
Improving Collaborative Business Process Execution

by Traceability and Expressiveness

Michael Zeising

University of Bayreuth

Bayreuth, Germany

michael.zeising@uni-bayreuth.de

Stefan Schönig

University of Bayreuth

Bayreuth, Germany

stefan.schoenig@uni-bayreuth.de

Stefan Jablonski

University of Bayreuth

Bayreuth, Germany

stefan.jablonski@uni-bayreuth.de

Abstract—The declarative modeling approach promises to be a

suitable means for the description of rather unforeseen and less

rigid business processes. However, today’s approaches for the

execution of such declarative processes lack certain essential

capabilities. One of those is traceability which means that the

actions proposed by the execution engine are explained and justi-

fied. Furthermore, expressivity is mostly limited to static temporal

dependencies that lead to a simple temporal ordering of process

steps without a proper connection to process perspectives like

incorporated data, agents performing the work and utilized tools.

Finally, due to their core principles, today’s declarative execution

engines suffer from scalability issues. This article outlines a con-

cept and a prototypical implementation of an execution engine

that aims to solve the above issues and integrates with current

business process frameworks.

Keywords-business process management; process execution;

declarative; constraints; traceability; expressiveness; scalability

I. INTRODUCTION

Current research in the field of business process manage-
ment has pointed out that a useful process-aware information
system must exhibit a trade-off between supporting people in
achieving their goals and granting them as much freedom as
possible at the same time [1]. In this context, a business process
that restricts people to a lesser extent is characterized as a
“flexible” process [2]. Concerning process modeling, a flexible
process must comprise more possible paths than a rigid one.

Following the terminology of programming languages,
there are two paradigms of describing business process models:
the imperative and the declarative style. The imperative way
corresponds to imperative or procedural programming where
every possible path must be foreseen at design time and encod-
ed explicitly. If a path is missing then it is considered not al-
lowed. In declarative modeling, on the other hand, only the
undesired paths and constellations are excluded so that all re-
maining paths are potentially allowed and do not have to be
foreseen individually. As the so-called flexible type of business
processes incorporates many often unforeseen paths, the de-
clarative approach is best suited for it [3].

If business process execution involves human participants
then the supporting system should be treated as a decision sup-
port system instead of a means of automation. As a conse-
quence, an according system should propose actions and sup-
port them but it should never enforce them [4]. This require-
ment goes along with the call for process management systems
“to provide directions and guidance rather than enforcing a
particular route” whereas they are compared to navigation sys-

tems [5]. An important characteristic of decision support is
explanation and so-called meta-knowledge [6]. Proposals made
by the system need to be justified and explained so that sound
choices can be made. For process execution, this means that
certain proposed actions must be marked as recommended and
that discouraged actions can be traced back to and explained by
the according parts of the business process model. A declara-
tive and therefore less rigid form of business processes leads to
a greater amount of possible paths. So, especially in the declar-
ative area, the capability of explanation comes into value.

Strongly connected with traceability is the expressivity of
process modeling languages. The process execution engine
directly affects and limits the expressivity of the languages it
interprets. Declarative modeling is based on constraints that
relate events of the process and exclude or discourage from
certain correlations. Both constraints and events must be able to
involve all the perspectives of a business process like, e.g.,
incorporated data, agents performing the work and utilized
tools [7]. On this way it becomes possible to express realistic
correlations like, e.g., the actual performing agent of a step
affecting the type of data used in another step [8]. Another
important means of enhancing expressivity is the support for
different modalities. A modeling language greatly benefits
from a distinction between optional and mandatory statements.

With the great flexibility of a declarative description comes
the issue of complexity. The principle implies that virtually
every possible path must be evaluated during execution. De-
pending on the size of the model and the number of involved
perspectives, this results in a huge amount of possibilities and
the so-called state explosion. In order to maintain scalability, a
declarative execution engine must avoid this limitation.

In this article, an execution engine for declarative business
processes that addresses the above issues is described. Instead
of interrelating steps by unconditional temporal constraints, the
engine allows for constraints to depend on multiple perspec-
tives of a business process like, e.g., data, agents and tools.
Together with the support for qualifying constraints by differ-
ent modalities (“must” and “should”), the proposed engine
allows for more expressive process modeling languages. Due to
the support for different modalities, the engine is able to rec-
ommend certain actions or to discourage from them. Whenever
an action is advised against, the engine may explain and justify
this decision by tracing it back to the process constraints, i.e.,
modeling constructs that would be violated. Therefore, the
engine offers traceable business process execution. Process
models are interpreted in a stepwise manner instead of pre-
calculating all possible paths prior to the execution. On this
way, the engine scales better than complete approaches and is
capable of executing business processes of real-world size and
complexity.

