
Auto-Erecting Virtual Office Walls
Ben van Gameren

Delft University of Technology
IHomer

b.j.a.vangameren@tudelft.nl

Kevin Dullemond
Delft University of Technology

IHomer
k.dullemond@tudelft.nl

Rini van Solingen
Delft University of Technology

Prowareness
d.m.vansolingen@tudelft.nl

Abstract—Collaborative Software Engineering is increasingly
carried out from multiple, physically separated, locations around
the globe. Software engineers are no longer tied to a fixed work-
place and have the opportunity to work from the location of the
customer, their home and even from their holiday location. When
working in such a distributed setting, software engineers also
need information about the context in which they are working
to be able to collaborate effectively with their colleagues. In
the last decades multiple technological solutions were developed
by the Software Engineering community to fulfill this need.
However, the majority of these solutions only support a single
aspect of the development process, so each developer has to
manually analyze, filter and combine the available information
in order to acquire a sufficient level of awareness. Manually
analyzing, filtering and combining available information can
however be quite time-consuming and therefore we focus on how
to automate this process. In this paper we present our vision on
how auto-erected virtual office walls can help distributed software
engineers to relatively passively and unobtrusively accomplish
this automation.

Index Terms—Activity Theory, Collaborative Software Engi-
neering, Global Software Engineering, Iris, Virtual Office Walls

I. INTRODUCTION

In collaborative work, awareness information is essential
to properly cooperate with your colleagues [1], [2]. With
awareness information we mean the information which is
necessary to provide you with the context in which you are
working. Examples of such information items are: information
about the other members in the project team, their activities,
and information about the current state of the project. Dourish
and Bellotti more formally define awareness as [3]: ”An
understanding of the activities of others which provides a
context for your own activity”. For software engineers it
is essential to have a sufficient level of awareness, because
Software Engineering is a collaborative activity which requires
engineers to coordinate their efforts to be able to produce a
functional system.

However, both due to the globalization of business [4], [5],
[6] and due to the fact that people work from home more
and more [7], people no longer share a physical work envi-
ronment and as a consequence cannot exchange information
without technological support. So, in order to collaborate with
colleagues in a distributed setting, technological support is
required to be able to acquire and maintain awareness.

In the last decades the (Global) Software Engineering
community has developed many technological solutions to

support globally dispersed teams in performing their tasks.
Portillo-Rodrı́guez et al. [8] provide a systematic mapping
review of available tools in the field of Global Software
Engineering and what functionality these tools offer. Several of
the tools discussed are widely adopted by distributed develop-
ment teams and provide the team members with information.
Most of these solutions only support a single aspect of the
development process and as a consequence many diverse tools
are needed to provide the user with all the information he
or she needs. Accordingly, all this information needs to be
analyzed, combined and filtered manually by each developer
to acquire the information necessary to create the context
of his current activity. However, this process can be quite
time-consuming, therefore we focus on how to automate this
process. In this paper we focus on how to provide distributed
software engineers with the awareness information they need.
As such the research question of this paper is:

”To which extent can the introduction of virtual office walls
help provide distributed software engineers with the context of
their current activity?”

We will answer this research question as follows. In section
II we define virtual office walls and introduce two prerequisites
of the construction of these. Next, in section III, we look at
the first prerequisite and discuss that both access to data from
a wide variety of tools is needed and the means to integrate it
to create valuable information. Subsequently, in section IV, we
look at the second prerequisite and discuss a way to describe
the context of a software engineer. In section V, we validate
our representation of the context of a software engineer in an
industrial setting. Finally, we present conclusions and discuss
opportunities for future work in section VI and VII.

