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Abstract—Social networks such as Facebook, LinkedIn, or 
Twitter have nowadays a global reach that surpassed all previous 
expectations. Many social networks gather confidential 
information of their users, and as a result, the privacy in social 
networks has become a topic of general interest. To defend 
against privacy violations, several social network anonymization 
models were introduced. In this paper, we empirically study how 
well several structural properties of a social network are 
preserved through an anonymization process. We first 
anonymize several real and synthetic social networks using the k-
anonymous cluster social network model, and then we compare 
how well structural properties such as diameter, centrality 
measures, clustering coefficients, and topological indices are 
preserved between the original networks and their anonymized 
versions. Our experiments show that there are correlations 
between the structural properties’ values obtained from the 
original network and from the corresponding anonymized 
networks. Preserving such graph properties through 
anonymization might be extremely important / essential for 
subsequent graph-mining of the anonymized networks. 

Index Terms—K-Anonymity, Privacy, Social Networks, 
Structural Properties. 

I. INTRODUCTION AND MOTIVATION 
Social networks such as Facebook [12], LinkedIn [18], or 

Twitter [36] have nowadays a global reach that surpassed all 
previous expectations. Smaller social networks that focus on 
specialized domains such as sports, games, and technology 
have also attracted a large number of users in the last years. For 
instance, FanCru offers sport fans a place to connect and share 
information [13], Playfire [28] and WeeWorld [39] are social 
networks that attract online gamers, and Toolbox for IT 
(Information Technology) is a knowledge-sharing community 
for IT members [34]. Most Internet users are part of one or 
more social networks today and they contribute with a wealth 
of information to these networks.  

Many social networks gather confidential information about 
their users, information that could potentially be misused. For 
instance, in the healthcare field, PatientsLikeMe [26], a social 
network with more than 150,000 users as of July 2012, creates 
communities of patients for various diseases. Due to this 
amount of sensitive data gathered by social network sites, the 
privacy in social networks is a concern for many users and the 
research in this field has flourished in the past several years.  

Several research directions in the social networks’ privacy 
field are outlined next. 

Backstrom et al. illustrate the shortcomings of the naïve 
graph anonymization, which replaces the identity of individual 
nodes by synthetically created identifiers. Two types of attacks, 
passive and active attacks, are presented in this context [2]. 
Narayanan and Shmatikov performed a de-anonymization 
experiment that compromised the privacy of a third of the users 
who had accounts on both Twitter and Flickr, with a 12% error 
rate [22].  

To defend against privacy attacks, several social network 
privacy models were introduced. These models can be 
categorized into graph modification models and clustering-
based models. 

 In the graph modification category, Liu and Terzi’s 
introduced the k-degree anonymity model, in which the original 
social network is modified such that the released social 
network will have at least k nodes with the same degree [19]. 
Zhou and Pei defined a model called k-neighborhood 
anonymity, in which each node must have k others nodes with 
the same 1-neighborhood characteristics [43]. Edge additions 
and/or deletions are performed in order to satisfy both k-degree 
anonymity and k-neighborhood anonymity. Zou et al. assume a 
more powerful adversary and their model, titled k-
automorphism anonymity, requires that each node from the 
social network is unindistinguisable from other k-1 nodes with 
respect to any subgraph in which the node belongs [45]. Two 
other models, named k-symmetry [8] and k-isomorphism [40], 
are similar to k-automorphism. The social networks that satisfy 
one of these three models are created via a process of both 
node- and edge- additions / deletions. It is not well understood 
how the graph structure is preserved during the anonymization 
process, and this represents a significant limitation of the graph 
modification techniques.  

In the clustering-based category, Campan and Truta 
introduced the k-anonymous clustered social network model, in 
which nodes are grouped together in clusters and super-nodes 
and super-edges are created [6]. This clustering-based approach 
to social network anonymity is briefly presented in Section 2 of 
this paper. Its full presentation can be found in [6]. Related 
clustering approaches were presented in [3, 17, 41]. 
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The research in social network privacy extends beyond the 
presented privacy attacks and defenses. Recent survey of this 
area can be found in [42, 44]. 

In this paper we empirically study how well several 
structural properties of a social network are preserved during 
an anonymization process. We first anonymize several real and 
synthetic social networks using the k-anonymous cluster social 
network model, and then we compare how well structural 
properties such as diameter [16], centrality measures [14], 
clustering coefficients [37, 38] and topological indices (also 
known as graph theoretical invariants) [21] are preserved 
between the original networks and their anonymized version.  