This work is kindly funded by “Europäischer Fonds für regionale

Entwicklung (EFRE)”

COLLABORATECOM 2012, October 14-17, Pittsburgh, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2012.250345

Section 2 outlines the related work on declarative business
process execution and highlights the approaches’ drawbacks as
well as adopted aspects. Section 3 summarizes the contribution
of this article and delimits its scope. Section 4 guides through
the principle ideas of the concept behind the execution engine.
Section 5 shows how the concept is implemented on top of a
business logic framework. Section 6 presents a running exam-
ple of a business process modeled for and executed by the en-
gine. Finally, section 7 concludes the article, goes into the cur-
rent limitations of the approach and provides an outlook on
planned future work.

II. RELATED WORK

The most recent approach in the field of declarative process
management is the Declare framework [9]. It is based on linear
temporal logic (LTL) and therefore allows for relating process
steps by temporal and existential constraints. Pattern (1), e.g.,
claims that if process step A is performed then step B must be
performed eventually.

 □(A → ◊B) (1)

These constraints may not contain statements on data,
agents or tools. The only way of relating the temporal order of
steps to these perspectives is to make the constraints depend on
certain conditions. Such a conditional constraint only applies if
its condition evaluates to true. Though a condition could then
contain statements on data, agents and tools, the actual con-
straint remains limited to temporal order and existence of steps.
The other perspectives cannot be constrained, which reduces
the expressivity of the supported process modeling languages.

For execution, the LTL formulae of a process are trans-
formed into a finite state automaton which will then accept
every trace of events that complies with the formulae. In order
to reach a technically feasible size of the automaton, only the
completion of a step is considered.

Though a distinction between optional and mandatory con-
straints is made in the theoretical preliminaries, distinct modali-
ties are not supported because only one automaton is generated
for the mandatory formulae. Both the LTL formulae and the
automaton must be transformed and reduced for necessary
optimization reasons. Due to that, it becomes impossible to
draw a connection between the automaton’s transitions and the
originally modeled constraints. Therefore, Declare cannot sup-
port traceability during execution as the proposed actions can-
not be explained. In spite of the simplifications and reductions,
Declare suffers from scalability issues. Process models of real-
istic size lead to large automata which have to be generated
completely before execution.

There are several approaches that are very similar to De-
clare. In the work of Sadiq et al. [10] and also in the work of
Wainer et al. [11], temporal constraints like, e.g., serial, order
and fork are used to relate steps. As for Declare, these con-
straints may neither depend on nor influence perspectives like
data, agents or tools and modalities are not supported either.

A different idea was pursued with EM-BrA2CE where busi-
ness processes were modeled and executed on the basis of
business rules [12]. The use of a first order rule language prom-
ises high expressivity and is also pursued in the work at hand.
However, it is unclear to what extent this approach was real-
ized and many details are not described. As a result, it cannot
be assessed to what extent traceability is supported, how ex-

pressive the process modeling language effectively is and how
the approach scales.

The ESProNa engine realized the execution of declarative
business processes covering multiple perspectives and different
modalities [13] [14] and therefore already supported highly
expressive process modeling languages. However, this mono-
lithic prototype did not support traceability. ESProNa can be
viewed as a predecessor of the approach at hand.

The Process Virtual Machine (PVM) defines a common
model for the execution of imperative graph-based process
modeling languages like BPMN and EPC [15]. It features
many crucial concepts like, e.g., composite processes, asyn-
chronous execution, transactions, persistence and wait states.
The PVM model forms the basis of the JBoss jBPM engine. It
mimics a token-based interpretation by moving execution
pointers along the process graph which limits its scope to the
execution of imperative processes. The objective of the ap-
proach at hand is to adapt the PVM’s concepts for the execu-
tion of declarative processes in a reasonable way so that the
two architectures may be integrated in the future.

III. SUMMARY OF THE CONTRIBUTION

In this work, a concept and a prototypical implementation
of a constraint-based process execution engine is outlined. This
engine is able to execute declaratively modeled business pro-
cesses and addresses the issues of traceability, expressivity and
scalability. Instead of only constraining the temporal order of
process steps, it allows for constraints to influence multiple
perspectives like, e.g., incorporated data, performing agents
and utilized tools. Together with a distinction between optional
and mandatory constraints, it enables the use of modeling lan-
guages that are more expressive and cover more aspects of a
business process than today’s approaches based on simple tem-
poral constraints. Actions proposed by the engine are justified
and explained by the original process model constraints. There-
fore, the engine realizes traceable execution of business pro-
cesses and allows for sound choices to be made by the process
participants. Instead of pre-calculating all possible paths before
execution, the engine only evaluates the respective next action.
Thus, scalability is maintained and the system is suitable for
business processes of realistic size.

