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Abstract—Previous email prediction algorithms generate 

individual predictions based on the past groupings of recipients 

or the contents of past emails. Our work builds on this research 

by (a) introducing new algorithms for extending and combining 

previous techniques and generating hierarchical recipient 

predictions and (b) comparing the previous algorithms with each 

other and the new algorithms. We used standard metrics and 

developed new metrics to measure three kinds of user effort: 

scanning predictions, selecting predictions, and manually 

entering recipients. The new metrics are based on a new abstract 

model of recipient prediction that applies to existing schemes and 

the new ones developed by us. Our evaluations, based on the 

Enron mail database and the Gmail user-interface for recipient 

prediction, show that (a) content is less effective than groups, (b) 

the combination of content and groups is less effective than 

groups alone, and (c) hierarchical recipient prediction reduces 

user effort. 

Keywords- recommender systems; email; privacy 

I.  INTRODUCTION 

A number of GUIs require the entry of text, which can 
typically be broken up into tokens – string sequences 
delimited by whitespace and special separator characters. To 
aid the entry of such text, some of these interfaces provide 
token completion and prediction, illustrated in Figure 1. Token 
completion recommends a set of choices that complete the 
current token based on the prefix entered by the user. In 
Figures 1(a) and (b), the Gmail and Eclipse user-interfaces 
provide lists of recommendations based on the token prefixes 
‘nav’ and ‘a’, respectively. Token prediction, on the other 
hand, recommends one or more future tokens based on the 
tokens entered so far. In Figure 1(c) and (d), the Gmail and 
Eclipse user-interfaces recommend tokens which represent 
additional recipients to whom a message should be addressed 
and alternative valid method calls, respectively. 

In this paper, we consider a special case of token 
prediction illustrated in Figure 1(c): prediction of email 
recipients. Recipient prediction has several potential 
advantages. It saves the user effort when entering long email 
addresses (ids/names). Moreover, it allows the user to find 
recipients whose email addresses they cannot recall, which is 
particularly likely with listserv groups, long email addresses, 
or large collections of email addresses. In this case, the sender 
knows who should receive the message but cannot remember 
their addresses. Recipient prediction can also allow the sender 
to be reminded of forgotten recipients who should receive the 

email [1]. This is an important use of such predictions, as 
missing a recipient can be costly for senders, missed receivers, 
and others. Finally it can prevent leakage of information to 
unintended recipients, and, thus, forms a new kind of tool for 
ensuring privacy. The importance of identifying forgotten 
recipients and information leakage was recently illustrated in a 
class the second author taught in Fall 2011. Students in the 
class sent the instructor emails that should have also gone to 
his teaching assistants, resulting in unnecessary forwards or 
missed requests. Perhaps even more alarming, solutions to five 
of the twelve assignments, and reports of personal issues, were 
mailed accidentally by different students to the whole class 
rather than to the instructors, because tthe students  confused 
the class-help listserv with the class listserv. These are not 
isolated problems. A CMU study by Carvalho et al of a 
recipient prediction email tool found that at least 9.27% of 
emails did not include a desired recipient [2]. With accurate 
and effective recipient predictions, users could be reminded of 
the correct recipient and, thus, not fall prey to such issues. 
These potential benefits could have a significant impact given 
the popularity of email and recent research advocating the use 
of email as the primary collaboration user interface [3]. 

     

 (a) Gmail                      (b) Eclipse 

Token Completion: Recommending current token 

 

(c) Gmail 

 

(d) Eclipse 

Figure 1. Token Completion vs. Prediction 
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Past work that has directly addressed the email recipient 
prediction problem can be separated into two distinct 
categories: content and group based prediction. These 
approaches are email applications of the more general user-
interface idea of using the history of user interaction to 
automate the entry of user commands [4]. In content-based 
predictions, individual recipients are predicted based on the 
text in past messages. The intuition behind this approach is 
that similar documents will be shared with the same user(s). 
For example, in a university all resumes may be shared with 
members of the hiring committee and all promotion material 
with members of the promotion committee. Group-based 
predictions, on the other hand, associate possible recipients 
into groups based on how they were associated in past sent 
and received messages. Thus, if a message was sent to all 
members of the hiring committee, then, if in the future a 
message is addressed to some subset of this committee, a 
subset of the remaining members will predicted 

These schemes are special cases in the more general area 
of automatically clustering users into social groups based on 
characteristics they share. In particular, they are related to 
schemes that predict named contact-lists [5-7]. The difference 
between recipient and contact-list prediction is that the former 
predicts a group of users who should receive a specific 
message based on the properties of the message, while the 
latter identifies multiple groups of users based on general 
relationships among the users such as whether two users are 
“friends” in a social network [5, 7] or if they have sent a 
certain number of messages to each other [6]. As our examples 
show, both individual addresses and contact-lists can be 
components of email recipient predictions.  

 Past works have compared different schemes for email 
recipient prediction, but only in limited ways.  Specifically, 
they have not compared group and content-based schemes, 
and different comparisons have not used consistent data sets or 
metrics. Our work seeks to offer a more complete comparison 
of past approaches and to build on this work in other ways by 
answering several new, interesting questions: 

1. Dimensionalized design space: Can we identify a 
design space of prediction algorithms that includes existing 
schemes? Such a space can lead to more effective email 
prediction by including previously unexplored subspaces. 
Moreover, its dimensions can be used to succinctly compare 
and contrast existing and new algorithms, leading to a better 
understanding of them. 