There has been some preliminary work in assessing 
structural property preservation in anonymized social networks. 
In the only work that considers a k-anonymous clustered social 
network model, the structural properties considered do not 
include clustering coefficients and topological indices [35]. In 
addition to analyzing new structural properties, our approach is 
novel since we do not compute the structural properties values 
directly on the anonymized graph as in [35] (which have a 
reduced number of super-nodes and super-edges, thus 
generating less conclusive results ); instead, we generate for 
each anonymized graph, a subset of possible graphs that match 
the anonymized graph structure, and we compute the structural 
properties’ values as the average of the corresponding values 
obtained for each “de-anonymized” graph. A second related 
work considers most of the structural properties from this paper 
except the topological indices measures [31]. It is worth 
mentioning that in the above mentioned paper the authors focus 
on a graph modification approach, k-automorphism, and they 
do not address any clustering-based anonymization model. 
Other less related works that analyze a limited number of 
structural properties were performed only for graph 
modification approaches such as k-isomorphism [8] and k-
symmetry [40].   

The remaining of this paper is structured as follows. 
Section 2 summarizes the clustering-based social network 
privacy model. Section 3 presents the structural properties that 
we study in our experiments. Section 4 describes our 
experiments, and presents our preliminary findings. The paper 
ends with future work directions and conclusions. 

II. SOCIAL NETWORK ANONYMIZATION MODEL 
In this section we succinctly present an adaptation of the k-

anonymous clustered social network model [6]. Since in this 
paper our focus is on preservation of the social networks’ 
structural properties, we make the additional simplifying 
assumption that the nodes in the social network do not have 
quasi-identifier attributes (example of such quasi-identifier 
attributes are Age and ZipCode; they may be used to discover 
the identity of the nodes); accordingly, the anonymization 
process is based on the social network structure only. The 
nodes in the social network still have sensitive attribute values 
that need to be protected from potential intrudes (example of 
such sensitive attributes are Diagnosis and Income). For details 
on how this model approaches the more general problem of 
anonymizing networks where individual nodes also have quasi-
identifier attributes, please refer to [6].  

Consider an initial social network modeled as a simple 
undirected graph G = (N, E), where N is the set of nodes and E 
 N  N is the set of edges. Only binary relationships are 
allowed in this model. Additionally, all relationships are of the 
same type and they are represented as unlabeled undirected 
edges. These relationships (or at least a subset) are assumed to 
be known by an intruder, thus they are similar to a quasi-
identifier attribute. Using this known graph structure, an 
intruder is able to identify individuals and to reveal their 
sensitive information due to the uniqueness of the 
neighborhoods of various individuals. 

Using a grouping strategy, one can partition the nodes from 
this network into pairwise disjoint clusters. Clusters can then 
be generalized to super-nodes, which may be connected by 
super-edges. The goal of this process is to make any two nodes 
coming from the same cluster indistinguishable based on their 
relationships. To achieve this objective, Campan and Truta 
developed intra-cluster and inter-cluster edge generalization 
techniques that were used for generating super-nodes and 
super-edges, and so generalizing the social network structure. 
The definition of such a clustered anonymized graph is 
presented next [6]. 

Definition 1. (anonymized social network): Given an 
initial social network, modeled as a graph G = (N, E), and a 
partition S = {c1, c2, … , cv} of the node set N, ⋃ ௝ܿ 	௩

௝ୀଵ = N; 
ܿ௜ ⋂ ௝ܿ 	= ; i, j = 1..v, i  j; the corresponding anonymized  
social network AG is defined as AG = (AN, AE), where: 

 AN  = {C1, C2, … , Cv},  Ci is a node corresponding to 
the cluster cj  S and is described by the intra-cluster 
generalization pair (|cj|, |Ecj|), where |cj| is the number 
of nodes in the cluster Ci and |Ecj| is the number of 
edges that exist in G between nodes belonging to cj; 

 AE  AN   AN ; (Ci, Cj)  AE iff Ci, Cj  AN  and   
X  cj, Y  cj, such that (X, Y)  E. Each generalized 
edge (Ci, Cj)  AE is labeled with the inter-cluster 
generalization value |Eci,cj|, which represents the 
number of edges with one end in ci and the other in cj.  