The presented work is part of a broader project that aims at
a modular multi-paradigm platform for business process execu-
tion named AI4 Process Navigation. The engine at hand is
intended to be for declarative processes what the Process Vir-
tual Machine (PVM) is for imperative ones [15]. The project’s
overall purpose is to better understand the nature of business
process execution and its connection to process modeling.
Fig. 1 illustrates the pursued architecture of this framing pro-
ject. The imperative execution core as well as the declarative
execution core described in this paper share a common infra-
structural basis (common foundation). The support for different
process modeling languages is built on top of the respective
core.

The realization of these language modules is only touched
in places by this contribution and is out of scope in principle.
The aim of this paper is not to propose a new declarative pro-
cess modeling language but a platform supporting the execu-
tion of a wide range of these languages.

Declarative Execution Core Imperative Execution Core

Declarative Language
Imperative Language

BPMN, EPC, ...

Common Foundation

Application Services
Persistence, Transactions, ...

Figure 1. Pursued architecture of the framing project with the declarative

execution core described in this contribution

IV. CONCEPT OF THE EXECUTION ENGINE

The core principle of modeling and interpreting a declara-
tive business process is to constrain transitions in a state space.
Each transition is connected to an event in time describing
multiple perspectives at once like, e.g., “Bob finishes reviewing
the CNC model using Autodesk® Inventor®”. The current
state of the process case is then determined by the trace (or
“log”) of past events. A process constraint usually refers to that
trace like, e.g., “the sketch must be created before it can be
reviewed” but also “the sketch should be reviewed by the su-
pervisor of the person who created it”. A declarative process
model thus consists of the static entities like process steps, data
items and agents and a set of constraints referring to them.
Feasible next transitions or rather events are derived from eval-
uating the process constraints on the basis of the current event
trace.

A. Process Constraint Solution

The interpretation of process constraints is triggered when-
ever the state of the case changes. The first step of this proce-
dure is to generate virtually all possible next activation events
of the process case. For a model with the processes P, the
agents A and the data items D, this results in e = |P × A × D|
events that could be potentially generated. However, depending
on the solution strategy, only a sub-set of these events has to be
considered in order to find feasible ones.

e1 e2 e3 e43e1 e2 e3

e42

e44

e45

e41

e1 e2 e3 e43

e42

e44

e45

e41

Unfeasible

Feasible but not recommended

Feasible and recommended

a b

e43 : Activation

process = Create Model
performer = Bob
data = Sketch
tool = Autodesk® Inventor®
violatedRules = [R1]

Figure 2. Stages of the evaluation: potential event traces are generated (a)

and scored (b)

In the next step, each of the generated activation events is
combined with the current trace of past events so that e possi-
bly resulting traces are built. These possible traces are now
scored on the basis of the process constraints. The result of
scoring is that each potential next event is classified as unfeasi-
ble, not recommended or recommended. Unfeasible events are
discarded and are considered no further. If an event is not rec-
ommended references to the constraints (rules) that it violates

are attached to the event. Fig. 2 illustrates these stages of the
evaluation procedure. The current trace of the process case
consists of the events e1 to e3. Now the interpretation is trig-
gered and the next feasible actions should be proposed. We
assume that five next events e41 to e45 result from the according
process model. One of these could be the event that “Bob”
performs the step “Create Model” using “Autodesk® Inven-
tor®” and consuming some “Sketch”. The potential next events
are now scored according to the process constraints. We as-
sume that the events e41 and e45 do not violate any of these
constraints so they are considered recommended. Event e42
violates a hard constraint so it is considered unfeasible which
means that it must not occur. We assume that e43 violates a soft
constraint R1 so a reference to this constraint is attached to the
event and it is considered not recommended. When proposing
the according action to the process participant (“Bob” in this
case) the devaluation of it can now be explained by tracing it
back to the process model (constraint R1 in this case).

A constraint is expressed in the form of a first-order logic
expression x that refers to the event trace. The following ex-
pression, e.g., claims that if there is an activation event aB for
process “B” then there must be a completion event cA for pro-
cess “A” performed by “Alice”. In other words this constraint
ensures that process “A” has to be completed by “Alice” before
process “B” can be activated:

Activation(aB) ∧ process(aB, B) ∧ time(aB, tB)
 → (2)

Completion(cA) ∧ process(cA, A) ∧ performer (cA, Alice) ∧
time(cA, tA) ∧ before(tA, tB)

The approach supports different modalities. As a result,
constraints are divided into hard and soft constraints depending
on whether they render a trace unfeasible or not recommended.
So the next step is to assign a modality m ∊ [H, S] to the con-
straint which results in a triplet (i, x, m) where i is a unique
identifier for referring to the constraint, x is the original expres-
sion and m encodes the constraint’s modality. The purpose of a
scoring rule is to punish the violation of a constraint, i.e., the
negation of the constraint and to devaluate the according solu-
tion. Assuming that the above constraint is a hard constraint,
the scoring rule triplet for it is:

(A_By_Alice_Before_B, ¬x, H)
≡

 (A_By_Alice_Before_B, (3)
Activation(aB) ∧ process(aB, B) ∧ time(aB, tB) ∧

¬(Completion(cA) ∧ process(cA, A) ∧ performer(cA, Alice)
time(cA, tA) ∧ before(tA, tB)), H)

The generated traces (and the respective events) can now be
classified in the following way:

 A trace that violates one or more hard constraints is
considered unfeasible and the according event will be
discarded.