2. Hierarchical prediction: Previous (content and group-
based) approaches predict a flat list of recipients, requiring 
individual recipients to be selected, one at a time. Is it possible 
to predict a hierarchical tree of recipients to allow users to 
atomically select groups of recipients? Hierarchical prediction 
can potentially reduce the overall user effort in selecting 
predictions. Each time a prediction is made, users must make 
some effort to determine whether the generated prediction is 
correct and either accept the prediction or perform some 
rejection action, which usually consists of manually entering 
some other recipient. Accepting a group rather than an 

individual reduces the number of times a user has to process 
and accept or reject a prediction. On the other hand, based on 
how it is implemented, it can potentially also increase the 
overall effort as predictions of groups are riskier than those of 
individuals, and, thus, can lead to more rejections.  

3. Comparison: Hierarchical prediction adds an 
important new dimension to the design space mentioned 
above. How do various points in the prediction design space 
compare with each other? In particular, how do group-based 
and content-based approaches compare with each other and 
with a hybrid approach that combines the two; and how does 
individual prediction compare with the hierarchical 
prediction?   

4. Effort metrics and recipient prediction model: What 
metrics should be used to evaluate the user effort required in 
the compared techniques? The answer to this question depends 
on the user-interface provided for suggesting and accepting or 
rejecting predictions. We do not innovate in the design of this 
user-interface and instead assume a small extension of the one 
used in Gmail (Figure 1c) that uses parentheses to group 
predicted recipients (Figure 6(b)). Such a user-interface 
requires three kinds of user effort: scanning predictions, 
selecting predictions, and manually entering recipients. 
Previous work has used classical metrics to determine the 
degree of false positives and negatives, which do not directly 
measure these user efforts. Is it possible to develop new 
quantitative metrics that address this problem? 

We answer these questions in several stages. We start by 
describing dimensions that describe the existing two 
algorithms. Next we motivate and define new metrics for 
evaluating the effectiveness of recipient prediction, which are 
then used to compare the existing schemes. This comparison is 
used to motivate a new algorithm for predicting individuals 
and sets of individuals. The new algorithm is then compared 
with the existing ones using both our class metrics and our 
new metrics. The best of the algorithms are then used to 
further improve recipient prediction by extending any 
individual recipient prediction to support hierarchical 
prediction, which is then evaluated. A running example is used 
to illustrate the similarities and differences among these 
schemes and motivate them, which is a contribution in its own 
right. 

II. DESIGN SPACE TO DESCRIBE CURRENT SCHEMES 

In our model of recipient prediction schemes, individual 
recipients or groups are associated with some set of past email 
messages, and properties of these sets are used to determine 
the likelihood of a correct prediction. This model is illustrated 
by Figures 2 and 3, which are used as our running example. 
Figure 2 lists the past messages of an email account belonging 
to the user Chris, some of which occurred in Fall 2011 and 
some of which occurred in Spring 2012. The Fall 2011 
messages were addressed to the same receivers but had 
different content. The Spring 2012 messages were addressed 
to three different groups of recipients, some of which overlap 
with previous groups. 



Figure 3 specifies a message that the user Chris composed 
in Spring 2012. In this newly composed message, Chris has 
already addressed Albert, one of the recipients of a previous 
message, and is now asking for predictions of other possible 
recipients. 

As discussed above, past schemes for email recipient 
prediction can be grouped into two categories, groups and 
content. A group-based algorithm bases its predictions on the 
set of recipients in the current message and in each previous 
message. Likely predictions are then identified by similarities 
between the set corresponding to the current message and any 
set corresponding to a past message or messages. For example, 

consider messages (a) and 
(b) in Figure 2, where 
Chris sent two messages 
to Albert and Eddie.  
Since the two users were 
addressed together in the 
past, and Albert has 
already been addressed in 
Figure 3, Eddie is a likely 

predicted recipient for the current message. As this example 
illustrates, group-based prediction looks at both groups of 
users addressed in previous messages and the seed set of users 
addressed so far in the current message, either by manual entry 
or prediction selection. 

However, as one can see by looking across all messages in 
Figure 2, email accounts are not this simple. Groups can 
overlap, which can lead to users being members of multiple 
groups at the same time. Therefore, predictions need to be 
ranked in some form. Such rankings use the SOYLENT [8] 
idea that (a) the rank of a group is proportional to the strength 
of the connections between its members;  and (b) the 
connection strength can be derived using various properties of 
email exchanges. Two such properties used in past work are 
time and direction. Time captures the change of groups. For 
example, consider the messages (a) and (c) in Figure 2. The 
user, Chris, changes classes from semester to semester, and 
thus his old group of (Albert, Eddie), should be made less 
important than a new group of (Albert, George, Sue) as time 
passes. 

Direction captures whether the owner of an email account 
implicitly created a group by sending a message to others, or 

whether some outside source made this specification by 
sending the message to the owner. When the owner of the 
account sends an email to a set of recipients, it is reasonable to 
assume that those individual recipients have some sort of 
association. However, if the message was received, it is more 
difficult to make that assumption as the sent message may 
have incorrectly been sent to the owner, the message may be 
spam (Figure 2(e)), or the sender may not be able to receive 
messages. 

The algorithm of Roth et al. [9], implemented in Google’s 
Gmail, combines these four properties (groups, seed, time, and 
direction). It works in two stages. First it assigns a weight to 
each group based on these four properties, and then, from 
these group weights, it determines the individual weight. 

Let us consider, first, group weight, which is a function of 
several individual weights corresponding to the four 
properties. A direction weight is captured by sent and received 
constants, whose values are unspecified. A time weight is 
computed using  the standard half-life formula, which makes 
older messages exponentially less important based on a 
constant. The impact of the seed is determined using the 
intersection of the group with the seed. The Roth et al. [9] 
paper identifies four alternatives for calculating the weight of 
a group based on these three properties, which define a space 
of group-based schemes.  