Based on this definition, all nodes from a cluster c are 
collapsed into the super-node C and are indistinguishable from 
each other. To satisfy the k-anonymous clustered model – 
model derived from the well-known k-anonymity property for 
microdata [30, 32], each cluster must have at least k nodes. 

Definition 2. (k-anonymous clustered social network): An 
anonymized social network AG = (AN, AE), where AN = {C1, 
C2, … , Cv}, and Cj = [(|cj|, |Ecj|)], j = 1, …, v is k-anonymous 
iff  |cj|  k for all j = 1, …, v. 

Based on the social network Gex depicted in Figure 1, we 
illustrate, in Figure 2, a possible 3-anonymous clustered social 
network AGex. 

The algorithm used in the anonymization process, called the 
SaNGreeA (Social Network Greedy Anonymization) algorithm, 
performs a greedy clustering processing of an initial social 
network in order to generate a k-anonymous clustered social 
network. In this algorithm the nodes that are more similar in 



terms of their neighborhood structure are clustered together 
using a greedy approach. To do so, a measure that quantifies 
the extent to which the neighborhoods of two nodes are similar 
with each other is used. Full descriptions of this measure and of 
the SaNGreeA algorithm are presented in [6]. 

 

 
Figure 1.   The Social Network Gex. 

 

 
Figure 2.   The 3-anonymous clustered social networks AGex. 

III. STRUCTURAL PROPERTIES 
There is a wide array of structural properties or measures 

that characterize the structure of a social network. A good 
survey that includes most of the structural properties that we 
considered in this paper (diameter, centrality measures, and 
clustering coefficients) is in [9]. In addition, the topological 
indices are summarized in [21]. In this section we briefly 
present all the structural properties of social networks that we 
consider in our experiments. We will use the terms “graph” and 
“social network” interchangeably. 

Let G = (N, E) be an undirected graph (that represents a 
social network), where N is the set of nodes (the cardinality of 
N, |N | = n) and E  N  N is the set of edges (the cardinality of 
E, |E | = m).  

A. Diameter 
In order to define the diameter of a graph we introduce first 

the concepts of distance between two nodes and eccentricity.  

The distance between two nodes in a graph is the number of 
edges in a shortest path connecting them. 

The eccentricity of the node v is the maximum distance 
from v to any node. That is,  (v) = max{d(v, w) | w  N }.  

The diameter of G is the maximum eccentricity among the 
nodes of G (the longest shortest path). That is, diameter(G) = 
max{ (v) | v  N }. 

B. Centrality Measures 
Freeman introduced three centrality measures namely 

degree, betweenness, and closeness centrality [14]. These 
measures are computed for each node in a network. For the 
entire network, Freeman introduced centrality (also known as 
centralization) measures for a network that assess how central 
its most central node is compared to all the other nodes. The 

network centrality measures calculate the sum of the 
differences in centrality between the most central node in a 
network and all other nodes, divided by the theoretically largest 
such sum of differences in any network with the same number 
of nodes [14]. We present next the degree, betweenness, and 
closeness centrality measures for both a node and a network. 

The degree centrality of a node v is the number of edges 
adjacent to the node (degree) normalized to the interval [0, 1]. 
Thus, ܥ஽(ݒ) = ୢୣ୥	(௩)

௡ିଵ
. The larger the degree centrality of a 

node v, the stronger its communication potential; alternatively, 
the lower the degree centrality, the more peripheral the node is 
perceived. 

The degree centrality of G is defined as follows: ܥ஽(ܩ) =
∑ [஼ವ(௩∗)ି஼ವ(௩೔)]೙
೔సభ

௡ିଶ
= ∑ [ௗ௘௚(௩∗)ିௗ௘௚(௩೔)]೙

೔సభ
(௡ିଵ)(௡ିଶ)

, where v* = 

argmax{ܥ஽(ݒ)	|	ݒ	 N } is the node that has the maximum 
degree centrality from all nodes from G.  

