
be traced to the BIP framework [12]. Fiacre processes
can interact both through synchronization (message-passing)
and access to shared variables (shared-memory). A formal
definition of the language is given in [9].

Fiacre programs are stratified in two main notions: pro-
cesses, which are well-suited for modeling structured activi-
ties, and components, which describes a system as a compo-
sition of processes, possibly in a hierarchical manner. The
language is strongly typed, meaning that type annotations
are exploited in order to guarantee the absence of unchecked
run-time errors.

A process is defined by a set of control states (say s0, s1,
. . . ) and parameters, each associated with a set of complex
transitions, which are programs specifying how parameters
are updated and which transitions may fire. For example, the
process declaration:

process P[q : none](&v : nat) is ...

expresses that P is a process that uses the port q for
synchronization—the port carries no data—and has one
parameter, v, that is a (reference to a) shared variable
holding natural values. Complex transitions are built from
expressions and deterministic constructs available in typical
programming languages (assignments, conditionals, while
loops and sequential compositions), nondeterministic con-
structs (nondeterministic choice and assignments) and com-
munication events on ports. For example, the transition:

from s0 s e l e c t v :=v+1; to s1

[ ] on (v= 0 ) ; to s0

end

states that, in state s0, the process may choose non-
deterministically between two alternatives. Either increments
the value of the variable v and moves to s1, or loops to s0

if v is nil.
A component is defined as the parallel composition of

processes and/or other components, expressed with the oper-
ator par ... || ... end. While components are the unit of
composition, they are also the unit for process instantiation
and for ports and shared variables creation. The syntax of
components allows to restrict the access mode and visibility
of shared variables and ports, to associate timing constraints

with communications and to define priority between commu-
nication events. For example, the following declaration states
that C is a component with a private port r—synchronization
over r is in time 0—and two fresh instances of the process
P.

component C (x : nat ) i s
port r : none in [0, 0]
var v1 : nat :=x , v2 : nat :=3
par P [r ] (v1 ) | | P [r ] (v2 ) end

B. Interpretation of BPEL in Fiacre

In order to perform verification process, we define an
interpretation of timed BPEL processes where a service
is modeled by a Fiacre component and such that service
invocation (both synchronous and asynchronous) is modeled
using shared variables. In this approach, the interpretation of
a choreography is obtained from the parallel composition of
its services. We only detail the encoding of a representative
subset of activities. Moreover, we note that our approach
does not take into account the expected behaviour in case
of faults or communication failures, which is out of scope
for this paper.

Interpretation of communication.: We model commu-
nication using a shared variable that acts as a buffer counting
the number of messages exchanged between services; each
WSDL message, say msg i, is represented by an integer vari-
able, msgVari, with initial value 0. Then (an asynchronous)
message emission is encoded by incrementing the variable
and reception by decrementing it. For example, reception
of the message msg is encoded by the Fiacre expression:
on(msgVar>0); msgVar:=msgVar−1 (we use the on ex-
pression to test that the “message channel” is not empty).
This approach can be extended to take into account the
values exchanged in a message, as long as the number of
values stay finite.

Interpretation of parallel activities as processes.: A
service S is encoded by a component S. We encode each
parallel activity Ai in S by a Fiacre process Ai with two spe-
cific ports: ps for signaling the start of the activity and pe
for signaling its end. A <flow> activity in BPEL is used to
execute sub-activities, A1, . . . , An, in parallel. In our encod-
ing, a flow activity inside the service S is turned into a paral-
lel composition A1(ps,pe) || ... || An(ps,pe),
such that instances of the Ai’s are synchronized on their
start and end event. Hereafter, we define the processes cor-
responding respectively to the basic activities <receive>,
<reply> and <invoke>

p r o c e s s Rcv [ps : none , pe : none ] (&msgVar : nat ) i s
s t a t e s start , s1 , s2 , s3 i n i t to start
from start ps ; to s1