(1) Top Score - The seed is ignored, and the group weight 
is a sum of products of direction and time weights for past 
messages of the group. (2) Intersection Count - If the 
intersection is non-empty, then the group weight is calculated 
as 1, and if not, it is calculated as zero. Thus, in this approach, 
direction and time are ignored. (3) Intersection Score - If the 
intersection is non-empty, then the score is the sum of the 
products of direction and time weights; otherwise, it is zero. 
(4) Intersection Weighted Score - The group weight is the size 
of the intersection multiplied by the sum of products of time 
and direction weights.  

The scores of individual recipients were computed by the 
summing of group scores. An individual, i, has a set of groups 
G, of which it is a member. The score of this individual is 
calculated as  

.)( Gg
gscore  

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Sample email message history 

Fall 2011 

 

 

 

 

Spring 2012 

From: 

To: 

Subject: 

Chris 

Albert, George, Sue 

Let’s make a study group 

(c) 

From: 

To: 

Subject: 

Chris 

Albert, Eddie, George, Sue 

Lunch normal time and place? 

 

(d) 

From: 

To: 

Subject: 

no_reply 

Chris 

FREE OFFER!!!! 

 

(e) 

(a) 

From: 

To: 

Subject: 

Chris 

Albert, Eddie 

Study group tonight at 7pm 

(b) 

From: 

To: 

Subject: 

Chris 

Albert, Eddie 

Our presentation for class 

 

 

 

 

 

Figure 3. Example message in need of 

recipient predictions 

From: 

To: 

Subject: 

Chris 

Albert 

Homework Question 



Thus, as we see above, group-based prediction, as 
implemented by Roth et al, in fact uses four different 
properties of email: group, seed, time, and direction. One 
property it does not use is the content of the email. Carvalho 
and Cohen [1] use a combination of content and direction of 
the email. As mentioned before, the intuition behind this 
scheme is that people tend to receive or send email of 
“similar” content. We illustrate this intuition with messages 
(c) and (d) in Figure 2. Chris has two groups he emails. One is 
for a class study group, and one is for a lunch group. If it is a 
particularly difficult class, he may be sending and receiving 
emails a few times a week, and, in the case of the lunch group, 
he eats on a regular basis. Therefore time and direction offer 
no help in differentiating between the two groups. However, if 
one were to examine the content of the two emails, one could 
find that these emails are very different from each other. 

In order to effectively use content for prediction making, 
an email prediction scheme must define the similarity between 
two messages. The algorithm in [1] is based on the TF-IDF 
(Term Frequency-Inverse Document Frequency) text mining 
technique [10]. Given a set of documents, TF-IDF first 
computes a list of words or terms, t1...tn, that occur in these 
documents. Then, given a specific document, it calculates a 
weight vector, w1..wn, where wi is the weight of term ti in that 
document. (How exactly the weight is computed is beyond the 
scope of this paper.) Carvalho and Cohen compute TF-IDF 
based on all but a small subset of ignored words, which we 
replicate in our evaluation, described later. Their scheme treats 
each message as a document, and, thus, associates each email 
with a weight vector, w1..wn. As in group-based predictions, 
each possible prediction is associated with a set of past email 
messages, E. A weight vector, W1..Wn, is then formed for each 
prediction by summing together the weight vectors for all 
messages in E. 

After a new message is composed, there exists a weight 
vector for each possible recipient and the newly composed 
message. The likelihood of a particular prediction, p, is then 
calculated as the cosine of the angle between the vector for 
that prediction, vp, and the vector for the new message, vm. 
The cosine can be computed with the following equation, 
where vp • vm is the dot product between the two vectors: 

mp

mp

vv

vv
pscore


)(  

Based on this equation, each prediction has a score, just as 
it did in the group-based case, where a higher score indicates a 
more likely prediction. 

Thus, we see two different ways of predicting recipients. 
While there has been study within the categories of group and 
content-based predictions, no work has been done to compare 
the two spaces with each other. Such a comparison requires 
appropriate evaluation metrics. 

III. METRICS 

As mentioned above, past work has measured the 
effectiveness of predictions through the classic metrics of 
precision (P) and recall (R). However, these two metrics only 

determine the correctness of predictions - they do not directly 
measure how a user’s effort is reduced. This is due to two 
fundamental differences between classic prediction systems 
and recipient prediction. In the latter, the prediction step is 
followed by a user acceptance or rejection of a prediction, 
which, in turn, implies that the user knows if a prediction is 
correct or not. Thus, the cost of a false positive (predicting an 
unintended recipient) incurs the additional effort required to 
reject it, and not a wrong user conclusion such as a wrong 
medical diagnosis. Second, as we see in the group-based 
scheme, predictions can be made incrementally, based on past 
user actions. 

 A false negative (not predicting an intended recipient) can 
indeed lead to a wrong conclusion, as a user may forget an 
intended recipient because the system has predicted that no 
more recipients are necessary. Thus, the classic metrics remain 
relevant. However, additional metrics are needed to more 
directly measure the reduction in user effort. 

In order to better measure the effort required during the 
prediction process, we first had to develop a model of how 
predictions are generated, accepted, and rejected.  Predictions 
are generated as a list of items, where an item may be an 
individual recipient or a (potentially hierarchical) group. For a 
non-empty top-level list, a user may select an individual or a 
group, or reject all predictions in the list. If a list is empty or 
the user has rejected all predictions in a list, a user must 
manually enter some recipient and then ask for a new 
prediction list. The maximum number of leaf nodes in a 
predicted list is kept constant in each prediction. 

