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Abstract—Data streams have become pervasive and data pro-
duction rates are increasing exponentially, driven by advances
in technology, for example the proliferation of sensors, smart
phones, and their applications. This fact effectuates an unprece-
dented opportunity to build real-time monitoring and analytics
applications, which when used collaboratively and interactively,
will provide insights to every aspect of our environment, both in
the business and scientific domains.

In our previous work, we have identified the need for workflow
management systems which are capable of orchestrating the
processing of multiple heterogeneous data streams, while enabling
their users to interact collaboratively with the workflows in real
time. In this paper, we describe CONFLuEnCE (CONtinuous
workFLow ExeCution Engine), which is an implementation of
our continuous workflow model. CONFLuEnCE is built on
top of Kepler, an existing workflow management system, by
fusing stream semantics and stream processing methods as
another computational domain. Furthermore, we explicate our
experiences in designing and implementing real-life business and
scientific continuous workflow monitoring applications, which
attest to the ease of use and applicability of our system.

Index Terms—workflow, continuous workflows, data streams,
monitoring applications

I. I NTRODUCTION

In the last decade we have witnessed the proliferation of
data streams and the exponential increase in data production
rates. This is mainly the result of the increase in bandwidth
speeds and the availability of wireless broadband, and more
importantly, due to the spread of heterogeneous sensors (ther-
mal sensing, telescopes, GPS enabled sensors etc.) as well
as the increasing population and world-wide distribution of
smart phone devices and their applications. Smart phones
enable mobile users to (over-)share their observations, ideas,
opinions etc., all marked with contextual meta-data, practically
rendering them as human-sensors. Moreover, these smart mo-
bile devices provide an almost pervasive connectivity to their
users, which creates an ideal collaborative environment, since
it allows more frequent involvement.

This fact effectuates an unprecedented opportunity to build
real-time monitoring and analytics applications, which when
used collaboratively and interactively, will provide insights to
every aspect of our environment, both in the business and the
scientific domains. Example applications from the business

domain include real-time supply chain management, on-line
marketing strategy decision making through on-line analysis of
social network feeds etc. In the scientific domain, examplesare
laboratory information management systems (LIMSs) includ-
ing remotely established underwater labs to monitor sea life
and conditions in real-time [1]. Other examples of applications
of scientific workflows and their requirements are describedin
[2]. We have also been working on a collaboration platform
built using continuous workflows [3] to monitor astronomers’
interactions with an on-line annotations management system,
as well as coordinate their reactions to transient events (e.g.,
supernovae, asteroids passing through etc.), to help them
identify object types, find out trending objects and/or events.
By exchanging opinions and feedback through our system the
astronomers are collaboratively defining the morphology ofthe
sky. All of these applications enable the collaboration between
different users with each one feeding back to the workflow
their own decisions, conclusions, and actions.

Most recent workflow enactment/management systems or-
chestrate the interactions among activities within a workflow
using web services [4]. Several business process modeling
languages have been designed to capture the logic of a
composite web service, in the form of a workflow, including
WSCI, BPML, BPSS, XPDL and WS-BPEL 2.0. However,
these interactions are usually one-shot interactions between
the sender and the receiver of the request; it is clear that the
existing workflow management systems and languages are not
suited for reactive applications.

As an alternative approach for collaborative monitoring over
data streams one might consider using Continuous Queries
(CQs) and data stream management systems (DSMSs) [5], [6].
The main drawbacks of CQs are: (1) have a static configuration
and (2) are unable to facilitate user interaction. This makes
CQs alone unsuitable as a complete solution for enabling
reactive and collaborative applications.

In order to address the lack of support for continuous
data streams in existing workflow models, we proposed a
shift towards the idea of “continuous” workflows. The main
difference between traditional and continuous workflows is
that the latter are continuously (i.e., always) active and con-
tinuously reacting on internal streams of events and external
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streams of updates from multiple sources, concurrently and
at any part of the workflow network. We have shown in
[3] how the workflow and communications patterns are cast
into continuous workflows (CWfs) and also proposed four
new CWfs patterns that complement the existing “traditional”
workflow patterns [7], [8]. These extensions effectively enable
the integration of a DSMS as a data source besides the
traditional ones such as database and file systems.