II. VIRTUAL OFFICE WALLS

As discussed in the introduction, Software Engineering
is a collaborative activity which requires potentially many
developers to coordinate their actions to be able to produce
a system. In order to coordinate their actions developers need
to distribute awareness information among each other. In the
traditional co-located setting all information is available in
a single place, the office building, and is accessible by all
employees present at that location. In such a co-located setting
awareness information is exchanged relatively passively and
unobtrusively [1], [9]. But, how are the developers capable
of abstracting useful information without experiencing an

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250440



overload of information? Probably this has mostly to do with
the design of the office building [10]. In general an office
building consists of several rooms, for example a foyer, a
kitchen, meeting rooms and offices. All of these rooms have
their own characteristics; the meeting room, for example, has
several attributes which facilitate group discussions such as a
white board, a beamer and the room’s size. By moving around
in the building and selecting a room which characteristics
match the developer’s needs, a developer is able to change
the context of his activities. Another example is that people
who work on related tasks are often seated in close proximity
to each other. By organizing their work environment in such a
way, they can easily exchange awareness information between
all involved stakeholders. So, when working in a co-located
setting, developers are continuously aware of information
related to their current task.

However, in a distributed setting developers no longer share
a physical work environment and as a consequence cannot
exchange information without technological support. So, in
order to collaborate with their colleagues developers need to
use technological solutions to be able to retrieve information
relevant to their current task. The Software Engineering com-
munity has developed several solutions to fulfill this need,
but most of these solutions only support a specific type of
information and this information cannot be processed by other
solutions directly [8]. Therefore, developers need to manually
analyze the available information to be able to construct the
information they need. This increased complexity of informa-
tion analysis may result in misunderstandings, inconsistencies,
incompatibilities and duplicated information [8].

To be able to acquire awareness in a relatively passive and
unobtrusive fashion, such as in the co-located setting, we need
to automate this analytical process of accessing, combining
and filtering the available information. In essence we need to
automate the process of restricting the available information
to the information that an actor needs to carry out his current
activity. We propose to call this mechanism a ’virtual office
wall’ and define it as: ”A mechanism which regulates infor-
mation based on the context it encloses”. The remainder of
this paper will address the design of such a mechanism. To
do this we first discuss the prerequisites: (i) access to a data
set which at least contains the required data at a certain time
and (ii) a method to differentiate between required and not
required information. When these prerequisites are met it is
straightforward how the mechanism of a virtual office wall
can be constructed. For the second prerequisite we discuss a
specific method and we test the validity of our approach in a
practical case setting as well.

III. SELECTING AND COMBINING INFORMATION

The first prerequisite of a virtual office wall concerns having
access to a data set which at least contains the required data
at a certain time. In this section we discuss that to fulfill this
prerequisite both access to data from a wide variety of tools
is needed and the means to integrate this to create valuable
information.

In a co-located setting all information is available in a single
place and developers are able to gather all required information
in a relatively passive and unobtrusive fashion. In a distributed
setting, however, all required information is scattered across
multiple sites and technological solutions are needed to ex-
change this information. It is even impossible to collaborate
effectively without some kind of technological support when
people do not share a physical work environment. Therefore,
in order to collaborate effectively with distributed colleagues,
the Software Engineering community has developed a wide
variety of tools. Several of these tools are widely adopted by
Global Software Engineering teams. Example are: configura-
tion management systems, bug trackers and Instant Messaging
solutions. However, the majority of these technologies only
supports a single aspect of the development process. So to
be able to provide the developers with sufficient information
during the entire development process many specialized tools
are needed [8]. Because the majority of these solutions focuses
on managing a specific type of information, this informa-
tion cannot be processed by other solutions directly. As a
consequence developers need to manually analyze, filter and
combine the available information to acquire the information
they need to perform their current task. Therefore, access to
a wide variety of tools is needed to fulfill the prerequisite
of having access to a data set which at least contains the
required data at a certain time. Because of the wide variety
of systems a wide variety of access mechanisms is needed as
well. Additionally, data from the different systems often needs
to be combined to create valuable information. The process of
combining information from different sources is often referred
to as integration and we will further illustrate its value, origins
and future by discussing the Coordination Pyramid defined by
Sarma et al. [11].