The previously defined metrics can be used to measure 
certain aspects of this process. An empty list corresponds to a 
false-negative, because there are recipients still left to address, 
but the prediction algorithm can find no predictions. By 
measuring the ratio of non-empty lists (positives) to total 
requests for lists (candidates), recall determines the degree of 
false negatives. By computing the ratio of lists that contain a 
correct prediction (correct positive) to the total number of non-
empty lists generated, precision determines the degree of false 
positives. The higher the recall/precision, the lower the degree 
of false negatives/positives. We denote precision and recall 
with the variables P and R, respectively. 

We introduce a new metric, average acceptance size, 
which we denote with the variable A. It measures the average 
number of individuals chosen when a user accepts some 
prediction from a particular list. In an algorithm that only 
predicts individuals, this average acceptance size is 1. 
However, if groups are made available as predictions, then this 
average acceptance size can be larger, because a single user 
action can accept multiple recipients. 

A higher value of A reduces the number of clicks 
(selections) made by users to select predicted lists. However, 
making a click is not the only way users exert effort in an 
email system supporting recipient prediction. They must also 
scan the recipients in the prediction lists and manually enter 
recipients. To determine the cost of these three kinds of user 
efforts in an email that is addressed to X recipients, we use the 
variables s, c, and m, respectively, to denote the number of 



non-empty lists scanned by the user, the number of clicks 
made, and the number of recipients entered manually.  

 The values of the variables P, R, A, X, s, c, and m are 
related to each other by the following system of equations: 

(1) XmcA   

(2) smcR  )(   

(3) csP   

Equation (1) says that the total number of recipients, X, is 
the sum of the number, m, manually entered, and the number, 

cA  , selected through c clicks. Equation (2) evaluates the 

scanning cost, s, by determining the number of times a user 
must scan non-empty lists that are generated in the process of 
addressing the email. Each time a user accepts a prediction (by 
clicking) or manually enters a recipient, the user has implicitly 
requested a list prediction beforehand. Thus, the total number 
of such requests is c + m. Only R of these requests are non-

empty, and thus only R  (c + m) of them must be scanned. 
This scanning can further vary based on the size of the list 
where larger lists may take significantly more effort to scan.  
However, we strictly restrict our lists to contain at most 4 
individuals, and thus we assume our scanning costs to be 
constant for our different list sizes. Finally, equation (3) 
determines the total number of clicks, c, which corresponds to 
the total number of correct positives, which, by definition is 
the number of non-empty lists, s, multiplied by the precision, 
P.  

These equations 1, 2, and 3 can be solved to compute the 
three effort values s, c, and m: 

(4) X
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We can divide these three numbers by X to lead to the 
normalized fractional values, S, C, and M, respectively. 
Through these values, we now have measures of how often 
certain types of effort are exerted. An algorithm requires less 
user effort than another if it leads to lower (average) values of 
S, C, and M for the same email data set. When two algorithms 
are partially ordered by these three metrics, we make the 
following assumption: clicking a correct prediction takes the 
least amount of work and manually entering a recipient takes 
the most amount of work. Our justification for the assumption 
is the following: When selecting a correct prediction, we 
assume the user has already scanned a list and knows which 
prediction is correct. When clicking, a user only needs to 
determine where to click and perform the clicking action. On 
the other hand, manually entering a recipient requires the user 
to remember the intended recipient and the spelling of the 
recipient’s name or email address. 

IV. CONTENT VS. GROUP 

The existing and new metrics allow objective, quantitative 
comparisons between different points in the recipient 
prediction scheme design space. The previous metrics have, in 
fact, been used to compare some of these points. Carvalho et 
al. compared content and direction-based predictions with 
time-based predictions using precision and found that content 
and direction yielded the best results [1]. Similarly, Roth et al. 
compared group, time, and direction-based predictions with 
time and direction-based ones through use of their Top Score 
variation and found the combination of all three properties 
fared better both in terms of precision and recall [9]. 

Thus, previous work has not compared group and content-
based schemes, and different comparisons have not used 
consistent data sets or metrics.  Moreover, as mentioned 
earlier, the metrics they have used do not address certain types 
of user effort. Therefore, we expand on this work by using 
both our new metrics and classic metrics to perform direct 

comparisons between content 
and group-based prediction 
schemes. 

In order to effectively 
compare various prediction 
schemes, we also had to select 
appropriate values for the half-
life constant and sent vs. 
received mail constants. As 
Roth et al did not release the 
values they used, we varied 
them in the following manner: 
For time, we experimented 
with half-life values of one 
hour, one day, one week, four 
weeks, six months, one year, 
and two years. We found the 
best values vary depending on 
which variation of the 
algorithm is used. For 

Table 1. Results of comparison of past algorithms 

  

 

Half Life 

Relative Sent 

Importance P R C M 

Content N/A 

 

N/A 0.066 0.980 0.065 0.935 

Top Score 
Best Precision One Week 0.25 0.105 1.000 0.105 0.895 

Best Recall Four Weeks 0.25 0.103 1.000 0.103 0.897 

Intersection 

Count 

Best Precision One Hour 0.25 0.131 0.959 0.126 0.874 

Best Recall One Hour 0.25 0.131 0.959 0.126 0.874 

Intersection 

Score 

Best Precision One Week 0.25 0.190 0.958 0.182 0.818 

Best Recall Four Weeks 0.25 0.186 0.958 0.178 0.822 

Intersection 

Weighted 

Score 

Best Precision One Year 0.5 0.284 0.958 0.273 0.727 

Best Recall Four Weeks 2.0 0.111 0.995 0.110 0.890 

 



direction, we defined a constant, relative_sent_importance, 
which is defined as sent_importance/received_importance; 
where sent_importance is the constant applied for sent 
messages and received_importance is the constant for received 
messages. Our relative_sent_importance was varied to 0.25, 
0.5, 1.0, 2.0, and 4.0, allowing testing with sent messages held 
in higher importance in some cases, and received messages in 
others. 

