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Abstract—The declarative modeling approach promises to be a 

suitable means for the description of rather unforeseen and less 

rigid business processes. However, today’s approaches for the 

execution of such declarative processes lack certain essential 

capabilities. One of those is traceability which means that the 

actions proposed by the execution engine are explained and justi-

fied. Furthermore, expressivity is mostly limited to static temporal 

dependencies that lead to a simple temporal ordering of process 

steps without a proper connection to process perspectives like 

incorporated data, agents performing the work and utilized tools. 

Finally, due to their core principles, today’s declarative execution 

engines suffer from scalability issues. This article outlines a con-

cept and a prototypical implementation of an execution engine 

that aims to solve the above issues and integrates with current 

business process frameworks. 

Keywords-business process management; process execution; 

declarative; constraints; traceability; expressiveness; scalability 

I. INTRODUCTION 

Current research in the field of business process manage-
ment has pointed out that a useful process-aware information 
system must exhibit a trade-off between supporting people in 
achieving their goals and granting them as much freedom as 
possible at the same time [1]. In this context, a business process 
that restricts people to a lesser extent is characterized as a 
“flexible” process [2]. Concerning process modeling, a flexible 
process must comprise more possible paths than a rigid one. 

Following the terminology of programming languages, 
there are two paradigms of describing business process models: 
the imperative and the declarative style. The imperative way 
corresponds to imperative or procedural programming where 
every possible path must be foreseen at design time and encod-
ed explicitly. If a path is missing then it is considered not al-
lowed. In declarative modeling, on the other hand, only the 
undesired paths and constellations are excluded so that all re-
maining paths are potentially allowed and do not have to be 
foreseen individually. As the so-called flexible type of business 
processes incorporates many often unforeseen paths, the de-
clarative approach is best suited for it [3]. 

If business process execution involves human participants 
then the supporting system should be treated as a decision sup-
port system instead of a means of automation. As a conse-
quence, an according system should propose actions and sup-
port them but it should never enforce them [4]. This require-
ment goes along with the call for process management systems 
“to provide directions and guidance rather than enforcing a 
particular route” whereas they are compared to navigation sys-

tems [5]. An important characteristic of decision support is 
explanation and so-called meta-knowledge [6]. Proposals made 
by the system need to be justified and explained so that sound 
choices can be made. For process execution, this means that 
certain proposed actions must be marked as recommended and 
that discouraged actions can be traced back to and explained by 
the according parts of the business process model. A declara-
tive and therefore less rigid form of business processes leads to 
a greater amount of possible paths. So, especially in the declar-
ative area, the capability of explanation comes into value. 

Strongly connected with traceability is the expressivity of 
process modeling languages. The process execution engine 
directly affects and limits the expressivity of the languages it 
interprets. Declarative modeling is based on constraints that 
relate events of the process and exclude or discourage from 
certain correlations. Both constraints and events must be able to 
involve all the perspectives of a business process like, e.g., 
incorporated data, agents performing the work and utilized 
tools [7]. On this way it becomes possible to express realistic 
correlations like, e.g., the actual performing agent of a step 
affecting the type of data used in another step [8]. Another 
important means of enhancing expressivity is the support for 
different modalities. A modeling language greatly benefits 
from a distinction between optional and mandatory statements. 

With the great flexibility of a declarative description comes 
the issue of complexity. The principle implies that virtually 
every possible path must be evaluated during execution. De-
pending on the size of the model and the number of involved 
perspectives, this results in a huge amount of possibilities and 
the so-called state explosion. In order to maintain scalability, a 
declarative execution engine must avoid this limitation. 