We have implemented our proposed CWf model as a
prototype system, called CONFLuEnCE, which is short for
CONtinuous workFLow ExeCution Engine, and was built on
top of Kepler [9]. In this paper, we describe the realizationof
our CWf model into a prototype system and show how CON-
FLuEnCE can enable reactive and collaborative applications.
To show that CONFLuEnCE can facilitate both business and
scientific collaborative applications we describe the design and
implementation of a Supply Chain Management application,
andAstroshelf, a collaborative exploration of the sky.

Contributions: In summary, our contributions are as fol-
lows:

1) We present the design of our continuous workflow model.
2) We show how our model has been implemented into

a fully functional CONtinuous workFLow ExeCution
Engine, namely CONFLuEnCE.

3) We present our experiences in designing and imple-
menting two real-life business and scientific continuous
workflow monitoring applications, which attest to the
ease of use and applicability of our system.

Roadmap: Following this introduction, in Section II, we
describe the continuous workflow model along with all the
requirements of a continuous workflow system. In Section III
we describe how all the necessary components of the model
were implemented on top of the Kepler workflow management
system. Then in Section IV we describe two representative
applications from both the business and scientific domains
which make use of CONFLuEnCE to enable real time data-
stream monitoring and collaboration between users. Finally we
compare our system to existing approaches in Section V and
conclude in Section VI.

II. CONTINUOUS WORKFLOW MODEL

A Continuous Workflow, is a workflow that supports enact-
ment on multiple streams of data, by parallelizing the flow
of data and its processing into various parts of the workflow.
Continuous workflows can potentially run for an unlimited
amount of time, constantly monitoring and operating on data
streams. Our proposed Continuous Workflow model supports
these characteristics by:

• Active queues on the inputs of activities which support
windows and window functions to allow the definition of
synchronization semantics among multiple data streams.

• Concurrent execution of sequential activities, in a pipelined
way.

• The ability to support push communication, i.e., receiving
pushupdates from data stream sources.

In the following subsections we will elaborate on the basic
primitive components of our continuous workflow model,
namelywaves, windows, andpush communication.

A. Waves

A wave is a set of internal events associated with an external
event and as such these internal events can be synchronized
at different points of the workflow. A wave is initiated when
an external eventei enters the system and is associated with a
wave-tag which isei’s timestampti. When the external event
ei or any internal event in its wave is processed by a task,
any new internal events produced by this task become part of
the wave as well. Specifically, if the task processing the event
with wave-tagti createsn events then these resulting events
will have wave-tagsti.1, ti.2, ..., ti.n. The wave-tag of the last
event of the wave is marked as such. This is useful when a task
downstream needs to synchronize all of the events belonging
to a single wave. Moreover, a sub-wave may be formed when
an event which is part of a wave is processed by a task. In
this case a wave hierarchy is formed where an extra serial
number is attached to the wave-tag. For example, ifti.3 is
involved in a task then the resultingm events will have wave-
tagsti.3.1, ti.3.2, ..., ti.3.m.

For example, consider a supply chain management appli-
cation: When a customer submits an order with multiple
products, that order is split by a task into individual data items
for each product. Those data items belong to the same wave.
Then the items are dispatched to the various warehouses that
carry those items (usually more than one warehouse). Once the
items are individually shipped then the confirmation eventsfor
each of those items are synchronized downstream all together
to form the final notification to the customer to inform her
that the order was shipped.

In effect, waves capture the lineage of events. Even though
some workflow management systems keep track of the lineage
of the processed data to be used for playback and trace-back,
our model, in addition, allows the usage of this information
by the application designer to enable the synchronization of
these events.

B. Windows

A window is generally considered as a mechanism for
setting flexible bounds on an unbounded stream of data events
in order to fetch a finite, yet ever-changing set of events,
which may be regarded as a logical bundle of events. We have
introduced the notion of windows on the queues of events
in workflows which are attached to the activity inputs. The
windows are calculated by awindow operatorrunning on the
queue. The window operator will try to produce a window
whenever it is asked by the attached workflow activity. When
events expire they are pushed to anexpired itemsqueue which
are optionally handled by another workflow activity. Five
parameters are required to define the window semantics for
that operator:size, step, window formation timeout, group-by
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Fig. 1: Size and Step for event-based window semantics. The
bottom series of boxes represent the stream of events. In this
example the size is 5 events and the step is 3 events. The
windows produced are represented by the boxes stacked above
the queue.

functionality, anddelete used events. A description of these
parameters follows:

1) Size and Step:In general, windows are defined in
terms of anupper bound, lower bound, extend, andmode of
adjustmentas time advances. The upper and lower bounds
are the timestamps of the events at the beginning and the
end of the window. The extend is thesize of the window.
When a window is initiated its lower bound is defined and
its upper bound is computed using the size. The mode of
adjustment, also known as thewindow step, defines the period
for updating the window. If a step is not defined, then the
window is evaluated every time a new event comes into the
queue.