 A trace that violates no hard constraints but one or
more soft constraints is considered feasible but not rec-
ommended. A reference to the violated soft constraints
is maintained for traceability.

 A trace that violates no constraints is considered rec-
ommended.

As outlined above, the events of the feasible traces are now
returned and lead to the activation of the according process
steps. Every trace that is rendered not recommended because it
violates soft constraints is equipped with the according rule
reference. On this way, the actions proposed by the system
become traceable because they can be explained by the original
model elements. The engine may now make statements like
“event e1 should occur and event e2 may occur but it should not
because of r”.

B. From Events to a Process’s Life Cycle

The core execution engine is independent from the process
modeling language. Therefore, it must not have any knowledge
of different process step types like, e.g., human tasks, script
tasks or service invocations. The engine only considers enter-
ing (activating) and leaving (completing) abstract process mod-
el nodes. These two transitions and the according events are
called activation and completion. Whenever the state of the
process case changes, i.e., when the case is initialized or a node
was left (completed), the constraint solution part of the engine
is asked for the next nodes to be entered, i.e., for the next feasi-
ble activation events. These new activation events are append-
ed to the event trace and interpreted according to the type of
process step to be activated. For a human task, e.g., activation
means that the according work item should be scheduled in a
work list. For a script task, it means that the script should be
invoked. This interpretation of events is illustrated in Fig. 3.

E E E

Persistent Event Trace

E

Propose
Activation

Signal
Completion

Append Event

E

Schedule Work Item

Query Trace

Task Service

Participants

Constraint Solver Event Interpreter

E Script
InterpreterInvoke Script

Figure 3. Activation events are proposed by the constraint solver while

completion events are signalled by process step implementations

After activation, process steps traverse their respective life
cycles which is reflected by different process behaviors. A
human task, e.g., usually runs through various states like its
delegation, assignment and so on. However, these sub-states
are hidden from the core engine and are handled outside of it,
e.g., by a human task service. Only the completion of a step is
signaled back to the engine. The event is appended to the trace
and the constraint solver is invoked again. On this way, the
process model is interpreted incrementally which reduces the
complexity compared to approaches that completely pre-
calculate all possible traces. As a result, the approach scales
better than complete approaches.

C. Sub-Processes and Execution Pointers

Regardless of whether a process model is being designed
imperatively or declaratively, each process step may be com-
posed of further steps. In contrast to the concepts of the Busi-
ness Process Model and Notation (BPMN) [16], we do not
distinguish between “processes”, “activities” and “sub-

processes” but simply allow for composite processes. This does
not contradict the BPMN approach and dramatically reduces
the complexity of the execution engine because composition
can be handled in a continuous way. Languages must imple-
ment a CompositionResolver as shown in Fig. 4 for the
engine to be able to step through the levels of a process model.

«interface»
CompositionResolver

getSubNodes(node : Object) : Iterable
isComposite() : boolean

Figure 4. Interface to be implemented for the resolution of process

compositions

Instead of transforming the process model into some run-
time model, it is interpreted in place. For this purpose, execu-
tion pointers are maintained for every currently active process
model node (cf. [15]). Like processes, these pointers may be
composite and follow the structure of the process. Each execu-
tion pointer references the event trace of its node’s child nodes.

In Fig. 5, process A is composed of the processes B and C.
Process A is unfolded and the constraints for its children state
that B may be activated in the current state. All events of a
level are attached to the parent of this level. Therefore, the
Activation event for B is attached to the Execution object

of A. As B is now active, an Execution object is created for it
as well.

Model Execution

A : Process

B : Process

C : Process

: Execution

: Execution

: Activation

time = 16:04:25
process = B

Figure 5. Example object graph during the execution of a composite process

Composition is a means of modularization. As a conse-
quence, process constraints may only affect one level of a
composition at once, i.e., one “sub-process” in terms of the
BPMN. This restriction is comparable with the rule that, in
BPMN, objects within a sub-process cannot be connected to
objects outside of it through sequence flows [16].