 The betweenness centrality of a node v is the normalized 
sum of the number of shortest paths between any pair of nodes 
(except the considered node) going through the node, divided 
by the number of shortest paths between any pair of nodes. In 

other words, ܥ஻(ݒ) =
ଶ∙∑ ഑ೞ೟(ೡ)

഑ೞ೟ೞಯೡಯ೟∈ಿ

(௡ିଵ)(௡ିଶ) , where ߪ௦௧ = |{p | p is a 
shortest path from s to t}|, is the number of shortest paths from 
s to t, and ߪ௦௧(ݒ) = |{p | p is a shortest path from s to t, v  p } 
is the number of shortest paths from s to t that pass through the 
node v. This measure expresses a node’s potential for control of 
communication. 

The betweenness centrality of G is defined as 

follows: (ܩ)஻ܥ = ∑ [஼ಳ(௩∗)ି஼ಳ(௩೔)]೙
೔సభ

௡ିଵ
, where v* = argmax 

 is the node of maximum betweenness ,{ N	ݒ	|	(ݒ)஻ܥ}
centrality in G.  

The closeness centrality of a node v is defined as the 
inverse of the average of shortest paths’ lengths between the 
node v and all other nodes from G, normalized to [0, 1]. That is, 
(ݒ)஼ܥ = ௡ିଵ

∑ ௗ(௩೔,௩)೙
೔సభ

, where ݀(ݓ,ݒ)	 is the length of the 

shortest path from v to w. This measure assesses the potential 
for independent communication of a node, i.e. the extent to 
which the node can avoid the potential control of others. 

The closeness centrality of G is defined as follows: 

(ܩ)஼ܥ = ∑ [஼಴(௩∗)ି஼಴(௩೔)]೙
೔సభ

(௡ିଵ)∙(௡ିଶ)/(ଶ௡ିଷ)
, where v* is the node of 

maximum betweenness centrality in G.  

As already mentioned above, for all three network 
centrality measures of G, the denominators are computed based 
on the maximum possible sum of differences in the 
corresponding node centrality for a graph of n nodes, that is, 
∑ݔܽ݉ (∗ݒ)௑ܥ] − ௡[(௜ݒ)௑ܥ

௜ୀଵ , where X represents degree (D), 
betweenness (B), and closeness (C). More details about these 
measures can be found in [14]. 

X 6 

X 5 
X 2 X 1 

X 8 X 7 

X 3 X 4 

X 9 

 

1 
c2={X 1,X 2,X 3} 

(3, 3) 

(3, 2) 

(3, 0) 

c1={X 4,X 7,X 8} 

c3={X 5,X 6,X 9} 

1 3 
AGex 



C. Clustering Coefficients 
Luce and Perry introduced the family of measures called 

clustering coefficients to describe the likelihood that any node 
w in the neighborhood of node v is also adjacent to other nodes 
in v’s neighborhood [20]. The neighborhood of a node v 
represents all nodes that are connected with v. We present next 
two such global clustering coefficients. 

Watts and Strogatz define first a local clustering coefficient 
as follows [38]. The local clustering coefficient of a node v 
 ,is the ratio of actual edges between v’s neighbors	((ݒ)ଵܥܥܮ)
and all possible edges between its neighbors. Thus, ܥܥܮଵ(ݒ) =

ଶ∙|ா(ீభ(௩))|
ୢୣ୥	(௩)∙(ୢୣ୥(௩)ିଵ) , where |ܧ(ܩଵ(ݒ))|  denotes the number of 
edges between nodes in the 1-neigborhood of node v. 

The Watts-Strogatz clustering coefficient (also known as 
the global clustering coefficient) is defined as the mean of all 
local clustering coefficients (ܹܵ_(ܩ)ܥܥ =

∑ ௅஼஼భ(௩೔)
೙
೔సభ

௡
	).  

An alternative clustering coefficient, the network clustering 
coefficient (N_CC) or transitivity is defined as the number of 
closed 2-paths divided to the number of 2-paths in the graph 
[23]. In Figure 1, examples of closed 2-paths are (X1, X2, X3), 
(X2, X1, X3), and any other combination of these three nodes. 
(Unclosed) 2-paths examples include (X3, X6, X4) and (X6, X4, 
X9). 

D. Topological Indices 
Topological indices are mainly used in chemical graph 

theory and pharmacology. Good surveys of such indices can be 
found in [10, 33]. More recently, these topological indices are 
being used in social networks, in particular for community 
analysis [1].We briefly describe next four topological indices. 