from s1 on (msgVar>0); wait [0, 0] ;
msgVar:=msgVar−1; to s2

from s2 pe ; to s3



p r o c e s s Rpl [ps : none , pe : none ](&msgVar : nat ) i s
s t a t e s start , s1 , s2 , s3 i n i t to start
from start ps ; to s1

from s1 wait [0, 0] ;msgVar:=msgVar+1; to s2

from s2 pe ; to s3

p r o c e s s Invk [ps : none , pe : none ](&msgOutVar ,
&msgInVar : nat ) i s

s t a t e s start , s1 , s2 , s3 , s4 i n i t to start
from start ps ; to s1

from s1 wait [0, 0] ;msgOutVar:=msgOutVar+1; to s2

from s2 on (msgInVar>0); wait [0, 0] ;
msgInVar:=msgInVar−1; to s3

from s3 pe ; to s4

Interpretation of sequential basic activities.: Basic
activities that are not executed in parallel are mapped to a
state in a single Fiacre process, say P. The goal is to obtain
a more efficient encoding (with less processes and states).
In this context, an activity Ai is mapped to a state si in P
and its effect is implemented by a transition from the state
si to the state sj such that Aj is the next in line from Ai

in the sequence.

<receive>

from si on (MsgVar>0); wait [0, 0] ;
msgVar:=msgVar−1; to sj

<reply>

from si wait [0, 0] ; msgVar:=msgVar+1; to sj

<invoke>

from si wait [0, 0] ; msgOutVar:=msgOutVar+1;
to s′i

from s′i on (msgInVar>0); wait [0, 0] ;
msgInVar:=msgInVar−1; to sj

Interpretation of temporal constraints.: We start by
describing the interpretation of temporal cost. An activity
that can be executed within a delay is modeled as a transition
that takes place after a timed interval. We consider two
categories of activity that can have a temporal cost: one-way
operation and request-response operation. In this context,
we map an operation Ai to a pair of states si and s′i. The
effect of Ai is implemented by a sequence of two transitions
from the state si to the state sj , where Aj is the activity
that logically follows Ai. We give below the encoding of
one-way and request-response <invoke> operations with
an execution time of d.

(one-way)

from si on (msgVar>0); wait [0, 0] ;msgVar:=msgVar−1;
to s′

i

from s′
i wait [d, d] ; to sj

(request-response)

from si on (msgVar>0); wait [0, 0] ;msgVar:=msgVar−1;
to s′

i

from s′
i wait [d, d] ;msgVar:=msgVar+1; to sj

The interpretation of temporal delays and global constraints
are similar. We associate to every delay constraint of the
form d(A1, A2) ∈ I a process in Fiacre, say TObs. The
role of this process is to observe the delay between the end
of A1 (synchronization on the port pe1) and the start of
A2 (synchronization on ps2). The encoding is very similar
for a delay between messages. We give below the “time
observer” process corresponding to a constraint of the form
d(A1, A2) ∈ [0; d] (the unless operator is used to state that
the transition to err has an higher priority). We can test if
the constraint is violated by checking whether the process
TObs can reach the state err.

p r o c e s s TObs [pe1 , ps2 : none ] ( ) i s
s t a t e s start , s1 , s2 , err i n i t to start
from start pe1 ; to s1

from s1 s e l e c t ps2 ; to s2

u n l e s s wai t [d, d] ; to err
end

Interpretation of timeouts (onAlarm).: We
describe our interpretation of a timer-based alarm,
<onAlarm for ="d">, using the example of a simple
<pick> activity Ai such that:

Ai = <pick><onMessage name="m"/>
<onAlarm for="d">Ak</onAlarm>

</pick>

meaning that the activity will select the activity Ak after d
unit of time unless it receives the message m before. The
activity Ai may be encoded using the following transition:

from si s e l e c t wai t [0, 0] ; on (msgVar>0);
msgVar:=msgVar−1; to sj

u n l e s s wai t [d, d] ; to sk

end

Example 1: (Interpretation of Pharmacy Service)

We take the example of the healthcare scenario introduced
in section III to show our interpretation. The architecture
of the Fiacre component corresponding to the Pharmacy
Service is displayed in Fig. 2.

