CONFLUENCE: Implementation and Application
Design

Panayiotis Neophytou, Panos K. Chrysanthis, Alexandrdsihglis

Advanced Data Management Technologies Laboratory
Department of Computer Science
University of Pittsburgh

{pani ckos, panos, labrinid}@s.pitt.edu

Abstract—Data streams have become pervasive and data pro- domain include real-time supply chain management, on-line
duction rates are increasing exponentially, driven by advaces marketing strategy decision making through on-line arislyt
in technology, for example the proliferation of sensors, s@rt gqcia| network feeds etc. In the scientific domain, examates
phones, and their applications. This fact effectuates an yrece- lab inf . L’IMS includ
dented opportunity to build real-time monitoring and analytics .a oratory In ormat'_on management systems (; s) inc u.
applications, which when used collaboratively and interatively, iNg remotely established underwater labs to monitor sea lif
will provide insights to every aspect of our environment, bt¢h in and conditions in real-time [1]. Other examples of applorat
the business and scientific domains. of scientific workflows and their requirements are described
In our previous work, we have identified the need for workflow [2]. We have also been working on a collaboration platform

management systems which are capable of orchestrating the,
processing of multiple heterogeneous data streams, whileabling built using continuous workflows [3] to monitor astronomers

their users to interact collaboratively with the workflows in real ~ interactions with an on-line annotations management syste
time. In this paper, we describe CONFLUENCE (CONtinuous as well as coordinate their reactions to transient evengs, (e

workFLow ExeCution Engine), which is an implementation of supernovae, asteroids passing through etc.), to help them
our continuous workflow model. CONFLUENCE is built on identify object types, find out trending objects and/or @sen

top of Kepler, an existing workflow management system, by . .
fusing stream semantics and stream processing methods asBy exchanging opinions and feedback through our system the

another computational domain. Furthermore, we explicate ar astronomers are coII_abo_rativer defining the morph_ologjnef
experiences in designing and implementing real-life busiess and Sky. All of these applications enable the collaboratiowtesn

scientific continuous workflow monitoring applications, which different users with each one feeding back to the workflow
attest to the ease of use and applicability of our system. their own decisions, conclusions, and actions.

Index Terms—workflow, continuous workflows, data streams, ot recent workflow enactment/management systems or-
monitoring applications . X L o

chestrate the interactions among activities within a wokfl

using web services [4]. Several business process modeling
languages have been designed to capture the logic of a

In the last decade we have witnessed the proliferation edmposite web service, in the form of a workflow, including
data streams and the exponential increase in data produc¥¢SCI, BPML, BPSS, XPDL and WS-BPEL 2.0. However,
rates. This is mainly the result of the increase in bandwidthese interactions are usually one-shot interactions dumtw
speeds and the availability of wireless broadband, and mahe sender and the receiver of the request; it is clear tleat th
importantly, due to the spread of heterogeneous sensans (tkexisting workflow management systems and languages are not
mal sensing, telescopes, GPS enabled sensors etc.) as weted for reactive applications.
as the increasing population and world-wide distributidn 0 As an alternative approach for collaborative monitoringrov
smart phone devices and their applications. Smart phorga streams one might consider using Continuous Queries
enable mobile users to (over-)share their observatioegsid (CQs) and data stream management systems (DSMSs) [5], [6].
opinions etc., all marked with contextual meta-data, pecally The main drawbacks of CQs are: (1) have a static configuration
rendering them as human-sensors. Moreover, these smart antd (2) are unable to facilitate user interaction. This rsake
bile devices provide an almost pervasive connectivity &irth CQs alone unsuitable as a complete solution for enabling
users, which creates an ideal collaborative environmémtes reactive and collaborative applications.
it allows more frequent involvement. In order to address the lack of support for continuous

This fact effectuates an unprecedented opportunity talbuilata streams in existing workflow models, we proposed a
real-time monitoring and analytics applications, whichewh shift towards the idea of “continuous” workflows. The main
used collaboratively and interactively, will provide igbts to difference between traditional and continuous workflows is
every aspect of our environment, both in the business and that the latter are continuously (i.e., always) active aad-c
scientific domains. Example applications from the businetisuously reacting on internal streams of events and eatern

I. INTRODUCTION

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247204

streams of updates from multiple sources, concurrently ane The ability to support push communication, i.e., receiving
at any part of the workflow network. We have shown in pushupdates from data stream sources.