D. Traceability and Decision Support for Process Cases and

Actions

The scoring approach allows for before and after considera-
tions concerning the rating of the process case. When the con-
straint interpretation is triggered, the process case may be as-
sessed in its current state before appending a feasible next
event. In Fig. 6, this state of an example process case consists
of three events. It is found that it contradicts process constraint
R1 (which can only be a soft constraint as the events actually
happened) so the case is currently in a discouraged state be-
cause it violates R1. This information can be made available to
business administrators. This scoring of the case’s current state
reveals the actual degree of deviation from the recommended
process.

After the potentially next event e4 is appended (b), the trace
violates R2. Therefore, the occurrence of event e4 renders the
case compliant with R1 but conflicting with R2 (c). This infor-

mation can be associated with the respective action so that its
effect can be foreseen while the process is executed.

Up to the authors’ knowledge, this level of decision support
cannot be provided by any other process execution approach.

e2e1 e3a ⟷ R1

e2e1 e3 e4

[]

[] ⟷ R2b

e2e1 e3 e4[] -R1 +R2c

Figure 6. Scoring of a process case's current state (a), its potential next state

(b) and the differential score of a potential next event (c)

E. Extensibility and Adaptability

The perspectives of a business process and their concrete
shape may vary across different domains. A manufacturing
process may focus on timing aspects like deadlines and cool-
ing-off periods, while in a clinical process, data formats and
dependencies may play an important role. In most cases, an
according process modeling language will have to be chosen or
created so that these aspects can be expressed. As long as the
elements of this language can be expressed in terms of first-
order logic, the approach at hand will support it. However, the
language may only constrain facts that can be derived from the
event trace. For this reason, the event type can be easily ex-
tended by language implementations. Thus, every detail neces-
sary for the respective domain can be recorded in the trace and
picked up by process constraints.

Fig. 7 shows an example extension for the manufacturing
domain. Here it is necessary to constrain the part and tool used
in a process step. The according ManufacturingActivation

inherits from a BaseActivation which already allows for
constraining the performer of a step.

Event

time

potentialPerformer

node

core

base

manufacturing

usedPart

usedTool

Object

Activation

BaseActivation Resource

ManufacturingActivation

Part

Tool

Figure 7. Class diagram of an event extension for the manufacturing domain

V. PROTOTYPICAL IMPLEMENTATION AND INTEGRATION

The task of finding all feasible next events within the
boundaries of process constraints is essentially an optimization
problem. During the past, basically two directions addressing
this type of problem have evolved. On the one hand, mathemat-
ical approaches like, e.g., graph coloring or linear programming

are applied. The simplex algorithm with its implementation in,
e.g., IBM® ILOG® CPLEX® is a famous example. On the
other hand, approaches based on the search in a state space are
applied. Heuristic search algorithms, genetic algorithms and
most logic programming systems fall into that category. An
advantage of these search-based approaches over the mathe-
matical ones is that they do not require the problem to be trans-
formed into a special representation. The simplex method, e.g.,
requires the problem to be represented as a system of equations
composed of matrices and vectors. However, due to the object-
oriented paradigm, the data models to be optimized are usually
represented as graphs of objects. Search-based approaches
allow for these graphs to be optimized directly. Constraints can
be expressed directly on the basis of these graphs as well.
Therefore, the above concept is implemented on the bases of
the search-based optimization framework JBoss Drools Plan-
ner. The framework uses meta-heuristic algorithms like tabu
search [17] and simulated annealing [18] to find and evaluate
solutions for NP-hard planning problems. The encountered
solutions are rated on the basis of rules using an object-oriented
variant of the Rete algorithm [19].

A. Adapting the Drools Framework to Process Execution

For the purpose of declarative business process execution,
the combination of the current event trace and the possible next
event is considered a solution. The event trace remains un-
changed during the optimization procedure. Therefore, it is
considered a planning fact. As the engine only proposes the
activation of process steps, the possible next event is always an
activation. It is varied during optimization which leads to alter-
native solutions. As a result, the Activation and its proper-
ties are annotated as the actual planning entity containing plan-
ning variables. Fig. 8 illustrates the relationship between the
Solution and the Activation event.

Event

time
SolutionImpl

«PlanningEntity»
Activation

«PlanningVariable» process : Process
«PlanningVariable» performer : Resource
...

«interface»
Solution

pastEvents

*

nextEvent

Figure 8. Class diagram showing the integration into the JBoss Drools

Framework

The process constraints are expressed in the form of scoring
rules in the framework’s rule language named DRL [20]. This
language allows for defining named rules (rule blocks) where

the rule’s conditional part (when clause) contains the negated

constraint and the rule’s consequence (then clause) states
which type of constraint to violate. Condition expressions may
bind objects to variables, check for the existence or non-
existence of objects and may connect statements by logic oper-
ators. If for a process model a constraint c should hold (soft
constraint), then the according DRL rule has the form

rule

 when

 ¬ c
 then

 breakSoftConstraint()

end

If a constraint d must hold (hard constraint) then the rule

has the form

rule

 when

 ¬ d
 then

 breakHardConstraint()

end

As the when clause supports the full range of first order
logic expressions, the approach supports highly expressive
process modeling languages. Rules may constrain the existence
and order of steps, the performing agents, the incorporated data
and the utilized tools. Please note that DRL itself is not intend-
ed to be an actual process constraint language. An end-user
language must offer a coarser granularity and must be based on
patterns.