We generated predictions using both the content-based 
scheme and all four of the group-based variations. For the 
dataset, we used the version of the Enron email database 
retrieved from [11], which contained 127 accounts in total. 
The content-based scheme of Carvalho and Cohen also used 
Enron accounts, while the group-based scheme of Roth et al. 
used Gmail accounts available to Google. For each account, 
we ordered the messages by time and removed any non-email 
based messages, such as those marked as calendar entries for 
outside applications. We then used the first 90% as the set of 
past messages for an account. The final 10% of the messages 
for an account were used to model prediction making. 

For each message, we assumed a seed value of 2 (the 
sender and one other intended recipient) at the start of all 
predictions. Each time a prediction list was generated, we 
assumed the user would select the first correct individual in a 
generated predicted list. If no such individual existed, then it 
was assumed that the user would manually enter the first 
recipient as ordered originally in the email message. We 
assume the ordering of recipients was first TO, then CC, and 
finally BCC. No such specification of the ordering exists in 
past work, so we have no source of comparison for this 
assumption. 

As discussed above, because the past work of [9] and its 
implementation in the Gmail product restricts list sizes to 4 
individuals, we do the same. This is an effort to keep our 
results comparable to those of past work, as well as avoiding 
generating lists that are too difficult to parse. 

Using this methodology, we arrived at the results displayed 
in Table 1. There is no S value presented in the table due to 
the fact that there are only individual predictions, which means 
that A = 1 in all cases. Because of this value of A, the value of 
S reduces to R, making S superfluous in the table.  

Table 1 shows that as M decreases, C increases, which 
falls in line with the definitions of C and M. If some individual 
was not manually entered, then it must have been selected as a 

correct prediction, which means an additional click had to take 
place. It also shows that content-based prediction performs 
worse than group-based prediction in that there is at least one 
group-based prediction algorithm that performs better with 
respect to both precision and recall. Additionally, when sorting 
by recall or precision, no group-based prediction has as high 
of an M value as that of content-based predictions, which 
indicates that content-based predictions require more effort for 
manual entries of recipients.  

We also attempted predictions made by combining both 
groups and content. This combined attempt used the 
previously computed separate content and group scores.  The 
two scores were each scaled using adjustable weights and then 
summed together to form a cumulative score.  In some cases, 
we also scaled the content vectors according to the half-life 
values and the relative_sent_importance as used in group 
scores to include time and direction with content. Regardless 
of whether the scores included time or direction or how scores 
or vectors were scaled, the combined group and content-based 
predictions underperformed those of group-based predictions. 

In our best case of all these combinations of groups and 
content, we had a recall of 1.00 and a precision of .269, which 
imply clicking and manual entry values of .269 and .731, 
respectively.  This does improve over groups with respect to 
the clicking and scanning metrics, but underperforms with 
respect to manual entries.  As stated above, we assume manual 
entry to be the metric which requires the most effort on the 
part of the user, which, in this case, implies combined group 
and content predictions are less effective than group 
predictions. Despite the comparatively low effectiveness 
compared to group-based predictions, these values are better 
than content alone.  This in the very least implies that the TF-
IDF approach benefits from including groups in prediction 
making, but as a general approach, if predictions are made 
using content, TF-IDF is not a comparatively effective 
approach. 

Thus, our results show that (a) content is less effective than 
groups and (b) the combination of content and groups is less 
effective than groups alone. It is possible that the Gmail 
implementation of group-based prediction uses more optimal 
parameters, which would make our conclusion even stronger. 

V. INTERSECTIONS VS. SUBSETS 

Because of the low effectiveness of content, we focused on 

the use of groups, not content, in recipient 

predictions. Our goal was to offer new 

ways to generate predictions that are more 

effective according to both classical 

metrics and our own newly developed 

metrics. Both our results and those of Roth 

et al. show that it is important to seek 

improvements to their scheme.  

Table 2. Results of subset based use of seeds 

Algorithm Half Life 
Relative Sent 

Importance 
P R C M 

Subset Count One Week 0.25 0.837 0.314 0.262 0.738 

Subset Score One Week 1 0.849 0.314 0.267 0.733 

Subset Weighted Score One Week 0.25 0.853 0.314 0.268 0.732 

 



One improvement, which we present here, is motivated by 

applying group-based prediction (with our weights) to the 

second author’s email account. He found that, regardless of 

seed, every message had the same group of predicted 

recipients.  Upon further investigation, he discovered that the 

reason this group was constantly predicted was because he had 

sent them messages frequently over multiple years, including 

some messages sent very recently.  When making predictions, 

since the first author’s email address was always a part of the 

seed, this group always intersected with the seed and, thus, 

outranked more appropriate predictions due to its high recency 

and frequency of contact. 

One way to counter this situation is to exclude he sender 

from the seed or the ranked groups.  (Roth et al. do not 

indicate whether they include the sender in their seeds.) While 

that approach would work in this specific scenario, it still 

allows a small intersection to overwhelm a larger one. 

Therefore, we explored an alternative seed-based approach 

that does not compute intersections but, instead, looks at 

subset relationships between the seed and the ranked groups.  

In this subset-based approach, it is possible to develop 
variations that are analogues to the Intersection Count and 
Intersection Score variations of the intersection-based 
approach.  The variations are as follows: (1) Subset Count – If 
the seed is a subset of a group, then the score of that group is 
1, and if it is not a subset, then the score is 0. Just as with 
Intersection Count, time and direction are ignored in Subset 
Count. (2) Subset Score – If the seed is a subset of a group, 
then that group’s score is the direction weight multiplied by 
the time weight. 