In this article, an execution engine for declarative business 
processes that addresses the above issues is described. Instead 
of interrelating steps by unconditional temporal constraints, the 
engine allows for constraints to depend on multiple perspec-
tives of a business process like, e.g., data, agents and tools. 
Together with the support for qualifying constraints by differ-
ent modalities (“must” and “should”), the proposed engine 
allows for more expressive process modeling languages. Due to 
the support for different modalities, the engine is able to rec-
ommend certain actions or to discourage from them. Whenever 
an action is advised against, the engine may explain and justify 
this decision by tracing it back to the process constraints, i.e., 
modeling constructs that would be violated. Therefore, the 
engine offers traceable business process execution. Process 
models are interpreted in a stepwise manner instead of pre-
calculating all possible paths prior to the execution. On this 
way, the engine scales better than complete approaches and is 
capable of executing business processes of real-world size and 
complexity. 
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Section 2 outlines the related work on declarative business 
process execution and highlights the approaches’ drawbacks as 
well as adopted aspects. Section 3 summarizes the contribution 
of this article and delimits its scope. Section 4 guides through 
the principle ideas of the concept behind the execution engine. 
Section 5 shows how the concept is implemented on top of a 
business logic framework. Section 6 presents a running exam-
ple of a business process modeled for and executed by the en-
gine. Finally, section 7 concludes the article, goes into the cur-
rent limitations of the approach and provides an outlook on 
planned future work. 

II. RELATED WORK 

The most recent approach in the field of declarative process 
management is the Declare framework [9]. It is based on linear 
temporal logic (LTL) and therefore allows for relating process 
steps by temporal and existential constraints. Pattern (1), e.g., 
claims that if process step A is performed then step B must be 
performed eventually. 

 □(A → ◊B) (1) 

These constraints may not contain statements on data, 
agents or tools. The only way of relating the temporal order of 
steps to these perspectives is to make the constraints depend on 
certain conditions. Such a conditional constraint only applies if 
its condition evaluates to true. Though a condition could then 
contain statements on data, agents and tools, the actual con-
straint remains limited to temporal order and existence of steps. 
The other perspectives cannot be constrained, which reduces 
the expressivity of the supported process modeling languages. 

For execution, the LTL formulae of a process are trans-
formed into a finite state automaton which will then accept 
every trace of events that complies with the formulae. In order 
to reach a technically feasible size of the automaton, only the 
completion of a step is considered. 

Though a distinction between optional and mandatory con-
straints is made in the theoretical preliminaries, distinct modali-
ties are not supported because only one automaton is generated 
for the mandatory formulae. Both the LTL formulae and the 
automaton must be transformed and reduced for necessary 
optimization reasons. Due to that, it becomes impossible to 
draw a connection between the automaton’s transitions and the 
originally modeled constraints. Therefore, Declare cannot sup-
port traceability during execution as the proposed actions can-
not be explained. In spite of the simplifications and reductions, 
Declare suffers from scalability issues. Process models of real-
istic size lead to large automata which have to be generated 
completely before execution. 

There are several approaches that are very similar to De-
clare. In the work of Sadiq et al. [10] and also in the work of 
Wainer et al. [11], temporal constraints like, e.g., serial, order 
and fork are used to relate steps. As for Declare, these con-
straints may neither depend on nor influence perspectives like 
data, agents or tools and modalities are not supported either. 

A different idea was pursued with EM-BrA2CE where busi-
ness processes were modeled and executed on the basis of 
business rules [12]. The use of a first order rule language prom-
ises high expressivity and is also pursued in the work at hand. 
However, it is unclear to what extent this approach was real-
ized and many details are not described. As a result, it cannot 
be assessed to what extent traceability is supported, how ex-

pressive the process modeling language effectively is and how 
the approach scales. 

The ESProNa engine realized the execution of declarative 
business processes covering multiple perspectives and different 
modalities [13] [14] and therefore already supported highly 
expressive process modeling languages. However, this mono-
lithic prototype did not support traceability. ESProNa can be 
viewed as a predecessor of the approach at hand. 

The Process Virtual Machine (PVM) defines a common 
model for the execution of imperative graph-based process 
modeling languages like BPMN and EPC [15]. It features 
many crucial concepts like, e.g., composite processes, asyn-
chronous execution, transactions, persistence and wait states. 
The PVM model forms the basis of the JBoss jBPM engine. It 
mimics a token-based interpretation by moving execution 
pointers along the process graph which limits its scope to the 
execution of imperative processes. The objective of the ap-
proach at hand is to adapt the PVM’s concepts for the execu-
tion of declarative processes in a reasonable way so that the 
two architectures may be integrated in the future. 