By default, the Drools solver only returns the “best” solu-
tion where the definition of “best” must be configured. Return-
ing only one solution would imply that in each state of the
process case only the most recommended next step is proposed.
Of course, all feasible next steps should be offered so the de-
fault behavior of the solver must be changed accordingly. This
is achieved by implementing a custom BestSolutionRe-

caller strategy which collects all of the feasible solutions
encountered during the evaluation procedure.

B. Task Management

As it is common practice, the core execution engine is sepa-
rated from the management of human tasks. In this context, the
WS-HumanTask specification [21] defines an interface for que-
rying and manipulating human tasks. However, it does not
allow for scores to be transported. This is necessary because, in
contrast to classic engines, e.g., people assignments are rated
(variously recommended). As a result, the interface must be
extended so that tasks, potential owners and data items may
carry scores. Fig. 9 shows that the task management interface is
inspired by the WS-HumanTask API but augmented by scor-
ing. It is actually possible to create an adapter for connecting
the engine to standard WS-HumanTask clients.

«interface»
TaskClient

getMyTasks(roles : Role [*]) : Map<Task, Score>
start(taskId : String)
complete(taskId : String)
getInput(taskId : String) : Map<DataItem, Score>
…

«enum»
Role

ActualOwner
PotentialOwner

«interface»
Score

getScore() : Double
getViolatedRules() : String [*]
getUnviolatedRules() : String [*]

«interface»
Task

getId() : String
getName() : String
...

«interface»
DataItem

getId() : String
getName() : String
...

Figure 9. Scoring-enabled task management interface for task clients

A score consists of the actual soft score value, references to
the violated process constraints (rules) and references to the
“unviolated” constraints (rules that the process complies with
again after the action). Instead of returning a list of tasks, a
query maps actually or potentially owned tasks to scores. Also
the input data items are scored as it may be recommended to
use a certain document instead of another one.

The score-enabled task management interface facilitates
task clients that are capable of transporting more information
than the classic WS-HumanTask clients and therefore supports
more informed decisions of the process participants.

VI. RUNNING EXAMPLE

In the following, a real world example illustrates the steps
from a business process model in the form of process con-
straints to scoring rules and outlines possible execution paths.
The example originates from the engineering domain where
employees elaborate CNC models which are executed by a
CNC lathe. The process cannot be foreseen and defined com-
pletely. However the following restrictions are made:

 “The CNC model should not be created by a trainee.”

 “However, if the CNC model has been created by a
trainee, then it must be reviewed by his supervisor be-
fore it can be submitted to the CNC lathe.”

The constraints reflected by this example intersect temporal
and causal dependencies (“if” and “before”) with organization-
al ones (“by a trainee” and “by his supervisor”) and make use
of different modalities (“should” and “must”). The following
paragraphs illustrate how these statements may be translated to
closed formal constraints and interpreted by the execution en-
gine described above.

A. Formal Constraints

The above prose statements have to be transformed into
first-order logic expressions referring to the event trace. It is
assumed that there are at least two processes “Create Model”
and “Review Model” and that there is a group called “Train-
ees”. The first statement claims that there should be no activa-
tion of the process “Create Model” with a potential performer
who is member of the “Trainees” group:

 ∄a (Activation(Create Model, a) (4)
∧ memberOf(a, Trainees))

The second statement claims that if there is a completion of
“Create Model” by a member of the “Trainees” group, then
there must be an activation of “Review Model” by the supervi-
sor of this agent:

∃a, s (Completion(Create Model, a) ∧ memberOf(a, Trainees)
 → (5)

 Activation(Review Model, s) ∧ supervisorOf(s, a))

B. Scoring Rules

As mentioned above, the purpose of scoring rules is to pun-
ish the negation of the constraint. So the expressions from (4)
and (5) are negated and expressed as DRL rules:

rule "Model not created by trainee"

 when

 $p : Process(id == "Create Model") and

 $t : Group(id == "Trainees") and

 $a : Agent(memberOf contains $t) and

 exists Activation(process == $p,

 performer == $a)

 then

 breakSoftConstraint()

end

rule "If model created by trainee then

reviewed by supervisor"

 when

 $p1 : Process(id == "Create Model") and

 $t : Group(id == "Trainees") and

 $a : Agent(memberOf contains $t) and

 exists Completion(process == $p1,

 performer == $a, $c : time) and

 $p2 : Process(id == "Review Model") and

 $s : Agent(supervisorOf contains $a) and

 not exists Activation(process == $p2,

 performer == $s, time > $c)

 then

 breakHardConstraint()

end

Expression (4) results in the rule “Model not created by

trainee”. It binds the process called “Create Model”, the group
called “Trainees” and all the agents that are member of this
group. If there exists an activation for the process and one of
these agents then the according solution violates a soft con-
straint. A reference to the rule together with the variables’
bindings is associated with the solution for traceability.