It is more difficult to create a subset-based analogue of the 
Intersection Weighted Score variation. If we simply multiply 
the time and direction product by the size of the subset, all 
values would remain the same relative to each other because 
the size of the seed never changes during a single round of 
prediction making. However, what is important is the relation 
of the size of the subset to the size of the group. Consider a 
seed of size 2 that is a subset of two groups whose sizes are 3 
and 100. To predict the group of size 100 based solely on the 
seed value, the algorithm would, in essence, be guessing 98 
individuals. However, if the group of size 3 were predicted 
solely based on the seed value, the algorithm would only be 
guessing one individual, which ultimately leaves a smaller 
uncertainty. Therefore we define the Subset Weighted Score 

for a seed and group to be time and direction weights 
multiplied by |seed|/|group|. 

The results of using the subset-based approach to seeds are 

displayed in Table 2. As in the intersection-based approach, 

weighing scores gives best results. The best case of 

Intersection Weighted Score had a much higher recall value 

than the best case of Subset Weighted Score, while the reverse 

was true for precision. With the use of our new metrics, we are 

able to distinguish the effects such results would have on user 

effort. 

The metrics C and M yield similar values in both cases, 
indicating that users will have to exert roughly the same 
amount of effort for clicking predictions and manually 
entering recipients. However, the metric S, which is equal to 
recall in the case of individual predictions, is much lower 
when using a subset-based approach. Thus, our new metrics 
show that subset-based approaches reduce user effort with 
respect to scanning prediction lists, and, as a result, these 
approaches outperform the intersection-based approaches. 

VI. HIERARCHICAL PREDICTIONS 

The fact that the subset-based treatment of seed values 
outperforms that of intersection-based treatment indicates that 
there is a hierarchical tree of groups in the set of possible 
predictions. If this is indeed true, users should be able to 
reduce their click count by selecting not just leaf nodes in the 
tree but also intermediate nodes. This feature, in turn, requires 
a scheme for computing the hierarchy and a user-interface for 
displaying and selecting both leaf and non-leaf nodes in the 
hierarchy. There are several approaches for doing so – the one 
we settled on makes few changes to the algorithm and user-
interface for individual predictions.  

Instead of developing a new scheme from scratch, we 
create hierarchical prediction lists from individual prediction 
lists that were generated by some other group-based algorithm 
external to and, thus composable with, our algorithm. This 
relationship is illustrated in Figure  4.  Our algorithm 
generates hierarchical prediction list using predicted 
individuals and ranked groups from some external 
algorithm(s). In general, a hierarchical prediction list can 
contain overlapping groups, as in the case of [6]. We constrain 
the hierarchy to a tree, where a node has a single parent, which 
allows us to make few changes to the user-interface. 

 

Figure 4. Input and output of our hierarchical algorithm 



Our hierarchical algorithm builds a tree out of the 
individual prediction list, re-ordering the predictions if 
necessary. We assume parentheses (or some other marker 
symbol) are used to show the groupings, and that the 
parentheses do not significantly add to the scanning cost, 
because our experiments, like those of Roth et al. [9], limit our 
prediction lists to at most 4 individuals. An example of this 
interface is show in Figure 6(b), which is a part of a Mozilla 
Thunderbird extension that we developed. 

With the assumption of at most 4 individuals, there are at 
most 3 groupings and, therefore, at most 6 parentheses (2 
parentheses per grouping). With this relatively small number 
of characters added to the prediction list, we assume that our 
scheme does not add a significant amount of effort with 
respect to scanning an individual prediction list. However, if 
prediction lists contained no limit or a much higher limit on 
the number of individuals, the number of groupings, and thus 
parentheses, could increase significantly, which could 
drastically change the scanning costs of a hierarchical 
prediction list compared to a flat list.  

Because our individuals are generated using external 
algorithms, individuals are selected as they would in previous 
UIs, by clicking the name of that individual. To select a 
grouping, the user must click one of the parentheses associated 
with that grouping. 

To illustrate the generation of a hierarchical list, we will 
use a variation of our running example. Chris has a larger 
group of friends with whom he has lunch (Figure 2(e)). This 
group is subdivided into smaller study groups based on who is 
enrolled in his various classes. For this illustration, we will 
also assume that an external algorithm finds the list of 
predicted individuals {Albert, Eddie, George} and finds the 
following set of groups: <Albert> <Albert, George>, <Albert, 
Eddie, George >.  Our goal is to organize these three nodes 
into a tree based on the ranked groups.  

Figure 5 gives our algorithm for meeting this goal. In this 
algorithm, individual and hierarchical lists are defined by the 
type PredictionList, which is a list of objects of type 
Prediction. A Prediction can be a Grouping or an Individual, 
and has two fields, group and rank. The former field is the top 
ranked group of which the prediction is a member/subset, and 
the latter is the rank of said group. The variable indivList 
contains Prediction objects for the individuals predicted by the 
external algorithm. In our example, the indiv list would 
contain the following Individual objects: 

{id: Albert, group: <Albert>, rank: 0} 

{id: Eddie, group:<Albert, Eddie, George>, rank: 2} 

{id: George, group:<Albert, George>, rank: 1} 

The function buildHierarchicalPredictionList() builds a 
hierarchical list from indivList. This is done by calling the 
function addToPredictionList(), which adds each member of 
the original list, indivList, to the hierarchical list.  During this 
process, as each individual is added to the hierarchical list, the 
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Figure 6. Hierarchically Predicted Recipients in a 
Mozilla Thunderbird Extension 