The size and step of a window definition can be defined in
four ways:

(a) Logical units: which are time-based, and define the max-
imum time interval between the upper and lower bound
timestamps.

(b) Physical units: which are count-based, and define the
number of events between the upper and lower bounds.

(c) Wave-based: where the upper and lower bounds of a
window are defined by the first and last events of a wave
currently being processed.

(d) Semantics-based: where a general predicate over the data
stream can be used to define the window start/end points.

These ways can be intermixed between size and step to form
disparate semantic meanings. A depiction of how the size and
step parameters define the windows can be seen in Figure 1.

2) Window formation timeout:In the case of time-based
windows, in order to produce a window, an event belonging
to the next window has to appear to close the current window.
In the case of sparse data streams, this could take a while
and the window operator would block without producing any
windows, even if the logical bounds of the current window in
production have passed. Part of the window specification is
the setting of a timeout to close a time-based window after
T × x amount of time, wherex is the size of the window,

and T is a factor defined by the workflow designer. This
means that if an event which closes the window does not arrive
before the timeout, the window is automatically closed at the
timeout, producing whatever events are currently within the
window. Any event arriving after the timeout, which is also
after the window’s upper bound, with a timestamp before the
upper bound, will be discarded and not considered as part of
any subsequent windows. Note that only window definitions
involving time require a timeout (i.e., (a) and possibly (d)).

3) Group-by: In many cases the streams of events contain
closely related elements, where the application needs to pro-
cess them in groups (e.g., calculating the average number of
tweets per unit of time containing the same hashtags). This
requires the window operator to support multiplexing of the
stream based on some grouping attribute(s).

In our workflow model the data types could be simple
(e.g., integer, string, float, etc.) or complex (records which
allow hierarchy, matrices or arrays). In the case of a simple
data type events would be grouped based on value equality,
similarly to traditional query processing. When the data type
is complex then the grouping is defined specifically for a
particular element of that complex type. For hierarchical
records we use an XPath-like notation1 where you may de-
fine the grouping attribute by means of a path query (e.g.,
/entities/hashtags). For matrices and arrays we need
to specify the index of the element we want to group-by.

In addition to the simple path queries, the path language
for group-by’s also supports functions. For example, if the
/entities/hashtags query returns an array, but we only
want to test equality based on the set of the elements in the
array, i.e., ignoring the order, we could define the predicate
asas-set(/entities/hashtags). Furthermore, it sup-
ports multiple predicates which are evaluated in the order of
their definition. For example, if we first want to group-by the
user id in the tweet and then by hashtags we would define a
predicate as/userid, /entities/hashtags.

The window operator then keeps a separate queue for each
group of events, and applies the window semantics on each
and every queue. Each time a new window is produced, the
window operator’s time is set to that window. The operator
makes sure that the window produced is the earliest available
window among all queues.

4) Deleting used events:Events on a queue could either
be consumed or only used by an activity. A flag, called
“delete used events” is used to denote consumption. That is,
to denote if events that were used in the window that triggered
an activity should be deleted from the queue upon their usage.
The signal to delete used events from queues comes as part
of the post-conditions of an activity.

Window operator example: To better understand the window
operator we describe an example with the help of Figure 2.
The goal is to trigger activity A when two events occur within
5 minutes of each other.

1www.w3.org/TR/xpath



Fig. 2: The window is calculated at every step (of 1 minute).
Letters represent events and numbers represent timestamps(in
minutes). The window starts at timestamp 0, at which time
eventa arrives and is enqueued. Between timestamps 1 and
5, on every minute the queue is evaluated and no action is
taken, as the precondition is not satisfied, since onlya is part
of the window. At timestamp 5, eventa is expired because the
current window’s upper bound is more than its timestamp plus
the size of the window. Meaning thata cannot be part of any
subsequent windows. At timestamp 6, eventb is enqueued. The
precondition is evaluated and no action is taken, since onlyb is
part of the window. At timestamp 8, eventc is enqueued. This
time the precondition is satisfied since bothb andc are part of
the window, and that makes it of size 2 events. The activity is
then triggered and once its execution is completed eventsb and
c are deleted from the queue, since the “deleteused events”
flag is set.