Expression (5) can be expressed as the rule “If model creat-
ed by trainee then re-viewed by supervisor”. The rule binds the
process “Create Model” and “Review Model”, the members of
“Trainees” and their supervisors. If now there is a completion
for “Create Model” by a trainee and no activation for “Review
Model” for his or her supervisor then this solution violates a
hard constraint.

The above rules demonstrate the expressivity and lowest
granularity of the approach. They are at a very low level of
abstraction and are not meant to be an actual means of model-
ing business processes. Instead, an end-user process modeling
language is intended to be a set of rule templates possibly to-
gether with a graphical notation and validity rules.

C. Simulation of Possible Execution Paths

For this small example, possible traces may be easily in-
ferred as shown in Fig. 10. We assume that there are the agents
“Alice” and “Bob” while “Alice” is the supervisor of “Bob”
who is a trainee. Initially, “Create Model” is activated with
both “Alice” and “Bob” as potential performers. However, the
activation for “Bob” contradicts the first constraint so the event
is marked discouraged and a reference to the violated constraint
is attached to it. When a work item is generated, it may be an-
notated accordingly. If “Alice” completes the task then “Sub-
mit Model” is directly activated afterwards.

process : Create Model
transition : Activate
performer : Alice

process : Create Model
transition : Activate
performer : Bob

process : Create Model
transition : Complete
performer : Alice

process : Create Model
transition : Complete
performer : Bob

process : Review Model
transition : Activate
performer : Alice

process : Submit Model
transition : Activate
performer : Alice

process : Submit Model
transition : Activate
performer : Bob

process : Review Model
transition : Complete
performer : Alice

process : Submit Model
transition : Complete
performer : Alice

process : Submit Model
transition : Complete
performer : Bob

↔ Model not created by Trainee

Figure 10. Exemplary paths when executing the example process model

However, if “Bob” creates the model only “Review Model”
is activated for “Alice” because the second constraint claims
that a review of the trainee’s supervisor has to follow the crea-
tion by a trainee.

Please note that the illustration in Fig. 10 is not complete.
There are a lot more possible paths resulting from these few
restrictions.

VII. CONCLUSION, LIMITATIONS AND FUTURE WORK

Declarative business process modeling turns out to be best
suited for the description of so-called flexible business process-
es comprising a high number of possible paths. Current engines
for the execution of such processes lack certain crucial charac-
teristics as they

 do not support constraints to span multiple perspectives
of a process or

 may not explain and justify the proposed actions or

 do not scale sufficiently to handle real-world business
processes.

The presented approach executes declarative process mod-
els based on first-order logic constraints that may span multiple
perspectives of a business process like, e.g., incorporated data,
agents performing the work and utilized tools. It dynamically
interprets the model and therefore scales better than approaches
that completely pre-calculate the possible paths. Due to its
architecture, not recommended actions may be traced back and
explained by the original process constraints. Thereby, the
approach addresses the above issues and promises to enable
practicable declarative business process management.

As mentioned above, the declarative execution engine is
part of the modular multi-paradigm platform
AI4 Process Navigation. Therefore, one objective is to further
unify these two architectures and to extract common elements
so that, in the end, the actual imperative and the declarative
execution cores only contain functionality that is specific to the
respective paradigm.

The described architecture shows that the state of the sys-
tem only changes when it is triggered from outside, e.g., by a
complete event. Accordingly, the progression of time may not
trigger a state change. It remains to be examined to what extent
this impedes constraints based on absolute time like, e.g., cool-
ing-off periods or deadlines. As a result, a support for time-
triggered execution remains to be evaluated.

We argue that the dynamic interpretation of declarative
process models improves scalability. Up to now, this is a theo-
retical advantage that needs to be proven by concretely demon-
strable results. The according benchmarks and comparisons are
to be developed in the future.

As Edsger Dijkstra already realized, “our powers to visual-
ize processes evolving in time are relatively poorly devel-
oped” [22]. Actually, rule-based descriptions of business pro-
cesses are known to suffer from understandability issues [3].
One way of addressing this problem is to continuously simulate
the execution of a process model. Therefore, a further objective
is to develop a framework for the stepwise simulation of de-
clarative process models so that their behavior may be fully
understood.