The Zagreb group index 1 (M1) is defined as the sum of the 
squared node degrees [15]. That is, ܯଵ = ∑ [deg(ݒ௜)]ଶ௡

௜ୀଵ . 

The Zagreb group index 2 (M2) is defined as the sum of the 
products of the degrees of pairs of adjacent nodes [15]. Thus, 
ଶܯ = ∑ deg	(ݒ௜) ∙ deg	(ݒ௝)(௜,௝)∈ா .  

The Randic connectivity index (Xr) is also defined based on 
the degree of nodes [29]. It is computed as follows: ܺݎ =
∑ ଵ

ටୢୣ୥	(௩೔)∙ୢୣ୥	(௩ೕ)
(௜,௝)∈ா .   

The Platt index (F) is computed by summing for each edge 
the number of its adjacent edges [27]. Thus, 
ܨ = ∑ ൫deg(ݒ௜) + deg൫ݒ௝൯ − 2൯(௜,௝)∈ா . 

E. An Illustration 
Using the social network Gex from Figure 1 we illustrate the 

values of all structural properties described in this section. 

 

 

 

 

TABLE I. STRUCTURAL PROPERTIES VALUES FOR GEX SOCIAL 
NETWORK 

Structural Property Value 
Diameter 4 

Degree Centrality 0.44642857 
Betweenness Centrality 0.55133929 

Closeness Centrality 0.34419152 
Watts-Strogatz Clustering Coefficient 0.36111111 

Network Clustering Coefficient 0.15000000 
Zagreb Group Index 1 60 
Zagreb Group Index 2 71 

Randic Connectivity Index 3.88831 
Platt Index 40 

 

IV. EXPERIMENTS 
We study the above illustrated structural properties on the 

original and de-anonymized versions of several real and 
synthetic datasets. These datasets are described next. 

The Enron dataset is a network of e-mail exchanges 
available online at [11]. A node in this network represents an e-
mail address. An edge exists between two nodes if at least one 
e-mail was sent from one node to the other node from that 
edge. This network has 36,692 nodes and 183,831 edges. 

The Random1 and Random2 datasets are synthetically 
generated using the Erdos-Renyi random network model [4] 
from the social network analysis program Pajek [24]. For 
Random1 we used as input parameters for the social network 
generator 10,000 nodes and an average vertex degree of 20. 
Since multiple edges between the same nodes are reduced to 
single edges for conforming to the social network model 
assumed by the k-anonymous clustered social network model, 
the final average degree slightly dropped and the resulting 
social network had 10,000 nodes and 99,945 edges. The 
Random2 dataset had as input parameters 10,000 nodes and 
200 as average node degree. After multiple edges’ elimination, 
the final network had 10,000 nodes and 995,011 edges. 

The ScaleFree dataset is an undirected network generated 
based on the scale free model introduced in [25]. This approach 
models real world social networks that follow a power-law 
degree distribution [5]. We generated this dataset using Pajek 
with the following initial parameters: the number of nodes = 
10,000, average degree of nodes = 33, the number of nodes in 
the initial Erdos-Renyi graph = 10, probability of edges in the 
initial Erdos-Renyi graph α = 0.2, β =0.4, γ = 0.4. Details about 
how this network is generated based on above mentioned 
parameters can be found in [25]. The generated graph has a 
significant number of multiple edges (more than 60,000) which 
are eliminated in a post-processing step. This final scale free 
network that we used in our experiments has 10,000 nodes and 
100,657 edges. 

The last dataset, labeled RMAT, is based on the R-MAT 
model introduced in [7]. We implemented an R-MAT graph 
generator that takes the number of nodes (n), the average node 
degree (avg_deg), and four probabilities as input parameters. 
The location of each edge is determined based on a recursive 
algorithm that divides the adjacency matrix into 4 equal-sized 
partitions and the edge location is probabilistically selected in 



one of the 4 partitions, based on the four probability parameters 
(we used the values 0.45, 0.15, 0.15, and 0.25 for RMAT 
dataset generation). Once a partition is decided, it is again 
divided into four sub-partitions until there will be only one cell 
from the adjacency matrix left in the partition. If this cell has 
value 1 (an edge exists in that location), this procedure is 
repeated from the beginning (multiple edges between the same 
pair of nodes are not allowed in our graph model). This 
approach also models real-world graphs that follow power-law 
degree distributions [7]. More details about this algorithm can 
be found in [7]. 