C. Push communication

In the push communication model, the data consumer re-
ceives multiple data items asynchronously. We are interested
in two communication patterns which follow this model [10]:

a) Broadcast, the form of asynchronous communication in
which a data producer sends the data items over a broadcast
medium (i.e., channel), and the consumers “tune” into
the channel to receive the available data. Each consumer
determines whether a data item is of interest or not.

b) Publish/Subscribe, the form of asynchronous communica-
tion in which the consumers (subscribers) register their
interest at a producer (publisher). Once data becomes
available, the producer sends the data to the individual
subscribers based on their expressed interest.

The push model has not been supported by any workflow
system, until recently when, parallel to our work, another
workflow management system started to support it [11]. The
lack of support of these patterns so far has been a direct result
of an underlying assumption that data sources in workflows
are passive (e.g., data is stored in databases or data files) and
data consumers (users, tasks), are the only active entitiesthat
can request and synchronously retrieve the data. These two
missing communication patterns require that the data sources

involved are active as well.
There are two basic ways of supporting push communica-

tions in continuous workflows. First, since a CWf is a long
running process, during the initialization phase it could open
indefinite connections with the data sources, from where the
workflow can receive updates in real-time. A second way
would be for the workflow to keep an open port waiting for
connections from outside parties that want to push data to the
workflow. This would mean that the end point of the workflow
is well known to outsiders and fairly constant. For example a
data source may be a DSMS or a third party data mediator to
which a CWf can register and either open a connection (first
method) or open a port (second method) to receive push data.

III. E XTENDING KEPLER

In order to implement our continuous workflow model, we
have to implement the three basic primitives presented in the
previous section in addition to all the primitives providedby a
traditional Workflow Management System. Instead of building
a new system from scratch we evaluated a number of open
sourced workflow systems such as Taverna [12] and Kepler [9].
We chose Kepler as the base for CONFLuEnCE because of our
common aim to support scientific workflows and because of its
extensibility. Kepler is a free open-source scientific workflow
system, which was built on top of PtolemyII, a software
system for modeling, simulating, and designing concurrent,
real-time systems. The suitability of Kepler, for implementing
our CWf model, comes from the underlying PtolemyII system:
“the use of well defined models of computation that govern
the interaction between components”2. Also, Kepler’s code is
inherently extensible, proven by the fact that is being actively
developed by nearly 20 different scientific projects. It provides
a large library of basic actors (i.e., components representing
various tasks) as well as specialized actors, for easy reusability
and composition of new applications. The library includes
actors for database interfacing, data filtering, etc. and itis
easily extensible to include domain-specific actors for actions
such as automatically annotating astronomical objects.

Furthermore, programming workflows in Kepler is made
easy for domain experts without any knowledge of program-
ming structures. Kepler provides an intuitive high-level visual
language for building workflows, where the designer can drag
and drop components and connect inputs with outputs quite
easily. Configuring parameters is easily done using dialog
boxes and it also gives useful displays for debugging the
workflows. Finally, Kepler was implemented in Java that
simplifies our implementation of CONFLuEnCE. All in all
Kepler was an ideal platform for us to build our model.

A. Kepler’s actor-oriented modeling

A workflow in Kepler is viewed as a composition of
independent components calledactors. Actors have parameters
configuring and customizing their behavior which can be set
statically during the workflow design as well as dynami-
cally during runtime. Communication between them happens

2http://ptolemy.eecs.berkeley.edu/objectives.htm



Fig. 3: Modified Kepler form for configuring actor ports. On this form the workflow designer can define in freeform text the
size and step of the window associated with specific ports. Shaded cells denote non-editable parameters.

Fig. 4: The semantics of component interaction is determined
by a director, which controls execution and supplies the objects
(called receivers) that implement communication

through interfaces calledports. These are distinguished into
input ports and output ports and the connection between them
is called achannel. As part of the communication, between
the two ports, a data item (referred to as token in Kepler) is
propagated from the output port to the input port. The receiv-
ing point of a channel has areceiverobject, which controls the
communication between the actors. The receiver object is not
provided by the actor but by the workflow’s controlling entity,
called thedirector. The director defines the execution and
communication models of the workflow. As such, whether the
communication is synchronous or asynchronous (buffered) is
determined by the designer of the director, not by the designer
of the actor. Figure 4 [9] shows how all these components are
organized as part of a workflow.