REFERENCES

[1] M. Pešić, H. Schonenberg, and W. M. P. van der Aalst,

"Declarative Workflow," in Modern Business Process Automation:

YAWL and its Support Environment, A. H. M. ter Hofstede, et al.,

Eds., ed: Springer, 2010, pp. 175-201.

[2] S. Sadiq, W. Sadiq, and M. Orlowska, "Pockets of Flexibility in

Workflow Specification," in 20th International Conference on

Conceptual Modeling (ER'2001), Yokohama, Japan, 2001.

[3] D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber, M.

Weidlich, et al., "Declarative versus Imperative Process Modeling

Languages: The Issue of Understandability," in Enterprise,

Business-Process and Information Systems Modeling (10th

International Workshop, BPMDS 2009, and 14th International

Conference, EMMSAD 2009, held at CAiSE 2009), Amsterdam,

The Netherlands, 2009, pp. 353-366.

[4] P. Dourish, J. Holmes, A. MacLean, P. Marqvardsen, and A.

Zbyslaw, "Freeflow: Mediating Between Representation and

Action in Workflow Systems," in ACM Conference on Computer

Supported Cooperative Work (CSCW '96), Boston, MA, US, 1996.

[5] W. M. P. van der Aalst, "TomTom for Business Process

Management (TomTom4BPM)," in 21st International Conference

on Advanced Information Systems Engineering (CAiSE 2009),

Amsterdam, NL, 2009, pp. 2-5.

[6] E. Turban, R. Sharda, and D. Delen, Decision Support and

Business Intelligence Systems, 9 ed.: Prentice Hall, 2010.

[7] S. Jablonski and C. Bußler, Workflow Management: Modeling

Concepts, Architecture and Implementation. London: Thomson,

1996.

[8] M. Igler, M. Faerber, M. Zeising, and S. Jablonski, "Modeling and

Planning Collaboration in Process Management Systems using

Organizational Constraints," in The 6th International Conference

on Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom 2010), Chicago, IL, USA, 2010,

pp. 1-10.

[9] M. Pešić, "Constraint-Based Workflow Management Systems:

Shifting Control to Users," Dissertation, Technische Universiteit

Eindhoven, 2006.

[10] S. Sadiq, M. Orlowska, and W. Sadiq, "Specification and

Validation of Process Constraints for Flexible Workflows,"

Information Systems, vol. 30, pp. 349-378, 2005.

[11] J. Wainer and F. Bezerra, "Constraint-based Flexible Workflows,"

in Groupware: Design, Implementation and Use, Autrans, FR,

2003, pp. 151-158.

[12] S. Goedertier, R. Haesen, and J. Vanthienen, "Rule-based Business

Process Modelling and Enactment," Business Process Integration

and Management, vol. 3, pp. 194-207, 2008.

[13] M. Igler, S. Jablonski, M. Zeising, and P. Moura, "ESProNa:

Constraint-based Declarative Business Process Modeling," in 14th

IEEE International Enterprise Distributed Object Computing

Conference (EDOCW 2010), Vitória, ES, BR, 2010, pp. 91-98.

[14] S. Jablonski, M. Igler, and C. Günther, "Supporting Collaborative

Work through Flexible Process Execution," in 5th International

Conference on Collaborative Computing: Networking,

Applications and Worksharing (CollaborateCom 2009), Crystal

City, Washington D.C., USA, 2009.

[15] T. Baeyens and M. V. Faura. (2007). The Process Virtual Machine.

Available: http://docs.jboss.com/jbpm/pvm/article/

[16] I. Object Management Group, "Business Process Model and

Notation (BPMN) Version 2.0," ed, 2011.

[17] F. Glover, "Tabu Search - Part I," ORSA Journal on Computing,

vol. 1, pp. 190-206, 1989.

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by

Simulated Annealing," Science, vol. 220, pp. 671-680, 1983.

[19] C. Forgy, "On the Efficient Implementation of Production

Systems," Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh,

PA, US, 1979.

[20] JBoss. (2012, 05/07/2012). Drools Expert User Guide Version

5.4.0.Final. Available:

http://docs.jboss.org/drools/release/5.4.0.Final/drools-expert-

docs/html/

[21] OASIS, "Web Services Human Task (WS-HumanTask), Version

1.0," ed, 2007.

[22] E. W. Dijkstra, "Go To Statement Considered Harmful,"

Communications of the ACM, vol. 11, pp. 147-148, 1968.

http://docs.jboss.com/jbpm/pvm/article/
http://docs.jboss.org/drools/release/5.4.0.Final/drools-expert-docs/html/
http://docs.jboss.org/drools/release/5.4.0.Final/drools-expert-docs/html/