Fig. 1. The Coordination Pyramid [11]

Sarma et al. [11] have reviewed several software tools which
assist developers in coordinating their efforts and proposed a
framework to categorize these (see figure 1). This framework
organizes types of existing and emerging tools in a hierarchy
of paradigms of coordination shifts (the vertical axis of the
framework) that have historically emerged. These paradigms
are categorized along three strands: communication, artifact



management and task management. These three strands repre-
sent the basic coordination activities in software development.
Developers need to (i) communicate with each other, (ii)
coordinate their individual access and changes to a common
set of interdependent artifacts and (iii) manage their tasks.
Now we briefly discuss and summarize each of the five
paradigms.

The first layer in the Coordination Pyramid is the ’Basic
Functionality’ layer which focuses on enabling computerized
coordination. Technology at this layer allows a team to move
from purely manual coordination strategies to strategies that
involve automated tools. These tools, however, only focus on a
specific aspect of coordination and only automate the minimal
functionality needed to support this. Examples of tools in this
first layer are: email, scheduling tools and shared file systems.
When using such tools developers still make (time-consuming)
decisions such as when to coordinate and with whom.

The second layer, ’Structured Processes’, focuses on guid-
ing the developers in their engagement with the product and
their team members. The underlying goal of tools from this
layer is to enforce a specific procedure for editing, managing
and relating changes to the different project artifacts. Examples
of technological support that can be mapped to this layer
include shared editors, issue trackers and work flow systems.
These tools all reduce the coordination effort per developer be-
cause many coordination decisions, which take effort, are now
captured by these tools. However, it can be time-consuming
to explicitly model and set up the desired processes.

Subsequently, the ’Information Discovery’ layer aims to
support informal practices of coordination. Informal coordi-
nation relies on users gaining information that establishes a
context in which they perform their individual tasks. Tools
at this layer try to provide the users with the information
necessary to build this context. Examples of these tools are
project dashboards, visualization systems and tool support for
finding expertise. Tools from this layer combine and visualize
information that is already specified by developers as part of
other tasks (e.g. commit logs, personal information, work item
status) in order to automate tasks that otherwise have to be
performed manually. In this layer the benefits of integrating the
information from different information sources becomes clear.
By combining, for example, information about artifacts that
usually are modified together and information about who most
frequently modified the related source code files, it becomes
possible for a developer to pro-actively determine who best to
contact in case of doubt.

Fourthly, the ’Contextualized Information’ layer, tools at this
level focus on automatically predicting and providing useful
coordination information to create a context in which only
relevant information is exchanged in a relatively unobtrusive
manner. An example of such a technology is a workspace
awareness tool, such a tool provides its users with information
about potential conflicting activities undertaken by other users
of the system. In this layer it is essential to focus on the
interplay of awareness cues presented by the tools and the
responses of the developers to these cues to be able to provide

a stronger context of one’s activities. Because, the stronger a
context for one’s activities the stronger the opportunity for
developers to self-coordinate with their colleagues to swiftly
resolve any emerging coordination problems.

Finally, Sarma et al. [11] leave the top of the pyramid open
as they believe new paradigms of coordination will emerge
as technology and organization practices continue to evolve.
However, they do define the ultimate goal (the top of the
pyramid) of coordination technologies: to achieve continuous
coordination. In other words, the goal is to achieve ”flexible
work practices supported by tools that continuously adapt
their behavior and functionality so coordination problems
are minimized in number and impact” [12]. In this scenario
developers no longer need to use specific coordination tools
since coordination and work activities are integrated in a
single environment providing its users with all the necessary
information. We completely agree with this, since when all
necessary information is integrated into a single environment
and such an environment provides the necessary information
and functionality in a seamless and effective manner it can
be used to collaborate effectively with your distributed col-
leagues.

IV. CONTEXT OF AN ACTOR

The second prerequisite of a virtual office wall concerns
a method to differentiate between required and not required
information. In this section we argue that a valid representation
of the context of an actor is sufficient to achieve this. Therefore
we introduce Activity Theory as a means to represent the
context of an actor and argue it is an appropriate representation
of Software Engineering activities as well.