III. SUMMARY OF THE CONTRIBUTION 

In this work, a concept and a prototypical implementation 
of a constraint-based process execution engine is outlined. This 
engine is able to execute declaratively modeled business pro-
cesses and addresses the issues of traceability, expressivity and 
scalability. Instead of only constraining the temporal order of 
process steps, it allows for constraints to influence multiple 
perspectives like, e.g., incorporated data, performing agents 
and utilized tools. Together with a distinction between optional 
and mandatory constraints, it enables the use of modeling lan-
guages that are more expressive and cover more aspects of a 
business process than today’s approaches based on simple tem-
poral constraints. Actions proposed by the engine are justified 
and explained by the original process model constraints. There-
fore, the engine realizes traceable execution of business pro-
cesses and allows for sound choices to be made by the process 
participants. Instead of pre-calculating all possible paths before 
execution, the engine only evaluates the respective next action. 
Thus, scalability is maintained and the system is suitable for 
business processes of realistic size. 

The presented work is part of a broader project that aims at 
a modular multi-paradigm platform for business process execu-
tion named AI4 Process Navigation. The engine at hand is 
intended to be for declarative processes what the Process Vir-
tual Machine (PVM) is for imperative ones [15]. The project’s 
overall purpose is to better understand the nature of business 
process execution and its connection to process modeling. 
Fig. 1 illustrates the pursued architecture of this framing pro-
ject. The imperative execution core as well as the declarative 
execution core described in this paper share a common infra-
structural basis (common foundation). The support for different 
process modeling languages is built on top of the respective 
core.  

The realization of these language modules is only touched 
in places by this contribution and is out of scope in principle. 
The aim of this paper is not to propose a new declarative pro-
cess modeling language but a platform supporting the execu-
tion of a wide range of these languages. 
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Figure 1.  Pursued architecture of the framing project with the declarative 

execution core described in this contribution 

IV. CONCEPT OF THE EXECUTION ENGINE 

The core principle of modeling and interpreting a declara-
tive business process is to constrain transitions in a state space. 
Each transition is connected to an event in time describing 
multiple perspectives at once like, e.g., “Bob finishes reviewing 
the CNC model using Autodesk® Inventor®”. The current 
state of the process case is then determined by the trace (or 
“log”) of past events. A process constraint usually refers to that 
trace like, e.g., “the sketch must be created before it can be 
reviewed” but also “the sketch should be reviewed by the su-
pervisor of the person who created it”. A declarative process 
model thus consists of the static entities like process steps, data 
items and agents and a set of constraints referring to them. 
Feasible next transitions or rather events are derived from eval-
uating the process constraints on the basis of the current event 
trace. 

A. Process Constraint Solution 

The interpretation of process constraints is triggered when-
ever the state of the case changes. The first step of this proce-
dure is to generate virtually all possible next activation events 
of the process case. For a model with the processes P, the 
agents A and the data items D, this results in e = |P × A × D| 
events that could be potentially generated. However, depending 
on the solution strategy, only a sub-set of these events has to be 
considered in order to find feasible ones. 

e1 e2 e3 e43e1 e2 e3

e42

e44
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e41
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e41

Unfeasible

Feasible but not recommended
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e43 : Activation

process = Create Model
performer = Bob
data = Sketch
tool = Autodesk®  Inventor®
violatedRules = [ R1 ]

 
Figure 2.  Stages of the evaluation: potential event traces are generated (a) 

and scored (b) 

In the next step, each of the generated activation events is 
combined with the current trace of past events so that e possi-
bly resulting traces are built. These possible traces are now 
scored on the basis of the process constraints. The result of 
scoring is that each potential next event is classified as unfeasi-
ble, not recommended or recommended. Unfeasible events are 
discarded and are considered no further. If an event is not rec-
ommended references to the constraints (rules) that it violates 

are attached to the event. Fig. 2 illustrates these stages of the 
evaluation procedure. The current trace of the process case 
consists of the events e1 to e3. Now the interpretation is trig-
gered and the next feasible actions should be proposed. We 
assume that five next events e41 to e45 result from the according 
process model. One of these could be the event that “Bob” 
performs the step “Create Model” using “Autodesk® Inven-
tor®” and consuming some “Sketch”. The potential next events 
are now scored according to the process constraints. We as-
sume that the events e41 and e45 do not violate any of these 
constraints so they are considered recommended. Event e42 
violates a hard constraint so it is considered unfeasible which 
means that it must not occur. We assume that e43 violates a soft 
constraint R1 so a reference to this constraint is attached to the 
event and it is considered not recommended. When proposing 
the according action to the process participant (“Bob” in this 
case) the devaluation of it can now be explained by tracing it 
back to the process model (constraint R1 in this case). 