The execution and communication model of the workflow is
governed by the model of computation defined by adirector
entity. That is, given the same actor configuration, different
execution semantics can be specified through the choice of a
particulardirector. Kepler provides five main directors, each
exposing a different model of computation.

1) TheSynchronous Data Flow(SDF) director is designed for
sequential and simple workflows with the number of tokens
produced by the actors known a-priori, thus the scheduling
order of the actors is defined before the execution starts.

2) The Dynamic Data Flow(DDF) director, like SDF, exe-
cutes the workflow in a single execution thread. However,
unlike SDF it does not use static scheduling, but does so
at runtime, since the number of tokens produced by each

actor is unknown.
3) TheProcess Network(PN) director is designed for manag-

ing workflows that require parallel processing. This director
wraps each actor in its own execution thread and the
workflow is driven by data availability.

4) The Continuous Time(CN) director introduces the notion
of time for modeling workflows able to predict how a
system evolves over time.

5) The Discrete Event(DE) director, which also works with
timestamps, measures average wait times and occurrence
rates. All the events (data and timestamp pairs) emitted
from actors are placed in a global workflow timeline.

A detailed description of these directors can be found in [13].
Throughout the workflow execution, the director goes

through a set of phases, summarized as follows (described
in more detail in [9]):
1) Pre-initialize: Calls the pre-initialize method of all the

actors just before starting the workflow execution. This
phase is reached only once per workflow execution.

2) Type-checking: to make sure that all the data types of tokens
between the sending and receiving ends of the actors are
compatible.

3) Initialize: calls the initialize method of each actor, every
time the workflow is run3. Initialization tokens may be
transmitted from one actor to another, web-service pings
may take place or other actions which need to be taken
before the workflow starts running.

4) Iteration: A workflow run may consist of multiple it-
erations, where in each iteration the director calls the
methods:pre-fire (actor tests its firing preconditions),fire
(actor performs its main function, usually by consuming
tokens from the input ports and producing results in its
output ports) andpost-fire (where the actor evaluates the
postconditions and decides if it should be fired again in the
next iteration) of each actor.

Workflows may be reused as part of a larger workflow
(parent). They are called sub-workflows. The parent workflow
views a sub-workflow as a self contained actor and manages
it just like any other actor. Sub-workflows may use different

3Note that a workflow run is different than a workflow execution, since
before a run a re-initialization of the workflow with possibly different
parameter values, data input etc. takes place. An executionconsists of many
different runs. In the CWf model though an execution contains just one run
since the workflow is long running and real-time.



director (i.e., employee different model of computation) than
the parent workflow, thus forming ahierarchical heterogeneity.

B. Continuous Workflow Director

The first requirement of our CWf model is the concurrent
execution of sequential activities which is governed as men-
tioned earlier by the director entity. Concurrent execution is
natively enabled by the PN director included with Kepler, since
every actor is executed in parallel in its own thread. However,
PN does not support any notion of time needed by the window
operator. The notion of time is supported by the CN and
DE directors both of which, however, do not support parallel
processing. Since none of the existing directors could be used
to support the CWf requirements, we decided to implement
a new Continuous Workflow director by incorporating time-
based techniques used by DE.

To add the notion of timed events to the PN model of
computation we encapsulate each data token within an event
object. The event carries its timestamp (either the creation
time of the data or the time it entered the system), and its
wave-tag. Since all current actors were implemented without
being timestamp aware, they cannot output the timestamp of
the events to the next receiving actor. To solve this problem
the CWf director associates a time-keeper object to each
actor at initialization time. The time-keeper keeps track of
the timestamp information of the latest event processed by
the actor. When the actor sends the result on a channel,
the receiver objects at the receiving ends of that channel
(which are receivers defined by the CWf director) will ask the
time-keeper associated with the producing actor to providea
timestamp for that event. This way we also solve the problem
of backwards compatibility, to support all the legacy actors
available in Kepler’s library. Any CWf-specific actors can be
implemented with timestamp and wave awareness.

The new Process Network Continuous Workflow (PNCWf)
director is defined as a class which extends the PN director,
and implements the Interface for Continuous Workflow Di-
rectors (ICWF). The ICWF requires the implementation of
some continuous workflow specific methods, e.g., for getting
the time-keeper objects of actors, for initializing the receivers
capable of accommodating the timestamped events communi-
cations etc.

Even though the PN director model of computation fits
the continuous workflows model, by allowing actors to run
concurrently, it is oblivious to any application or user Quality
of Service (QoS) requirements since it relies on the scheduler
of the underlying operating system. For this reason, we are
currently developing a new CWf director that adapts the
scheduling techniques proposed for scheduling continuous
queries [6].