Tell et al. [13] propose the use of Activity Theory in order
to both structure and describe the context in which distributed
software engineers perform their tasks. The origins of Activity
Theory are threefold: (i) classical German philosophy, (ii)
the writings of Marx and Engels and (iii) the Soviet Rus-
sian cultural-historical psychology of Vygotzky, Leont’ev and
Luria [14]. The theory was further improved by Leont’ev, one
of the three Russian psychologists [15] and became popular
after Engeström introduced it to the western world. One of
Engeström’s main contributions is a systematic representation
of the theory; the activity system (see figure 2). This model
consists of six elements:

Object The objective of the activity
Subject The actor engaged in the activity (ei-

ther an individual or a group)
Community The social context of the activity (all

actors involved in the activity system)
Instrument The artifacts or concepts used by the

subject of the activity
Division of Labor The hierarchical structure of the ac-

tivity
Rules The laws, rules and regulations that

govern the subject inside a commu-
nity



Fig. 2. Activity System [16]

All these elements together represent a single human activity
resulting in a single outcome.

In addition to modeling a human activity, it is also necessary
to describe the hierarchical structure of that activity. Because,
such a structured overview is needed to be able to relate a
single human activity to activities carried out by the rest of the
team. Leont’ev defined a hierarchical model of human activity
which consists of three levels [15]:

Activity is driven by its motive (e.g. a man partici-
pates in a communal hunt because he wants
to feed his family)

Action is driven by its goal (e.g. a man scares away
the prey from himself and toward the other
members of the hunt)

Operation is driven by its conditions (e.g. how the
man carries out the various tasks involved
in his role will depend upon the weather,
the terrain etc.)

In [13] Tell et al. discuss how to use Activity Theory
to describe different activities and processes of developing
software in the context of GSE. They do this by describing,
detailing and decomposing Software Engineering activities and
map these to the activity system and the hierarchical model
of human activity. In this discussion they use the software
architecture design process as leading example. They show
how this activity can be mapped to the activity system and
explain each of the six elements and the outcome of this
model. Subsequently, they decompose the software architec-
ture design activity into its composing actions; architecture
analysis, architecture synthesis and architecture evaluation.
Next, they change the subject to the evaluation manager and
emphasize on his/her motive to evaluate a candidate solution.
For this activity, from the perspective of the evaluation man-
ager, the same two mappings are applied and discussed. This
decomposition can be further applied to a point at which the

activity is performed through actions facilitated by technology
[13].

Finally, Tell et al. [13] conclude that the introduction of
Activity Theory into the field of Global Software Engineering
makes it possible to determine what information is needed
when performing a specific collaborative task. Because, on
the one hand, applying the activity system to Software Engi-
neering activities results in a uniform and detailed description
of the current activity. This can be used to determine what
information is directly related to the activity. On the other
hand applying the hierarchical model of human activity to
Software Engineering activities, results in an overview of
the hierarchical structure of that activity. This can be used
to determine the degree of relatedness between activities. In
our opinion using Activity Theory is an appropriate way to
describe the context of an actor and as such also to determine
which information is required while performing a activity.

V. INDUSTRIAL EVALUATION

In the previous section we concluded that contexts described
by Activity Theory are an appropriate way to represent activ-
ities of software engineers. To be able to use such contexts to
differentiate between required and not required information,
the contexts of actors performing the different activities which
are common in Software Engineering need to be sufficiently
different. To determine whether this is true in practice we have
performed an industrial evaluation which is discussed in this
section. We conducted a Focus Group in which we attempted
to answer the following three questions:

1) Which activities are carried out most frequently?
2) Which instruments are used while carrying out an activ-

ity?
3) Which actors are involved while carrying out an activity?

A. Site

Participants in this study are a group of software engineers
at IHomer, a Dutch Software Engineering company founded in
August of 2008. The company currently employs 19 employ-
ees and is fully distributed (see figure 3), since the default
location from which the employees work is their home. As
a consequence, all employees are experienced with dealing
with the difficulties of developing software when working
physically separated from each other. This makes this company
a suitable setting to conduct this evaluation.