A constraint is expressed in the form of a first-order logic 
expression x that refers to the event trace. The following ex-
pression, e.g., claims that if there is an activation event aB for 
process “B” then there must be a completion event cA for pro-
cess “A” performed by “Alice”. In other words this constraint 
ensures that process “A” has to be completed by “Alice” before 
process “B” can be activated: 

Activation(aB) ∧ process(aB, B) ∧ time(aB, tB) 
 → (2) 

Completion(cA) ∧ process(cA, A) ∧ performer (cA, Alice) ∧ 
time(cA, tA) ∧ before(tA, tB)

The approach supports different modalities. As a result, 
constraints are divided into hard and soft constraints depending 
on whether they render a trace unfeasible or not recommended. 
So the next step is to assign a modality m ∊ [H, S] to the con-
straint which results in a triplet (i, x, m) where i is a unique 
identifier for referring to the constraint, x is the original expres-
sion and m encodes the constraint’s modality. The purpose of a 
scoring rule is to punish the violation of a constraint, i.e., the 
negation of the constraint and to devaluate the according solu-
tion. Assuming that the above constraint is a hard constraint, 
the scoring rule triplet for it is: 

(A_By_Alice_Before_B, ¬x, H) 
≡ 

 (A_By_Alice_Before_B, (3) 
Activation(aB) ∧ process(aB, B) ∧ time(aB, tB) ∧ 

¬(Completion(cA) ∧ process(cA, A) ∧ performer(cA, Alice) 
time(cA, tA) ∧ before(tA, tB)), H) 

The generated traces (and the respective events) can now be 
classified in the following way: 

 A trace that violates one or more hard constraints is 
considered unfeasible and the according event will be 
discarded. 

 A trace that violates no hard constraints but one or 
more soft constraints is considered feasible but not rec-
ommended. A reference to the violated soft constraints 
is maintained for traceability. 

 A trace that violates no constraints is considered rec-
ommended. 



As outlined above, the events of the feasible traces are now 
returned and lead to the activation of the according process 
steps. Every trace that is rendered not recommended because it 
violates soft constraints is equipped with the according rule 
reference. On this way, the actions proposed by the system 
become traceable because they can be explained by the original 
model elements. The engine may now make statements like 
“event e1 should occur and event e2 may occur but it should not 
because of r”. 

B. From Events to a Process’s Life Cycle 

The core execution engine is independent from the process 
modeling language. Therefore, it must not have any knowledge 
of different process step types like, e.g., human tasks, script 
tasks or service invocations. The engine only considers enter-
ing (activating) and leaving (completing) abstract process mod-
el nodes. These two transitions and the according events are 
called activation and completion. Whenever the state of the 
process case changes, i.e., when the case is initialized or a node 
was left (completed), the constraint solution part of the engine 
is asked for the next nodes to be entered, i.e., for the next feasi-
ble activation events. These new activation events are append-
ed to the event trace and interpreted according to the type of 
process step to be activated. For a human task, e.g., activation 
means that the according work item should be scheduled in a 
work list. For a script task, it means that the script should be 
invoked. This interpretation of events is illustrated in Fig. 3. 
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E Script 
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Figure 3.  Activation events are proposed by the constraint solver while 

completion events are signalled by process step implementations 

After activation, process steps traverse their respective life 
cycles which is reflected by different process behaviors. A 
human task, e.g., usually runs through various states like its 
delegation, assignment and so on. However, these sub-states 
are hidden from the core engine and are handled outside of it, 
e.g., by a human task service. Only the completion of a step is 
signaled back to the engine. The event is appended to the trace 
and the constraint solver is invoked again. On this way, the 
process model is interpreted incrementally which reduces the 
complexity compared to approaches that completely pre-
calculate all possible traces. As a result, the approach scales 
better than complete approaches. 