The Pharmacy Service (PS) has three temporal con-
straints: (c1) the activity drugsChecking must be done within
6–12 hours of receiving the drugs request (a local, delay
constraint); (c2) the execution time of activity preparing-
Shipping is 6 hours (a local, temporal constraint); and (c3)
the message sent by activity sendDrugsOrder should be
emitted within 24–48 hours from receiving the drugs request
(this is a global constraint).



(1) receive drugs request
(3) perform drugs checking
(5) send delivering notification

(2) start to observe time
(3) check the amount of 
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DeliverySequence 
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p2          

                          
                                     p5                                        

 

PS FIACRE component

Figure 2. Architecture of the Fiacre process for the Pharmacy Service

The PS is built from a <sequence> activity that con-
tains two operations that should be performed in parallel (in-
side a <flow> activity): preparingShipping and invoicing.
Therefore, in our (optimized) interpretation, the component
PS contains the parallel composition of three processes—
one for the sequence and one for each activity inside the
<flow>— added to a “time observer” process for the two
constraints c1 and c3. These four processes appear in the
diagram of Fig. 2 with an explicit naming convention.

We can describe the possible interactions of the PS
component as follows. First, the deliverySequence
process starts by receiving a drugs request. This message
is labelled msg3 in the diagram of Fig. 1 and is modeled
using a shared variable msgVar3 that is a parameter of
PS. This event eventually triggers a transition in the process
deliverySequence that corresponds to the end of the
activity drugsRequest and also prompts the time observer
process (via synchronization on port p1) to start monitoring
the elapsed time. The next state in line corresponds to the
start of the drugsChecking activity that must be fulfilled
within 6–12 unit of times unless the time observer enter its
error state err (synchronization with the temporal observer
on port p2). At this point, the deliverySequence syn-
chronizes on the “start” port of the <flow> process (port p3

in Fig. 2). After the completion of the <flow> process (syn-
chronization on port p4) the deliverySequence gains
hand again and the computation moves to the fulfillment of
the reply activity sendDrugsOrder. Before concluding, the
process interact again with the time observer (synchroniza-
tion on port p5) if the delay for sending the message msg4

comply with the global constraint (c3).

After presenting the BPEL transformation process to Fiacre
language, let us present the real-time requirements we han-
dle.

C. Defining real-Time Requirements

This section gives a description of the specification
patterns used for the definition of real-time requirements
available in our framework. A complete description of the
language is given in [2]. Our language extends the property
specification patterns of Dwyer et al. [14] with the ability
to express time delays between the occurrences of events.
The result is expressive enough to define a wide class of
complex properties [2], [3]. The pattern language follows
the classification introduced in [14], with patterns arranged
in categories such as occurrence or order patterns. In the
following, we study examples of response and absence
patterns.

Absence pattern with delay.: This category of patterns
can be used to specify delays within which activities must
not occur. A typical pattern in this category can be used to
assert that an activity, say A2, cannot occur between d1–d2
units of time after the occurrence of an activity A1. This
requirement corresponds to a basic absence pattern in our
language:

absent A2 after A1 within [d1; d2] . (absent)

An example of use for this pattern is the requirement that
we cannot have two medical analyses for the patient in less
than 10 days (240 hours):

absent MAS .medicalAnalysis after
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MAS .medicalAnalysis within [0; 240] .

A more complicated example of requirement is to impose
that if a doctor does not change a drug order within 6
hours, then it should not change drugs for another 48 hours.
This requirement can be expressed using the composition
of two absence patterns:

(absent MCS .drugsChanging after

MCS .drugsAsking within [0;6])
⇒ (absent MCS .drugsChanging after

MCS .drugsAsking within [0;54]) .