C. Windowed Receiver

The second requirement is to add queues on the inputs of
actors to buffer data. Although this is already implementedin
certain models of computation in Kepler, window semantics
on these queues do not exist in any model of computation. We

have implemented a new type of receiver which is associated
with the directors that implement the window specifications.
This new type of receiver defines windows by size and step.
The unit of measurement of these two parameters can be
of type token, time, or wave. These parameters can be set
in freeform text in the modified form which is provided by
Kepler for configuring actor ports (Figure 3). Additionallythe
designer may define the windowed receiver as a ”Group-by”.
As we mentioned in Section II-B3, depending on the data type
of the tokens, the user may set a predicate in the form of a
path query or scalar index to define the grouping element of
the token. Since the group-by function may create a lot of
groups, if the window definition is time-based the user may
also choose to suppress the empty windows by toggling a
checkbox.

D. Push communication

We have implemented the push communication patterns
described in Section II-C in three ways:

1) Web-sockets: An input actor initializes, within itself, a
web socket server listening to a specific port. The appli-
cation built on top of the specific CWf has knowledge of
the port number and whenever it needs to push data to the
CWf it connects to the specific port and sends the data.
The use of web sockets enabled us to build applications
that run on the client’s browser.

2) Direct TCP connection: An input actor initializes a con-
nection with a specific data stream source. This could be
a DSMS, or a generic service providing streaming data
(e.g., Twitter streams). The socket connection object runs
within the containing actor’s thread and blocks whenever
there are no data to receive. When new data arrive they
are broadcasted to the input ports of the actors connected
to that input actor’s output port.

3) Using a mediator: In order to support more generic data
feeds such as RSS streams, we used a mediator platform
called PubSubHubub4. This service will aggregate data
updates from multiple RSS feeds and push them directly
to a URL deployed by the workflow server. Once that
URL is called, it will in turn forward the updates to
the CWf using a predefined TCP port, much like what
happens in the above case with the web-sockets server
within the CWf. This allows us to integrate our workflows
with a larger set of data sources.

Since we are dealing with continuous workflows, most of
the time the results are also manifested as data streams. Thus
the implementation also provides output actors to support the
same kind of push communications as those used for the input
actors. For instance, a client may connect to a known port
and get results pushed to her. Another way would be using
the mediator. Alternatively the output could be pushed using
email, SMS, or other asynchronous types of communication
as well as stored in a database that can be queried later.

4http://code.google.com/p/pubsubhubbub/
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Fig. 5: High level design of a continuous workflow for Supply
Chain Management reactive application.

IV. CONTINUOUS WORKFLOW APPLICATIONS

Having CONFLuEnCE as a working prototype we started
building applications to show its applicability both in the
business as well as the scientific domains. In this section we
present two of these applications, from which the first one
was demonstrated during SIGMOD 2011 [14]. The second
one has been developed as part of the Astroshelf5 project, for
enabling collaboration and data analysis within the astronomy
community.

A. Supply chain management

Supply chain management applications are generally built
to manage the workload of a business which handles product
orders from customers, fulfillment of these orders from the
warehouses and seamless bookkeeping of all of the trans-
actions that take place. Ideally the system should provide
analytics on the state of the supply chain. In this scenario
the objective was to design a continuous workflow capable
of serving as the integration layer between databases in the
warehouses, the web server providing the user interface andor-
dering system, and other administrator interfaces. Additionally,
it should provide real-time analytics and event notifications to
help the managers alleviate problems as quickly as possible.
The high-level design of the workflow is depicted in Figure
5. The users of this system are split into four categories:
(1) Clients, (2) Warehouse manager, (3) Company Manager
and (4) Administrator. Roles 1-3 interact with the workflow
through a web interface (through a mobile device or a laptop)
and role 4 interacts with the workflow directly through the
Kepler interface.