C. Sub-Processes and Execution Pointers 

Regardless of whether a process model is being designed 
imperatively or declaratively, each process step may be com-
posed of further steps. In contrast to the concepts of the Busi-
ness Process Model and Notation (BPMN) [16], we do not 
distinguish between “processes”, “activities” and “sub-

processes” but simply allow for composite processes. This does 
not contradict the BPMN approach and dramatically reduces 
the complexity of the execution engine because composition 
can be handled in a continuous way. Languages must imple-
ment a CompositionResolver as shown in Fig. 4 for the 
engine to be able to step through the levels of a process model. 

«interface» 
CompositionResolver

getSubNodes(node : Object) : Iterable
isComposite() : boolean

 
Figure 4.  Interface to be implemented for the resolution of process 

compositions 

Instead of transforming the process model into some run-
time model, it is interpreted in place. For this purpose, execu-
tion pointers are maintained for every currently active process 
model node (cf. [15]). Like processes, these pointers may be 
composite and follow the structure of the process. Each execu-
tion pointer references the event trace of its node’s child nodes. 

In Fig. 5, process A is composed of the processes B and C. 
Process A is unfolded and the constraints for its children state 
that B may be activated in the current state. All events of a 
level are attached to the parent of this level. Therefore, the 
Activation event for B is attached to the Execution object 

of A. As B is now active, an Execution object is created for it 
as well. 

Model Execution

A : Process

B : Process

C : Process

: Execution

: Execution

: Activation

time = 16:04:25
process = B

 
Figure 5.  Example object graph during the execution of a composite process 

Composition is a means of modularization. As a conse-
quence, process constraints may only affect one level of a 
composition at once, i.e., one “sub-process” in terms of the 
BPMN. This restriction is comparable with the rule that, in 
BPMN, objects within a sub-process cannot be connected to 
objects outside of it through sequence flows [16]. 

D. Traceability and Decision Support for Process Cases and 

Actions 

The scoring approach allows for before and after considera-
tions concerning the rating of the process case. When the con-
straint interpretation is triggered, the process case may be as-
sessed in its current state before appending a feasible next 
event. In Fig. 6, this state of an example process case consists 
of three events. It is found that it contradicts process constraint 
R1 (which can only be a soft constraint as the events actually 
happened) so the case is currently in a discouraged state be-
cause it violates R1. This information can be made available to 
business administrators. This scoring of the case’s current state 
reveals the actual degree of deviation from the recommended 
process. 

After the potentially next event e4 is appended (b), the trace 
violates R2. Therefore, the occurrence of event e4 renders the 
case compliant with R1 but conflicting with R2 (c). This infor-



mation can be associated with the respective action so that its 
effect can be foreseen while the process is executed. 

Up to the authors’ knowledge, this level of decision support 
cannot be provided by any other process execution approach. 

e2e1 e3a ⟷ R1

e2e1 e3 e4

[ ]

[ ] ⟷ R2b

e2e1 e3 e4[ ] -R1 +R2c
 

Figure 6.  Scoring of a process case's current state (a), its potential next state 

(b) and the differential score of a potential next event (c) 

E. Extensibility and Adaptability 

The perspectives of a business process and their concrete 
shape may vary across different domains. A manufacturing 
process may focus on timing aspects like deadlines and cool-
ing-off periods, while in a clinical process, data formats and 
dependencies may play an important role. In most cases, an 
according process modeling language will have to be chosen or 
created so that these aspects can be expressed. As long as the 
elements of this language can be expressed in terms of first-
order logic, the approach at hand will support it. However, the 
language may only constrain facts that can be derived from the 
event trace. For this reason, the event type can be easily ex-
tended by language implementations. Thus, every detail neces-
sary for the respective domain can be recorded in the trace and 
picked up by process constraints. 

Fig. 7 shows an example extension for the manufacturing 
domain. Here it is necessary to constrain the part and tool used 
in a process step. The according ManufacturingActivation 

inherits from a BaseActivation which already allows for 
constraining the performer of a step. 