B. Data gathering and analysis

To answer the three questions, we performed a Focus
Group [17], [18] to gather the qualitative data we needed.
We conducted a Focus Group to gather the insights, ideas,
viewpoints and opinions of the people participating because
such a setting enables the participants to build on the responses
and ideas of others. This process increases the richness of
the information gained [19]. We used this method because of
its ability to discover new insights and because it is a cost
efficient way of obtaining practitioner experience. The Focus
Group we conducted lasted approximately 45 minutes and we



Fig. 3. Geographical distribution of the employees of IHomer

selected six employees of IHomer based on their availability.
The Focus Group itself was carried out in a separate office to
minimize the influences from outside. During the Focus Group
the first author took the role of moderator. As a moderator
he (i) explained what a Focus Group entails, (ii) explained
what was expected of them, (iii) explained the goal of the
Focus Group, (iv) kept the discussions on topic, (v) tried to
ensure that all participants contributed to the discussion, and
(vi) made sure that the predefined structure of the Focus Group
was followed. The identification of the most frequently carried
out activities was performed as follows: Firstly, the moderator
handed out sticky notes and asked each of the participants to
write down what they thought were the five most frequently
carried out activities. Following this the moderator gathered
the sticky notes from all individuals and discussed each of
them with the entire group. In the discussion of each sticky
note the group determined what was meant by it and grouped
it together with other notes when appropriate, trying to create
an overall group consensus. This process eventually resulted
in the most frequently carried out activities. Finally, for each
of these activities the moderator asked both which instruments
are used and which actors are involved while carrying out that
activity. We reached consensus in a similar fashion as with the
activities.

C. Findings

In this section we discuss and present the findings of the
industrial study. The four most frequently carried out activities
are shown in figure 4. We only show the four most frequently
carried out activities because the participants of the Focus
Group unanimously decided those are the most important ones.

Next, we discuss the differences between the contexts of the
four most common activities and reflect on these differences.
Firstly, we can see that in the four most common activities
we already identified three different communities, namely: (i)
team, (ii) team and organization, and (iii) team, organization
and customer. These differences in actors involved in the
activity make it possible to regulate information based on
the social context. So, for example, when testing a new or

Activity 1: Coordination of tasks within the
development team to be able to collaborate

effectively
Community Instruments
Team Communication

technologies
Organization Face-to-Face meetings

Documentation
Issue Management System
Software Repository
Agenda

Activity 2: Coordination of tasks between the
development team and the customer to be able to

collaborate effectively
Community Instruments
Team Communication

technologies
Organization Face-to-Face meetings
Customer Documentation

Issue Management System
Software Repository

Activity 3: Creation of new software to be able to
add new functionality to the system

Community Instruments
Team Communication

technologies
Face-to-Face meetings
Issue Management System
Software Repository
Development Environment
Requirement Management
System
Testing Framework

Activity 4: Testing of new or existing software to
be able to guarantee the quality.

Community Instruments
Team Communication

technologies
Face-to-Face meetings
Documentation
Development Environment

Fig. 4. The four most frequently carried out activities

existing piece of software you do not need to share this
information with all your colleagues and the customer, only
direct team members need to be aware of your activities.
Secondly, we can also see that the artifacts and concepts used
by the subject of the activity differ between the four activities.
This makes it possible to filter the information based on the
current activity of an actor. When creating new software,
for example, an actor does not need information about the



upcoming appointments of his colleagues. These two results
both confirm the conclusion that applying Activity Theory
to the field of GSE can help provide distributed software
engineers with relevant information.

D. Limitations

In this section we discuss the limitations of using a Focus
Group to gather empirical data as well as the limitations of
the empirical evaluation we performed. The first limitation is
that all participants worked for a single company; because
of this we can only draw conclusions which are internally
valid. The internal validity is significant however, since six of
the nineteen employees participated in this study (32%). In
order to draw more externally valid conclusions the empirical
study should be repeated with a sample which more accurately
represents the total population of software engineers.