A client submits orders with multiple items, using the web
interface depicted in Figure 6a, and receives a notificationonce
her order has been shipped. A warehouse manager notifies the
system when an item is out of stock and also receives order
requests from the system and fulfills them. Note that an order
may contain objects that are available in different warehouses.
The workflow takes care of routing the order requests to
the appropriate warehouse manager. The company manager

5http://db.cs.pitt.edu/group/projects/astroshelf

(a) Customer’s Ordering Panel (b) Company Manager’s Panel

Fig. 6: Supply Chain Management application: The customer’s
panel where the users submit their orders. Company manager’s
panel updated in real-time with statistics on the number of
orders submitted per second and the number of shipments
made per second.

receives notifications when things go wrong more than once
and in more than one way, e.g., when an item is reported out
of stock more than once in some specified period, or when
multiple orders have been delayed or canceled. The company
manager also has a real time view (Figure 6b) of the current
volume of orders and shipments to customers, updated every
second. The statistics are computed using window semantics
in certain parts of the workflow. The windows have a size of
1 second and a step of 1 second. The administrator’s role is to
change parameters, such as window sizes, or tune up settings
in the scheduler to make the execution fit the application’s
requirements.

Figure 7 shows the precise specification of the continuous
workflow supporting the Supply Chain Management appli-
cation. The director can be seen at the top-center of the
workflow definition. The workflow is also marked with the
three sections, each one responsible for supporting roles 1-
3. As part of this application the only actors that we had to
implement ourselves were the push communication enabling
actors. The rest of the workflow uses “of-the-shelf” actors
provided by Kepler. Even for processing window operator
results, such as counting the size of the window every second,
we used the already available “Array Length” actor. The
windowed receiver is designed to produce windows as array
tokens, thus making the use of the “Array Length” actor, plug-
and-play.

Furthermore, to test the capacity of the system and its
ability to handle high loads we implemented the roles of
customers and warehouse managers as automated processes
that automatically interacted with the workflow. In the case
of the customers the automated process would randomly pick
some products from a list and submit them as an order. The
warehouse manager process would wake up in intervals and



Fig. 7: Implementation a continuous workflow for Supply Chain Management reactive application.

service orders from its work list. As an initial stress test we
spawned 20 customers and 3 warehouse manager processes
to see the robustness of our system. The system was running
without any problems, until we stopped it after three hours.As
part of our future work we plan to further test the system by
measuring more metrics (e.g., response time) and scalability
in number of users that can be supported.

B. Astroshelf ’s collaboration backend

In the context of the NSF project funding the research and
development of CONFLuEnCE, we have been working with
a group of astrophysicists to develop a complete platform,
called AstroShelfwhich will enable them to collaboratively
annotate sky objects and phenomena, as well as visualize parts
of the sky using different algorithms. This includes a user
interface (dashboard) with the ability to display sky images,
an annotations management system and a monitoring module
for real-time processing of annotations and sky update events.
The monitoring module is realized within CONFLuEnCE. A
high-level design of the system is shown in Figure 8.

Specifically, we have designed a continuous workflow to
run on CONFLuEnCE as part of the monitoring module. The
goal of this workflow is to monitor the activity of inserting,
updating or deleting annotations as well as integrating the
detection of transient events from various sky surveys that
are of interest to the users, all in real-time. After processing
these events the workflow will ask for feedback from the users.

By interacting with the workflow, the users may refine the
annotations, iterating over them until they reach a consensus.
Manipulating annotations can be done using the SkyView, the
Galaxy Classifier or the Supernovae Classifier.

The system interactions and flow of events are as follows
(numbered as in Figure 8):

1) Using the Astroshelf’s user interface the astronomers can
define and name areas in the sky that are of interest to them.
Additionally they may define the type of events they are
interested in (e.g., new annotation, new supernova, galaxy
classification, etc.) This expression of interest is pushedto
CONFLuEnCE and it is registered into an R-Tree spacial
index which resides inside the actor “Tag Interest”. We
used an R-Tree for its ability to index multi-dimensional
information and quickly match spatial queries with the
areas defined by the users.

2) Using the SkyView the users can annotate objects, group of
objects or arbitrary points in the sky with any information
they deem important to share. Using either the Galaxy or
Supernovae classifiers the users can classify types of galax-
ies or supernovae, respectively. These classifications are
recorded as annotations as well. All of these annotations are
inserted into the Annotations Engine through a specialized
API.

3) Every time a new annotation is inserted into the Annota-
tions Engine, this event is detected by the Event Reporting
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Fig. 8: High-level design of a continuous workflow for the Astroshelf collaboration platform.

module and directly forwards it to the continuous work-
flow on CONFLuEnCE. Other types of events pushed to
the monitoring workflow are transient events detected by
various sky surveys (e.g., LSST6), which are also available
through an aggregation service, called SkyAlert.