We depict in Figure 3 the flow of our experiments. This 
framework consists of five steps.  

 

 

Figure 3.   General framework of the experiments. 

We start from the initial social networks (Enron, Random1, 
Random2, ScaleFree, and RMAT) previously described. First, 
the initial social networks are anonymized into k-anonymous 
clustered social networks as described in Section 2. For each 
dataset we used the following values for k: 2, 3, 4, 5, 6, 7, 8, 9, 
10, 15, 20, 25, and 50. 

Second, from each k-anonymous clustered social network 
ten possible de-anonymized social networks are generated. In 
this process we generate edges randomly (uniform probability 
of selecting any pair of nodes in the super-node) within each 
cluster until the number of generated edges is equal to the 
number of edges recorded in the super-node description. This 
process continues with the generation of edges between super-
nodes. These edges are also generated randomly (uniform 
probability of selecting any pair of nodes that connects two 
specified super-nodes) until the number of generated edges is 
equal with the number of edges that describes the 
corresponding super-edge between the two super-nodes. This 
process guarantees that each generated “de-anonymized” social 
network will have the same number of nodes and edges as the 
original network. We decided to generate ten networks for each 
anonymized social network to avoid any possible outliers.  

We used Java to implement the anonymization algorithm as 
well as the social network de-anonymization process described 
above for Step 2. 

  

In Steps 3 and 4, we compute the structural properties’ 
values for the original and de-anonymized social networks. 
Since we generated ten social networks for each anonymized 
network, we report the average for each structural property. To 
compute all structural properties’ values we use Pajek [24]. 

Last, we compare the structural properties values measured 
for the original social network with the ones obtained from the 
anonymized networks. The results are shown in Figures 4 – 15.  
In each figure, the vertical axis shows either the actual values 
of a structural property, or the ratio between the values 
measured for the de-anonymized network and the original 
network. The reason we chose to report the values or the ratio 
is due to the fact that the values can be very different between 
the five considered datasets and the representation of all the 
values is difficult to include in one chart. On the other hand, for 
some structural properties (such as diameter) reporting the 
values provides more information. On the horizontal axis we 
show the various values of k (2, 4, 6, 8, 10, 15, 20, 25, and 50) 
for which we report the graph properties’ values and ratios on 
the y axis. k=1 represents the original social network. 

Figure 4 shows the diameter values for all datasets. We 
notice that the diameter value is 5 for the original Random1 
dataset and all corresponding de-anonymized datasets. In the 
same way, the diameter value 3 is obtained for all datasets that 
correspond to the Random2 network. While not identical, the 
diameter values are also preserved in the same range for 
ScaleFree and RMAT datasets. For the Enron network, the 
results are not as easy to interpret. We believe that the spike 
obtained for k = 8 is due to particularities of this real social 
network. The network contains small well-connected groups of 
nodes (of average size close to 8) which are only weakly 
connected to other such groups. The connections between 
groups are normally realized through very central nodes, with 
high betweenness centrality. Nodes in well-connected groups 
are similar and therefore the anonymization algorithm clusters 
them together in super-nodes; this leads to weakly connected 
super-nodes. When the de-anonymization algorithm reconnects 
pairs of nodes from the de-anonymized clusters, it will miss re-
connecting the very central nodes that originally connected the 
clusters. Instead, it has great chances of picking nodes with 
lower betweenness centrality; this will certainly have a direct 
effect on the network diameter, which will almost double. Once 
the super-nodes get larger, they combine several internally-
well-connected, but weakly inter-connected groups; the de-
anonymization algorithm will however connect pairs of nodes 
in the super-nodes regardless of their origin (from the same 
well-connected group, or from two different weakly inter-
connected groups).As a result, the diameter value is decreasing. 

Figures 5 and 6 show the degree and betweenness 
centralities ratios. For Random1 and Random2 datasets the 
values obtained for de-anonymized networks are, in general, 
slightly greater that the original values. For the other three 
datasets the centrality values for the de-anonymized networks 
are less than the original values. As explained before, these 
results are due to Step 2, where we use a uniform random 
approach to generate inter-cluster and intra-cluster edges. 
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Figure 4.   Diameter values. 

 

 
Figure 5.   Degree centrality ratio. 

 

 
Figure 6.   Betweenness centrality ratio. 