[3] how the workflow and communications patterns are cast|n the following subsections we will elaborate on the basic
into continuous workflows (CWfs) and also proposed fourimitive components of our continuous workflow model,
new CWfs patterns that complement the existing “traditionanamelywaves windows andpush communication

workflow patterns [7], [8]. These extensions effectivelyable

the integration of a DSMS as a data source besides the Waves

traditional ones such as database and file systems. A wave is a set of internal events associated with an external
We have implemented our proposed CWf model as ewvent and as such these internal events can be synchronized
prototype system, called CONFLUENCE, which is short fait different points of the workflow. A wave is initiated when
CONtinuous workFLow ExeCution Enginend was built on an external event; enters the system and is associated with a
top of Kepler [9]. In this paper, we describe the realizatidn wave-tag which is;’s timestampt;. When the external event
our CWf model into a prototype system and show how CON; or any internal event in its wave is processed by a task,
FLUENCE can enable reactive and collaborative applicatiorany new internal events produced by this task become part of
To show that CONFLUENCE can facilitate both business amite wave as well. Specifically, if the task processing theneve
scientific collaborative applications we describe theglesind with wave-tagt; createsn events then these resulting events
implementation of a Supply Chain Management applicatiowjll have wave-tags;.1,¢;.2, ..., t;.n. The wave-tag of the last
and Astroshelf a collaborative exploration of the sky. event of the wave is marked as such. This is useful when a task
downstream needs to synchronize all of the events belonging
to a single wave. Moreover, a sub-wave may be formed when
an event which is part of a wave is processed by a task. In

1) We present the design of our continuous workflow modehis case a wave hierarchy is formed where an extra serial

2) We show how our model has been implemented inumber is attached to the wave-tag. For examplé,.¥ is
a fully functional CONtinuous workFLow ExeCutioninyolved in a task then the resulting events will have wave-
Engine, namely CONFLUENCE. tagst;.3.1,¢;.3.2, ..., t;.3.m.

3) We present our experiences in designing and imple-For example, consider a supply chain management appli-
menting two real-life business and scientific continuousation: When a customer submits an order with multiple
workflow monitoring applications, which attest to theproducts, that order is split by a task into individual dagaris
ease of use and applicability of our system. for each product. Those data items belong to the same wave.

_ o o _ Then the items are dispatched to the various warehouses that

Roadmap: Following this introduction, in Section II, We carry those items (usually more than one warehouse). Omce th
describe the continuous workflow model along with all thgems are individually shipped then the confirmation evéots
requirements of a continuous workflow system. In Section IHach of those items are synchronized downstream all togethe
we describe how all the necessary components of the moggkorm the final notification to the customer to inform her
were implemented on top of the Kepler workflow managemefiat the order was shipped.
system. Then in Section IV we describe two representative|n effect, waves capture the lineage of events. Even though
apphcatlons from both the business and SC|ent|f|c_ domaiggme workflow management systems keep track of the lineage
which make use of CONFLUENCE to enable real time datgf the processed data to be used for playback and trace-back,
stream monitoring and collaboration between users. §ima oyr model, in addition, allows the usage of this information

compare our system to existing approaches in Section V agd the application designer to enable the synchronizaton o
conclude in Section VI. these events.

Contributions: In summary, our contributions are as fol
lows:

Il. CONTINUOUS WORKFLOW MODEL B. Windows

A Continuous Workflowis a workflow that supports enact- 'tAt‘ W'qu\gl |sbgen§zrally consfereg ZS ta mec?fénltsm fort
ment on multiple streams of data, by parallelizing the floge 1ng fexib’e bounds on an unbounded stream of data events

In order to fetch a finite, yet ever-changing set of events,

of data and its processing into various parts of the workflow.hiCh mav be reaarded as a logical bundle of events. We have
Continuous workflows can potentially run for an unlimited” y gal 1109 '
troduced the notion of windows on the queues of events

amount of time, constantly monitoring and operating on dafa . N
y g b g workflows which are attached to the activity inputs. The

streams. Our proposed Continuous Workflow model suppoWs d lculated by aind ¢ . th
these characteristics by: windows are calculated bywindow operatorunning on the

) _ o) queue. The window operator will try to produce a window

e Active queues on the inputs of activities which suppofinenever it is asked by the attached workflow activity. When
windows and window functions to allow the definition ofeyents expire they are pushed toexpired itemsjueue which
synchronization semantics among multiple data streamgye optionally handled by another workflow activity. Five

e Concurrent execution of sequential activities, in a pipedi parameters are required to define the window semantics for
way. that operatorsize step window formation timeout group-by

Size and T is a factor defined by the workflow designer. This

means that if an event which closes the window does not arrive

before the timeout, the window is automatically closed at th

| timeout, producing whatever events are currently withia th
window. Any event arriving after the timeout, which is also

. after the window’s upper bound, with a timestamp before the

[upper bound, will be discarded and not considered as part of

| any subsequent windows. Note that only window definitions

| involving time require a timeout (i.e., (a) and possibly)(d)

|

Size

Step Step

| e 3) Group-by: In many cases the streams of events contain
Tﬁ:‘lgsely related elements, where the application needsde pr