There are also Focus Group specific limitations which have
to do with group dynamics, communication styles and the
social acceptability of certain topics and opinions which can
all influence the discussion and therefore introduce bias [17],
[18]. We dealt with these limitations by defining and following
a predefined structure to be able to control the overall content
of the Focus Group and to make sure that group dynamics
did not steer the discussion in an undesirable direction. In
order to minimize the negative effects of social acceptability
we emphasized the importance that everyone should contribute
to the discussion. We also used sticky notes to force everyone
to think about the question in advance to reduce the temptation
to agree with the loudest person or the first person to give his
opinion. The final limitation is the possibility that participants
have hidden agendas [17].

VI. CONCLUSION

In this paper we have discussed how the the introduction
of virtual office walls can help provide distributed software
engineers with the context of their current activity. We dis-
cussed that in essence a virtual office wall is an automation of
restricting the available information to the information that an
actor needs to carry out his current activity. Subsequently, we
discussed the two prerequisites: (i) access to a data set which
at least contains the required data at a certain time and (ii)
a method to differentiate between required and not required
information. As a way to implement the second prerequisite we
discussed Activity Theory, how this can be applied to represent
the context of software engineers and validated this application
in a practical setting. As such, the main contributions of this
paper are the following:

• The definition of a virtual office wall as ”A mechanism
which regulates information based on the context it
encloses”

• The prerequisite of a virtual office wall that both access
to data from a wide variety of tools is needed and the
means to integrate this to create valuable information

• The prerequisite of a virtual office wall that a method is
needed to differentiate between required and not required
information

• The applicability of Activity Theory as a way to represent
the context of a software engineer

• The validity of the applicability of Activity Theory in
Software Engineering in an industrial setting

• By having access to data from a wide variety of SE tools,
a means to integrate this information and Activity Theory
based representations of contexts, it becomes possible to
automatically erect virtual office walls and as such help
to provide distributed software engineers with the context
of their current activity

VII. FUTURE WORK

The next step in our research is to apply the concept of
virtual office walls. We are planning to apply this concept
on Iris (see [20]); a cross-platform, web-based, extensible
communication framework we are working on. With this plat-
form we aim to both support all awareness needs of software
developers in a singe solution and enable integration of the
awareness information from different information sources. The
current version of Iris, supports the following: (i) Instant
Messaging between two or more users, (ii) audio conferencing
between two or more users, (iii) video conferencing between
two or more users, (iv) showing the availability of the other
users, (v) showing the current activity of the other users,
(vi) showing tomorrow’s work location of the other users,
(vii) showing how other users like to be contacted, and (viii)
showing the ongoing conversations of all users.

We have chosen to start by supporting standard synchronous
communication since our stakeholders identified this as highly
valuable because they spend a large portion of their time
in communicating. Subsequently we added some information
about the actors: (i) their availability because they want to
know who is available to decide whether or not to try and
contact someone, (ii) their current activity to be able anticipate
on this, (iii) tomorrow’s work location to be able to more easily
identify possibilities for working co-located and (iv) their
approachability to be able to know how to contact someone.
Finally, we added a list of ongoing conversations to provide
users insight in the conversations their colleagues are having.

Currently, we are using Iris to put the ideas discussed in this
paper into practice. We are designing a way to incorporate the
concept of virtual office walls in this platform to provide dis-
tributed software engineers with relevant information related
to their current context. We propose to do this by providing
the users with a mechanism to contextualize the awareness
information. An example of such a mechanism is that a user
can define a project group, in which all information about
a specific project can be clustered, such as project members,
project description, project message board, outstanding project
issues and related conversations. Subsequently, the context of a
user is confined to one of these projects based on his current
activity. We are planning to implement this functionality in
the upcoming iterations. One of the main challenges in this is
visualizing the contextualization of the awareness information.

Next to designing and implementing this concept in Iris, it
should also be evaluated in an industrial setting. We will eval-



uate the concept of virtual office walls at IHomer because on
the one hand, physically distributed collaboration is common
since the default location to work from is the employee his
home and as such the people have experience with dealing
with the difficulties of working distributed form each other.
On the other hand, all the employees of IHomer are using the
system in their daily activities which enable us to acquire all
the information we need to evaluate this concept.