Event

time
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manufacturing

usedPart

usedTool

Object

Activation

BaseActivation Resource

ManufacturingActivation

Part

Tool

 
Figure 7.  Class diagram of an event extension for the manufacturing domain 

V. PROTOTYPICAL IMPLEMENTATION AND INTEGRATION 

The task of finding all feasible next events within the 
boundaries of process constraints is essentially an optimization 
problem. During the past, basically two directions addressing 
this type of problem have evolved. On the one hand, mathemat-
ical approaches like, e.g., graph coloring or linear programming 

are applied. The simplex algorithm with its implementation in, 
e.g., IBM® ILOG® CPLEX® is a famous example. On the 
other hand, approaches based on the search in a state space are 
applied. Heuristic search algorithms, genetic algorithms and 
most logic programming systems fall into that category. An 
advantage of these search-based approaches over the mathe-
matical ones is that they do not require the problem to be trans-
formed into a special representation. The simplex method, e.g., 
requires the problem to be represented as a system of equations 
composed of matrices and vectors. However, due to the object-
oriented paradigm, the data models to be optimized are usually 
represented as graphs of objects. Search-based approaches 
allow for these graphs to be optimized directly. Constraints can 
be expressed directly on the basis of these graphs as well. 
Therefore, the above concept is implemented on the bases of 
the search-based optimization framework JBoss Drools Plan-
ner. The framework uses meta-heuristic algorithms like tabu 
search [17] and simulated annealing [18] to find and evaluate 
solutions for NP-hard planning problems. The encountered 
solutions are rated on the basis of rules using an object-oriented 
variant of the Rete algorithm [19]. 

A. Adapting the Drools Framework to Process Execution 

For the purpose of declarative business process execution, 
the combination of the current event trace and the possible next 
event is considered a solution. The event trace remains un-
changed during the optimization procedure. Therefore, it is 
considered a planning fact. As the engine only proposes the 
activation of process steps, the possible next event is always an 
activation. It is varied during optimization which leads to alter-
native solutions. As a result, the Activation and its proper-
ties are annotated as the actual planning entity containing plan-
ning variables. Fig. 8 illustrates the relationship between the 
Solution and the Activation event. 

Event

time
SolutionImpl

«PlanningEntity» 
Activation

«PlanningVariable» process : Process
«PlanningVariable» performer : Resource
...

«interface» 
Solution

pastEvents

*

nextEvent

 
Figure 8.  Class diagram showing the integration into the JBoss Drools 

Framework 

The process constraints are expressed in the form of scoring 
rules in the framework’s rule language named DRL [20]. This 
language allows for defining named rules (rule blocks) where 

the rule’s conditional part (when clause) contains the negated 

constraint and the rule’s consequence (then clause) states 
which type of constraint to violate. Condition expressions may 
bind objects to variables, check for the existence or non-
existence of objects and may connect statements by logic oper-
ators. If for a process model a constraint c should hold (soft 
constraint), then the according DRL rule has the form 



rule 

  when 

    ¬ c 
  then 

    breakSoftConstraint() 

end 

 
If a constraint d must hold (hard constraint) then the rule 

has the form 

rule 

  when 

    ¬ d 
  then 

    breakHardConstraint() 

end 

 

As the when clause supports the full range of first order 
logic expressions, the approach supports highly expressive 
process modeling languages. Rules may constrain the existence 
and order of steps, the performing agents, the incorporated data 
and the utilized tools. Please note that DRL itself is not intend-
ed to be an actual process constraint language. An end-user 
language must offer a coarser granularity and must be based on 
patterns. 

By default, the Drools solver only returns the “best” solu-
tion where the definition of “best” must be configured. Return-
ing only one solution would imply that in each state of the 
process case only the most recommended next step is proposed. 
Of course, all feasible next steps should be offered so the de-
fault behavior of the solver must be changed accordingly. This 
is achieved by implementing a custom BestSolutionRe-

caller strategy which collects all of the feasible solutions 
encountered during the evaluation procedure. 

B. Task Management 

As it is common practice, the core execution engine is sepa-
rated from the management of human tasks. In this context, the 
WS-HumanTask specification [21] defines an interface for que-
rying and manipulating human tasks. However, it does not 
allow for scores to be transported. This is necessary because, in 
contrast to classic engines, e.g., people assignments are rated 
(variously recommended). As a result, the interface must be 
extended so that tasks, potential owners and data items may 
carry scores. Fig. 9 shows that the task management interface is 
inspired by the WS-HumanTask API but augmented by scor-
ing. It is actually possible to create an adapter for connecting 
the engine to standard WS-HumanTask clients. 