 

object types: 
PredictionList: ordered set of predictions 
Prediction: {group, //mapped group of individuals 
  rank} //order in prediction list 
Grouping ISA Prediction:  ordered set of predictions  
Individual ISA Prediction: {id} // name of individual 
 
global vars: 
 indivList = list of individual predictions of non-hierarchical scheme 
 
functions: 
buildHierarchicalPredictionList(): 
      treeList = new PredictionList // create empty list 
      forall p in indivList do addToPredictionList(treeList, p) 
 
addToPredictionList(treeList, new): 
      merged ← false 
      next  ← new; 
      forall old in treeList where old != next do 

          if old.group  next.group  | next.group  old.group then 

              if next.group  old.group then                   
                  forall other in treeList where other!=old & other != next 

                     & other.group  next.group do 

                  //grouping of all other predictions with group  other.group 
                        mergedGrouping ← merge(other, next)  
                        remove next and other if they were in treeList 
                        list.add(mergedGrouping)  
                        next ← mergedGrouping 
                  endfor 
              endif 
              merged ← true 
              mergedGrouping ← merge(old, next)  
              remove old and next if they were in treeList 
              list.add(mergedGrouping) 
              next ← mergedGrouping 
          endif                  
      endFor 
      if !merged then list.add(new) 
      elseif treeList.size == 1 & tree_list is within a Grouping then 
          //all members of a Grouping were merged into a subgroup 
          treeList.members = members of only child 
      endif 
 

merge (p1, p2):  //assumed p1  p2 
      if p2 is Grouping then  
           addToPredictionList(p2.members, p1)  
           p2.rank ← max(p1.rank, p2.rank)  
           return p2 
      else //p2 is individual 
           g = new Grouping with p1 and p2 in members 
           g.group ← p2.group 
           g.rank ← max(p1.rank, p2.rank)  
           return g 
      endif 

Figure 5. Pseudocode for hierarchical grouping 
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      if p2 is Grouping then  
           addToPredictionList(p2.members, p1)  
           p2.rank ← max(p1.rank, p2.rank)  
           return p2 
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           g = new Grouping with p1 and p2 in members 
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           g.rank ← max(p1.rank, p2.rank)  
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      endif 



function attempts to merge the new individual with the 
existing members of the hierarchical list.  This merging, which 
occurs because of subset relationships between the group field 
of the new individual and of existing members, arranges the 
list into a hierarchy. 

Because these merges occur based on subset relationships, a 
newly added individual may not merge with any existing 
members due to a lack of such a relationship.  In this case, the 
new individual is added to the end of the hierarchical list. For 
example, in Figure 7(a), when the first individual, Albert, is 
added to the hierarchy, there are no other members of the 
hierarchical list, and thus Albert cannot be merged with an 
existing member.  Thus, the hierarchy will be a single leaf 
node and the list would be displayed as: Albert. 

However merges will occur in cases when a subset 
relationship exists between the group fields.  In one such case, 
the newly added Individual has a group field that is a superset 
of an existing member’s group field. The algorithm will 
perform a merging by placing both the new Individual and the 
existing member in a new Grouping and that Grouping 
replaces the old member in the hierarchy, thus occupying its 
original position.  In our example, in Figure 7(b), Eddie is 
initially added as a leaf node to the hierarchical list. Then, 
since his group field, <Albert, Eddie, George>, is a superset of 
Albert’s group field, <Albert>, the two are put in a new 
Grouping which replaces the Albert node in the hierarchy, 
resulting in the hierarchy shown in Figure 7(c). The newly 
created Grouping’s group field takes the value of the largest 
group fields from its members. This hierarchy gives us 
(Albert, Eddie) as our displayed list at this stage.  

Finally, in the last case we consider, the newly added 
Prediction has a group field that is a strict subset of an existing 
member’s group field.  If the existing member is a Grouping, 
the new Prediction can be added to the existing member.  
However, if the existing member is an individual, the previous 
approach of creating a new Grouping containing the old and 
new Predictions is used.  In our example, we must next add 
George to the hierarchy in Figure 7(d).  His group field, 
<Albert, George>, is a subset of the top level Grouping’s 
group field, <Albert, Eddie, George>, and thus he is added to 
the existing Grouping in Figure 7(e). This Grouping will retain 
the same group field, since it was the largest group field of all 
of its members. 

To support multi-level hierarchies, after an initial merging 
of a new recipient with a Grouping the algorithm recursively 
attempts to merge him/her with other members of the 
Grouping.  In the example, since George is the newly added 
Prediction, and his group field is a superset of Albert’s group 
field, a new Grouping containing both Albert and George is 
formed, the Albert and George nodes are deleted, the new 
Grouping is placed at Albert’s position, leaving us with the 
hierarchy in Figure 7(f), and the displayed list of: 

( (Albert, George), Eddie ). 

The groupings are ordered by the highest ranking individual 
contained in the grouping. Albert came before Eddie in the 
original individuals prediction list, so the grouping (Albert, 
George), comes before the individual Eddie. 

To test the effectiveness of these groupings, we composed 
our algorithm with two best variations of the intersection and 
subset approach. We ran a similar modeling scheme to the one 
used in the individual predictions. Our only change was in 
how we assumed a user would accept predictions. Using the 
past approach, we assume the user accepted the first correct 
prediction. In the hierarchical approach, we assume the user 
will pick the largest grouping that contains all correct 
predictions, because by doing so, the user is attempting to 
reduce their work as much as possible. 