We report in Figure 7 the closeness centrality values for 
Random1 and Random2 datasets. These are the only two 
datasets that are connected and this measure is computed only 
for connected graphs. Similar to degree and betweenness 
centrality, the closeness centrality values are well-preserved 
between the original and de-anonymized versions of these two 
datasets. 

 
Figure 7.   Closeness centrality ratio. 

Figures 8-11 show the values and ratios for the Watts-
Strogatz clustering coefficient and for the network clustering 
coefficient. Again we notice that the values are well preserved 
for both Random1 and Random2 datasets. Enron and ScaleFree 
networks have smaller values for both clustering coefficients 
when k increases. This decrease is almost linear with a high 
slope. For RMAT dataset the decrease is only until k reaches 
the 4, then the clustering coefficients values are almost the 
same for k greater than 4. 

 
Figure 8.   Watts-Strogatz clustering coefficient values. 

 

 
Figure 9.   Watts-Strogatz clustering coefficient ratio. 
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Figure 10.   Network clustering coefficient values. 

 

 
Figure 11.   Network clustering coefficient ratio. 

Figures 12-15 show the ratios for topological indices. We 
notice that the results for Zagreb group index 1, Zagreb group 
index 2, and Platt index are similar with the results obtained for 
clustering coefficients. These topological indices are well 
preserved for Random1 and Random2 datasets. For the RMAT 
dataset there is an initial drop in value (until approximately 0.7 
from the original value) followed by a small increase (to 
approximately 0.8 from the original value). Enron and 
ScaleFree have a continuous decrease of the topological index 
values. For Randic connectivity index the results, as expected, 
are mirrored compared with the other three indices (this is due 
to the product of the degrees being part of the denominator).  

Our experiments show that the structural properties are well 
preserved for the datasets that were generated using the Erdos-
Renyi random network model. We expect this is also true for 
other random network models. It is worth noting that while the 
structural properties’ values are significantly altered for k-
anonymous clustered social networks with large values of k, in 
particular for Enron and ScaleFree datasets, if a researcher has 
the additional knowledge of the model that the social network 
follows, then the original value, or more specifically the range 
for it, can be estimated with a good probability. 

 

 
Figure 12.   Zagreb group index 1 ratio. 

 

 
Figure 13.   Zagreb group index 2 ratio. 

 
 

 
Figure 14.   Randic connectivity index ratio. 
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Figure 15.   Platt index ratio. 

It is also worth comparing our results and conclusions with 
the authors of [35] and [31]. In [35], the same anonymization 
model was used and the centrality measures were computed on 
the anonymized graph directly. Their results are more 
unpredictable and they concluded that “….experiments show a 
weak correlation between the anonymization level (the k value) 
of a graph and the centrality measures” [35]. Our results show 
that such correlations might exist and are based on the network 
model. The reason of obtaining “better” results than those in 
[35] is the use of de-anonymized graphs (see Step 2 of our 
experimental framework) instead of the anonymized graphs, 
for computing structural properties values. In [31], the 
anonymization model used was k-automorphism. Their 
conclusion was “This comprehensive set of experiments on 
graphs from real social networks demonstrates that utility 
metrics are significantly impacted by k-automorphism 
anonymization” [31]. Our results show significantly better 
results due to the selected model. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper we empirically studied how well several 

structural properties of a social network such as diameter, 
centrality measures, clustering coefficients, and topological 
indices are preserved during an anonymization process. Our 
experiments show that these structural properties are well 
preserved for datasets that were generated using the Erdos- 
Renyi random network model. In addition, for networks that 
follow a power law degree distribution, if a researcher has the 
additional knowledge of the social network degree distribution, 
then the original value (more precisely, its range), can be 
estimated with a high probability. The experiments described in 
this paper are the first to experimentally show a correlation 
between the structural properties computed for an original 
network and its corresponding de-anonymized networks. 

There are two directions that we plan to investigate in the 
future. First, we plan to study how well other anonymization 
models, in particular graph modification models, preserve 
social networks structural properties. Second, we plan to 
explore in depth the conditions on the degree distribution of the 
original network under which its structural properties are 
preserved in its de-anonymized networks. It is likely that 
pursuing these directions will lead to other research avenues 

that will increase our knowledge regarding the trade-off 
between privacy and utility in social networks. 
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