«interface» 
TaskClient

getMyTasks(roles : Role [*]) : Map<Task, Score>
start(taskId : String)
complete(taskId : String)
getInput(taskId : String) : Map<DataItem, Score>
…

«enum» 
Role

ActualOwner
PotentialOwner

«interface» 
Score

getScore() : Double
getViolatedRules() : String [*]
getUnviolatedRules() : String [*]

«interface» 
Task

getId() : String
getName() : String
...

«interface» 
DataItem

getId() : String
getName() : String
...

 
Figure 9.  Scoring-enabled task management interface for task clients 

A score consists of the actual soft score value, references to 
the violated process constraints (rules) and references to the 
“unviolated” constraints (rules that the process complies with 
again after the action). Instead of returning a list of tasks, a 
query maps actually or potentially owned tasks to scores. Also 
the input data items are scored as it may be recommended to 
use a certain document instead of another one. 

The score-enabled task management interface facilitates 
task clients that are capable of transporting more information 
than the classic WS-HumanTask clients and therefore supports 
more informed decisions of the process participants. 

VI. RUNNING EXAMPLE 

In the following, a real world example illustrates the steps 
from a business process model in the form of process con-
straints to scoring rules and outlines possible execution paths. 
The example originates from the engineering domain where 
employees elaborate CNC models which are executed by a 
CNC lathe. The process cannot be foreseen and defined com-
pletely. However the following restrictions are made: 

 “The CNC model should not be created by a trainee.” 

 “However, if the CNC model has been created by a 
trainee, then it must be reviewed by his supervisor be-
fore it can be submitted to the CNC lathe.” 

The constraints reflected by this example intersect temporal 
and causal dependencies (“if” and “before”) with organization-
al ones (“by a trainee” and “by his supervisor”) and make use 
of different modalities (“should” and “must”). The following 
paragraphs illustrate how these statements may be translated to 
closed formal constraints and interpreted by the execution en-
gine described above. 

A. Formal Constraints 

The above prose statements have to be transformed into 
first-order logic expressions referring to the event trace. It is 
assumed that there are at least two processes “Create Model” 
and “Review Model” and that there is a group called “Train-
ees”. The first statement claims that there should be no activa-
tion of the process “Create Model” with a potential performer 
who is member of the “Trainees” group: 

 ∄a (Activation(Create Model, a)  (4) 
∧ memberOf(a, Trainees)) 

The second statement claims that if there is a completion of 
“Create Model” by a member of the “Trainees” group, then 
there must be an activation of “Review Model” by the supervi-
sor of this agent: 

∃a, s (Completion(Create Model, a) ∧ memberOf(a, Trainees) 
 → (5) 

 Activation(Review Model, s) ∧ supervisorOf(s, a))

B. Scoring Rules 

As mentioned above, the purpose of scoring rules is to pun-
ish the negation of the constraint. So the expressions from (4) 
and (5) are negated and expressed as DRL rules: 



rule "Model not created by trainee" 

  when 

    $p : Process(id == "Create Model") and 

    $t : Group(id == "Trainees") and 

    $a : Agent(memberOf contains $t) and 

    exists Activation(process == $p,  

      performer == $a) 

  then 

    breakSoftConstraint() 

end 

 

rule "If model created by trainee then 

reviewed by supervisor" 

  when 

    $p1 : Process(id == "Create Model") and 

    $t : Group(id == "Trainees") and 

    $a : Agent(memberOf contains $t) and 

    exists Completion(process == $p1,  

      performer == $a, $c : time) and 

    $p2 : Process(id == "Review Model") and 

    $s : Agent(supervisorOf contains $a) and 

    not exists Activation(process == $p2,  

      performer == $s, time > $c) 

  then 

    breakHardConstraint() 

end 

 
Expression (4) results in the rule “Model not created by 

trainee”. It binds the process called “Create Model”, the group 
called “Trainees” and all the agents that are member of this 
group. If there exists an activation for the process and one of 
these agents then the according solution violates a soft con-
straint. A reference to the rule together with the variables’ 
bindings is associated with the solution for traceability. 