Response pattern with delay.: This category of patterns
can be used to express delays between events, like for
example constraints on the execution time of a service.
The typical example of response pattern states that every
occurrence of an event, say e1, must be followed by an
occurrence of an event e2 within a time interval I . This
pattern is denoted:

e1 leadsto e2 within I . (leadsto)

In our framework, we use the notation S.init and S.end to
refer to a start, respectively an end, event in the service
S. Hence, we can check that the execution time of the
service S is less than d units of time with the requirement
S.init leadsto S.end within [0; d]. We can use the same
pattern to express requirements on an activity. For instance
that drugs must be delivered within 48 hours of the medical
examination start:

MCS.init leadsto PS.sendDrugsOrder within [0; 48] .

Using a composition of patterns with the conjunction opera-
tor, we can bound the time between the start of the initiating
service (the client) and the end of the choreography (if any).

For instance, in our motivating example, we would like to
check that the medical examination last less than 60 hours:

MCS.init leadsto MCS.end within [0, 60]
∧ MCS.init leadsto MAS.end within [0, 60]
∧ MCS.init leadsto PS.end within [0, 60] .

More generally, we can check that a service, say S2, always
terminates its execution after service S1 within a duration
d with the requirement: S1.end leadsto S2.end within

[0; d]

V. EXPERIMENTATION

We have developed a prototype of a compiler from an-
notated BPEL processes to Fiacre in Java, named Bpel2Fcr,
that is based on the interpretation defined in the previous
section. The architecture of our transformation is depicted
in Fig. 3. The input of our prototype is a set of BPEL
processes, their corresponding WSDL and Service Level
Agreement contracts that list the local and global constraints
of the timed choreography. Our tool relies on EasyBPEL
(http://easybpel.petalslink.org/), a library that provides a
BPEL 2.0 engine to orchestrate services.

The Fiacre specification obtained as an output of Bpel2Fcr
is the input of the model checker provided by the Tina
verification toolbox to analyze specified choreography real-
time requirements.

We give some results obtained with the analysis of our
running example. The state graph for the HealthCare exam-
ple has only 43 states and 51 transitions. This is obtained
using optimized encoding (the graph for the unoptimized
encoding is about three times as big). The generation of the
Fiacre specification and its corresponding state space takes
less than a second. For examples of this size, the verification
time for checking a requirement is negligible; in the order
of a couple of milliseconds.

This model is small due to the almost lack of concurrency
in the scenario; only two <flow> activities and three



services. For more complex examples, we have tested our
approach on an extended version of the healthcare scenario
with seven different services. The resulting example has 886
states and 2476 transitions. With this larger example of timed
choreography, the verification process takes in the order of
half a second. As an example, we give the time and the
validity of some real-time properties:

Property Result Time (s)
MCS.init leadsto MCS.end
within [0,60]

true 0,638

MCS.init leadsto MCS.end
within [0,20]

false 0,645

MAS.end leadsto MCS.end
within [0,30]

true 0,531

PS.end leadsto MCS.end
within [0,10]

false 0,637

VI. CONCLUSION

We describe a new framework for modeling and analyz-
ing timed choreographies obtained through the composition
of annotated BPEL processes. We most particularly focus
on the problem of checking real-time requirements on a
choreography. In this context, we have proposed a rich
formal model for timed services composition that captures
efficiently several kind of temporal constraints associated
to the concurrent nature of services. The framework we
propose has been implemented into a tool that automatically
transforms timed BPEL processes into a Fiacre specification.
In addition, we have shown an associated model-based ver-
ification approach to check real-time requirements on timed
choreographies. In this context, we have defined classes
of new real-time requirements which are specified using a
logical-based formalism.

Work is still ongoing to improve and optimize the transfor-
mation implemented in our verification toolchain. Moreover,
our ongoing work focuses on extending our approach by
fault handling primitives and checking more complex re-
quirements that relate to automatic reconfiguration of service
composition. We should be assisted in that by the fact that
our transformations are compositional.
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