REFERENCES

[1] K. Schmidt, “The Problem with ‘Awareness’: Introductory Remarks on
‘Awareness in CSCW’,” Computer Supported Cooperative Work, vol. 11,
no. 3-4, pp. 285 – 298, 2002.

[2] A. Syri, “Tailoring cooperation support through mediators,” in Pro-
ceedings of the 1997 European Conference on Computer Supported
Cooperative Work. Kluwer Academic Publishers, 1997, pp. 157–172.

[3] P. Dourish and V. Bellotti, “Awareness and Coordination in Shared
Workspaces,” in Proceedings of the ACM 1992 Conference on Computer
Supported Cooperative Work. ACM Press, 1992, pp. 107–114.

[4] E. Carmel, Global software teams: collaborating across borders and
time zones. Upper Saddle River: Prentice Hall PTR, 1999.

[5] J. Herbsleb and D. Moitra, “Guest Editors’ Introduction: Global Soft-
ware Development,” IEEE Software, vol. 18, no. 2, pp. 16–20, 2001.

[6] J. Herbsleb, “Global Software Engineering: The Future of Socio-
technical Coordination,” in Proceedings of the IEEE 2007 Workshop
on the Future of Software Engineering. IEEE Computer Society Press,
2007, pp. 188–198.

[7] The Dieringer Research Group Inc., “Telework Trendlines 2009: A
Survey Brief by WorldatWork,” 2009.

[8] J. Portillo-Rodrı́guez, A. Vizcano, M. Piattini, and S. Beecham, “Tools
used in global software engineering: A systematic mapping review,”
Information and Software Technology, vol. 54, no. 7, pp. 663 – 685,
2012.

[9] J. Fogarty, S. Hudson, C. Atkeson, D. Avrahami, J. Forlizzi, S. Kiesler,
J. Lee, and J. Yang, “Predicting human interruptibility with sensors,”
ACM Transactions on Computer-Human Interaction, vol. 12, no. 1, pp.
119–146, 2005.

[10] T. Allen and G. Henn, The organization and architecture of innovation:
Managing the flow of technology. Butterworth-Heinemann, 2007.

[11] A. Sarma, A. Van der Hoek, and D. Redmiles, “The coordination pyra-
mid: A perspective on the state of the art in coordination technology,”
Computer, vol. PP, no. 99, p. 1, 2010.

[12] D. Redmiles, B. Al-Ani, T. Hildenbrand, S. Quirk, A. Sarma, R. Silveira,
S. Filho, C. de Souza, and E. Trainer, “Continuous Coordination A
New Paradigm to Support Globally Distributed Software Development
Projects,” Wirtschaftsinformatik, vol. 49, pp. 28–38, 2007.

[13] P. Tell and M. Babar, “Activity theory applied to global software
engineering: Theoretical foundations and implications for tool builders,”
in Proceedings of the IEEE 2012 International Conference on Global
Software Engineering, 2012, pp. 21–30.

[14] Y. Engeström and R. Miettinen, Perspectives on activity theory. Cam-
bridge Univ Pr, 1999.

[15] A. Leont’ev, “Activity, consciousness, and personality,” 1978.
[16] Y. Engeström, “Learning by expanding. an activity-theoretical approach

to developmental research,” 1987.
[17] J. Kontio, L. Lehtola, and J. Bragge, “Using the focus group method

in software engineering: Obtaining practitioner and user experiences,”
Empirical Software Engineering, International Symposium on, vol. 0,
pp. 271–280, 2004.

[18] K. D. Bailey, Methods of Social Research. New York: Free Press, 1978.
[19] J. Langford and D. McDonaugh, Focus Groups: Supporting Effective

Product Development. Taylor and Francis, 2003.
[20] K. Dullemond, B. van Gameren, and R. van Solingen, “Supporting

distributed software engineering in a fully distributed organization,” in
Cooperative and Human Aspects of Software Engineering (CHASE),
2012 5th International Workshop on. IEEE, 2012, pp. 30–36.