Expression (5) can be expressed as the rule “If model creat-
ed by trainee then re-viewed by supervisor”. The rule binds the 
process “Create Model” and “Review Model”, the members of 
“Trainees” and their supervisors. If now there is a completion 
for “Create Model” by a trainee and no activation for “Review 
Model” for his or her supervisor then this solution violates a 
hard constraint. 

The above rules demonstrate the expressivity and lowest 
granularity of the approach. They are at a very low level of 
abstraction and are not meant to be an actual means of model-
ing business processes. Instead, an end-user process modeling 
language is intended to be a set of rule templates possibly to-
gether with a graphical notation and validity rules. 

C. Simulation of Possible Execution Paths 

For this small example, possible traces may be easily in-
ferred as shown in Fig. 10. We assume that there are the agents 
“Alice” and “Bob” while “Alice” is the supervisor of “Bob” 
who is a trainee. Initially, “Create Model” is activated with 
both “Alice” and “Bob” as potential performers. However, the 
activation for “Bob” contradicts the first constraint so the event 
is marked discouraged and a reference to the violated constraint 
is attached to it. When a work item is generated, it may be an-
notated accordingly. If “Alice” completes the task then “Sub-
mit Model” is directly activated afterwards. 

process : Create Model
transition : Activate
performer : Alice

process : Create Model
transition : Activate
performer : Bob

process : Create Model
transition : Complete
performer : Alice

process : Create Model
transition : Complete
performer : Bob

process : Review Model
transition : Activate
performer : Alice

process : Submit Model 
transition : Activate
performer : Alice

process : Submit Model 
transition : Activate
performer : Bob

process : Review Model
transition : Complete
performer : Alice

process : Submit Model
transition : Complete
performer : Alice

process : Submit Model
transition : Complete
performer : Bob

↔ Model not created by Trainee

 
Figure 10.  Exemplary paths when executing the example process model 

However, if “Bob” creates the model only “Review Model” 
is activated for “Alice” because the second constraint claims 
that a review of the trainee’s supervisor has to follow the crea-
tion by a trainee. 

Please note that the illustration in Fig. 10 is not complete. 
There are a lot more possible paths resulting from these few 
restrictions. 

VII. CONCLUSION, LIMITATIONS AND FUTURE WORK 

Declarative business process modeling turns out to be best 
suited for the description of so-called flexible business process-
es comprising a high number of possible paths. Current engines 
for the execution of such processes lack certain crucial charac-
teristics as they  

 do not support constraints to span multiple perspectives 
of a process or  

 may not explain and justify the proposed actions or 

 do not scale sufficiently to handle real-world business 
processes. 

The presented approach executes declarative process mod-
els based on first-order logic constraints that may span multiple 
perspectives of a business process like, e.g., incorporated data, 
agents performing the work and utilized tools. It dynamically 
interprets the model and therefore scales better than approaches 
that completely pre-calculate the possible paths. Due to its 
architecture, not recommended actions may be traced back and 
explained by the original process constraints. Thereby, the 
approach addresses the above issues and promises to enable 
practicable declarative business process management. 



As mentioned above, the declarative execution engine is 
part of the modular multi-paradigm platform 
AI4 Process Navigation. Therefore, one objective is to further 
unify these two architectures and to extract common elements 
so that, in the end, the actual imperative and the declarative 
execution cores only contain functionality that is specific to the 
respective paradigm. 

The described architecture shows that the state of the sys-
tem only changes when it is triggered from outside, e.g., by a 
complete event. Accordingly, the progression of time may not 
trigger a state change. It remains to be examined to what extent 
this impedes constraints based on absolute time like, e.g., cool-
ing-off periods or deadlines. As a result, a support for time-
triggered execution remains to be evaluated. 

We argue that the dynamic interpretation of declarative 
process models improves scalability. Up to now, this is a theo-
retical advantage that needs to be proven by concretely demon-
strable results. The according benchmarks and comparisons are 
to be developed in the future. 

As Edsger Dijkstra already realized, “our powers to visual-
ize processes evolving in time are relatively poorly devel-
oped” [22]. Actually, rule-based descriptions of business pro-
cesses are known to suffer from understandability issues [3]. 
One way of addressing this problem is to continuously simulate 
the execution of a process model. Therefore, a further objective 
is to develop a framework for the stepwise simulation of de-
clarative process models so that their behavior may be fully 
understood. 
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