4) Once the aforementioned events enter the system they are
tagged by the “Tag Interest” actor with the user ids of those
who previously expressed interest in the area and type of
the object attached to the annotation (interaction 1). Then
they are filtered depending on the event type, and follow
different paths in the workflow.

a. Supernovae events need to be handled differently than
other events. Firstly, the supernova object is matched
with its host galaxy and this matching is verified by
the user through the browser interface. Then the object
is run through the EAZY algorithm to calculate the
redshift probability distribution.

b. All other events are joined with data available from
various external catalogs. This information will help the
users when they provide feedback about an annotation.

5) Once all the necessary data have been attached to the data
objects, then the users tagged on those objects are notified
directly on their browser (as shown in the figure) or through

6http://www.lsst.org

email, SMS, twitter etc.
6) The notified users then use the Astroshelf interface to

express their opinion on the annotated objects or classi-
fications. The opinions are tagged as positive or negative
and split accordingly. The “Split neg/pos” step groups the
opinions according to the object id and the sentiment of
the opinion. The window size of the group by is time
based to measure the density of each opinion with respect
to temporal bounds.

7) The final step of the workflow is to evaluate the overall
consensus on the various opinions (positive or negative).
It will then create another annotation on the object that
captures the consensus. This new annotation goes back into
the workflow and the cycle continues.

As it can be seen from the steps described above, the process
of annotating sky objects is a loop which runs until the users
collaboratively converge to a significant opinion.

V. RELATED WORK

A comprehensive study is presented in [8] which enumerates
the various control patterns required by workflow applications.
A pattern “is the abstraction from a concrete form which
keeps recurring in specific non-arbitrary contexts” [15]. The
20 patterns studied in [8] include more complex control
structures, than the ones described by WfMC [16], such as



XOR-split, Differed Choice, Multiple Instances etc. Thesehelp
to define the workflow model in more detail and down to
specific imperative workflow requirements. The study also
elaborates on which of these patterns could be realized in
workflow management systems and languages, available at
the time of the study. A newer study [17] also evaluates
how each pattern can be implemented in each of Kepler [9],
Triana [18] and Taverna [12]. What we are mostly interested
in are the patterns which are basic to enabling data stream
monitoring applications. Specifically thePushcommunication
patterns. Moreover Taverna and Triana only support one Model
of Computation, and are also less effective in supporting as
many patterns as Kepler.

Parallel to our work, another survey/position paper which
deals with the basic characteristics and requirements of sci-
entific workflow management systems makes the distinction
betweenstatelessandstatefulactors [19]. Stateless actors are
oblivious to their previous invocations in the same run, as
opposed to stateful actors, which are required in models of
computation that allow loops in the workflow definition, and/or
support pipeline parallel execution, which are aware of the
previous runs and may even involve data items from previous
invocations (as we are doing by employing windowed queues
on the actor inputs). We have also identified these requirements
in our continuous workflow model paper [3].

Nova [11] is a system built by Yahoo! which supports
stateful incremental processing. It deals with data in large
batches using disk-based processing, and does batch incremen-
tal processing for Yahoo’s data processing use-cases, which
deal with continually arriving data. Even though it is similar
to CONFLuEnCE, in the sense that it is continually processing
data pushed from various Yahoo! data sources, on Pig/Hadoop
workflows with a goal of low latency, it lacks support of
window semantics, extensibility in scheduling policies and it
is constrained by the limited number of workflow patterns
supported by Pig/Hadoop. It is also short of a High Level
Visual workflow programming language which makes systems
like this more accessible to other domain experts (e.g., physi-
cists, astronomers). A similar approach to cloud based data
stream processing using Pig/Hadoop workflows is followed
by HStreaming7. It has the same limitations in terms of
workflow flexibility and high level visual workflow language,
but this one supports a subset of the window semantics that
CONFLuEnCE supports.

VI. CONCLUSIONS

In this paper we presented the fundamental primitives of
a continuous workflow model, which laid the basis for us to
build CONFLuEnCE, our CONtinuous workFLow ExeCution
Engine. Towards this we used Kepler, which is a complete
workflow management system; in particular, we implemented
our continuous workflow model as a new module in Kepler.
Our module includes a director implementing a new model of
computation with its own communications model (windowed

7http://hstreaming.com/

receivers), a set of source actors designed to handle input
from various types of data stream providers, and user interface
modifications for defining window semantics. Finally, we
described the implementation of two real-life applications
using our model, one from the business domain and the other
from the scientific domain. These applications enable real time
collaboration between different users within the application,
attesting to the ease of use and applicability of our system.
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