The results of our testing are detailed in Table 3. P and R 
values are lower than those seen in purely individual 
predictions, which is to be expected if the tree-based scheme 
identified some of the intended groupings. As multiple 
predictions are accepted at once, such a scheme reduces the 
number of times a prediction list containing a correct match is 
generated. 
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Figure 7. Steps of generating the example hierarchical list  
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The M value remains approximately the same, which is 
also to be expected. Because our grouping algorithm is 
orthogonal to the generation of individual predictions, we still 
generate empty lists and lists with no correct predictions at the 
same rate as in the external algorithm. 

The S and C values are reduced by a significant amount. 
Specifically, our S values are reduced by half in the case of 
subset-based treatment of the seed and the click count is 
reduced by about half in all cases. This indicates that the user 
will have to select predictions half as often in all cases and 
will have to scan prediction lists half as often in the best case, 
which is a significant reduction in effort. 

VII. CONCLUSION AND FUTURE DIRECTIONS 

This paper makes several related contributions. It (a) 
classifies existing email prediction schemes into content and 
group-based; (b) defines the new metrics for capturing the user 
effort required to scan, click, or manually enter a recipient; (c) 
compares the existing schemes using new and old metrics; (d) 
identifies parameter values for the group-based schemes that 
gave the best results. In addition, it describes and evaluates 
new algorithms that (a) extend content-based prediction with 
direction and time; (b) combine the extended content-based 
prediction with group-based prediction; and (c) convert 
individual prediction lists created by a group-based prediction 
into a tree in which arbitrary nodes can be selected by the user. 
Its evaluations lead to several conclusions. (1) Group-based 
prediction algorithms perform far better than content-based 
ones. (2) Combining content and group into a single algorithm 
outperforms the results of content-based predictions, but 
ultimately fails to achieve better results than the best cases of 
group-based predictions. (3) An intersection-based treatment 
of seeds in prediction making performs worse than a subset-
based, which implies a hierarchy of groups. (4) Grouping 
individuals leads to a significant reduction in user effort with 
respect to scanning lists and clicking correct predictions.  

While this paper answers several important questions in 
recipient prediction, it also leaves numerous other questions 
unanswered: Can other schemes of content analysis be 
incorporated to create effective prediction lists? We have not 
been able to make content schemes work efficiently or 
effectively but are more hopeful about template-based 
analysis. Can prediction algorithms take into account the fact 
that groups grow and shrink? The current algorithms, 

including ours, create a new 
group with each membership 
change. Are there schemes to 
effectively predict groups 
previously unseen in any one 
email message? One approach 
for addressing the two group-
based questions above is to 
make predictions based on 
training from multiple accounts 
rather than a single account, 
possibly combining the schemes 

presented here with community detection algorithms.  

The Gmail user-interface assumed by our work presents a 
non-scrollable linear list of at most four items displayed 
dynamically for each message. There are several other 
alternative user-interfaces possible, one of which is shown in 
Figure 1(d). It would be useful to compare the usability of 
existing and new user-interfaces for token prediction in 
general and email-recipient prediction in particular. Such work 
could determine the impact of increasing the size of the 
recommended list, providing a scrollable list, providing a 
static message-independent area for displaying and selecting 
recipients, showing hierarchical lists using a hierarchical 
display, and integrating token completion and prediction by 
showing for each completed email address the associated 
recipient predictions.  

By comparing past techniques with both classic and novel 
metrics and by expanding into new areas and techniques, this 
paper provides a basis for investigating these intriguing 
questions. 

REFERENCES 

[1] Carvalho, V.R. and W.W. Cohen. Ranking Users for Intelligent Message 
Addressing. in Proc. of ECIR. 2008. 

[2] Carvalho, V.R., R. Balasubramanyan, and W.W. Cohen. Information 
Leaks and Suggestions: A Case Study using Mozilla Thunderbird. in 
Proc. of Conference on Email and Anti-Spam. 2009. 

[3] Bellotti, V., et al. FLANNEL: adding computation to electronic mail 
during transmission. in Proc. of UIST. 2002.  

[4] Greenberg, S. and I.H. Witten. How users repeat their actions on 
computers: Principles for design of history mechanisms. in Proc. of CHI. 
1988. 

[5] Bacon, K. and P. Dewan. Mixed-Initiative Friend-List Creation. in Proc. 
ECSCW. 2011. 

[6] MacLean, D., et al. Groups without tears: mining social topologies from 
email. in Proceedings of IUI. 2011. 

[7] Friggeri, A., G. Chelius, and E. Fleury., Triangles to Capture Social 
Cohesion. in Proc. of The Third IEEE International Conference on 
Social Computing. 2011. 

[8] Fisher, D. and P. Dourish. Social and Temporal Structures in Everyday 
Collaboration. in Proc. CHI. 2004. 

[9] Roth, M., et al. Suggesting Friends Using the Implicit Social Graph. in 
Proc. KDD. 2010. 

[10] Salton, G., E.A Fox, and H., Wu, Extended Boolean Informational 
Retrieval. Communications of the ACM, 1983. 26(11). 

[11] The Electronic Discovery Reference Model, EDRM Enron PST Data 
Set. http://www.edrm.net/resources/data-sets/enron-data-set-files. 

 

Table 3. Hierarchical Results 

  
Half 

Life 

Relative Sent 

Importance P R A S C M 

Intersection Score 
One 

Week 
0.25 0.13 0.956 1.666 0.883 0.114 0.809 

Intersection Weighted 

Score 

One 

Week 
0.25 0.189 0.953 1.75 0.84 0.159 0.722 

Subset Score 
One 

Week 
0.25 0.74 0.21 1.975 0.183 0.135 0.733 

Subset Weighted Score 
One 

Week 
0.25 0.748 0.211 1.959 0.184 0.137 0.731 

 