Fig. 1: Size and Step for event-based window semantics. : .
; ess them in groups (e.g., calculating the average number of
bottom series of boxes represent the stream of events.dn thi - . L .
eets per unit of time containing the same hashtags). This

e>§ample the size is 5 events and the step is 3 events, reggjires the window operator to support multiplexing of the
windows produced are represented by the boxes stacked absqt\r/eam based on some grouping attribute(s)
the queve. In our workflow model the data types could be simple
(e.g., integer, string, float, etc.) or complex (records cluhi
allow hierarchy, matrices or arrays). In the case of a simple
data type events would be grouped based on value equality,
i .] _ similarly to traditional query processing. When the dataety

1) Size and Step:n general, windows are defined injs complex then the grouping is defined specifically for a
terms of anupper boundlower bound extend andmode of particular element of that complex type. For hierarchical
adjustmentas time advances. The upper and _Iovyer boundscords we use an XPath-like notatiowhere you may de-
are the t|mes_tamps of the event_s at _the beglnnlrjg and ®& the grouping attribute by means of a path query (e.g.,
end of the window. The extend is tr@ze of the window. /entjties/ hasht ags). For matrices and arrays we need
When a window is initiated its lower bound is defined ang, specify the index of the element we want to group-by.
its upper bound is computed using the size. The mode of| aqgition to the simple path queries, the path language
adjustmer_wt, also kn_own as tinendow _stepdeflne_s the period ¢,, group-by’s also supports functions. For example, if the
for updating the window. If a step is not defined, then theantiti es/ hasht ags query returns an array, but we only

window is evaluated every time a new event comes into thg,nt 1o test equality based on the set of the elements in the

queue.) o i array, i.e., ignoring the order, we could define the predicat
The size and step of a window definition can be defined ko< _ set (/entities/ hasht ags) . Furthermore, it sup-
four ways: ports multiple predicates which are evaluated in the order o
(a) Logical units which are time-based, and define the maxheir definition. For example, if we first want to group-by the
imum time interval between the upper and lower boungser id in the tweet and then by hashtags we would define a
timestamps. predicate ag useri d, /entities/hashtags.
(b) Physical units which are count-based, and define the The window operator then keeps a separate queue for each
number of events between the upper and lower boundsyroup of events, and applies the window semantics on each
(c) Wave-basedwhere the upper and lower bounds of &nd every queue. Each time a new window is produced, the
window are defined by the first and last events of a wayg@indow operator’s time is set to that window. The operator
currently being processed. makes sure that the window produced is the earliest availabl
(d) Semantics-basedavhere a general predicate over the datgindow among all queues.
stream can be used to define the window start/end points. . .
4) Deleting used eventsEvents on a queue could either

_These ways can be inte_rmixed betvyegn size and step to fEM onsumed or only used by an activity. A flag, called
disparate semantic meanings. A depiction of how the size al lete used events” is used to denote consumption. That is,

step parameters define the windows can be seen in Figurgdyenote if events that were used in the window that trighere

2) Window formation timeoutin the case of time-basedan act_ivity should be deleted from the queue upon their usage
windows, in order to produce a window, an event belonginghe signal to delete used events from queues comes as part
to the next window has to appear to close the current windo®f. the post-conditions of an activity.

In the case of sparse data streams, this could take a WiAghdow operator example To better understand the window
and the window operator would block without producing anyperator we describe an example with the help of Figure 2.

windows, even if the logical bounds of the current window iffhe goal is to trigger activity A when two events occur within
production have passed. Part of the window specification gSminutes of each other.

the setting of a timeout to close a time-based window after
T x z amount of time, wherer is the size of the window, lwww.w3.org/TR/xpath

functionality, anddelete used events A description of these
parameters follows:

L . involved are active as well.

AMF # - | IIE A There are two basic ways of supporting push communica-
ts ts tions in continuous workflows. First, since a CWf is a long
_ ‘ ’7 A S ‘ g 2 A .runni.ng process, QUring .the initialization phase it coufbio

: — indefinite connections with the data sources, from where the
workflow can receive updates in real-time. A second way
would be for the workflow to keep an open port waiting for

Timestamp | Window |Expired |Fired Window attributes:) h !
1 a X sze=5minutes connections from outside parties that want to push dataeo th
Z:ZQ ums'gg‘zvemszm workflow. This would mean that the end point of the workflow
5 | a | X - is well known to outsiders and fairly constant. For example a
6 b X P ditions: ; ;
{ga’i'niig';flength > 2 dat_a source may be a DSMS or a third party data me_dlato_r to
8 bc v then fires which a CWf can register and either open a connection (first
method) or open a port (second method) to receive push data.
Fig. 2: The window is calculated at every step (of 1 minute). Ill. EXTENDING KEPLER

Letters represent events and numbers represent imes(@mps |, order to implement our continuous workflow model, we
minutes). The window starts at timestamp 0, at which time,ye to implement the three basic primitives presentedén th
eventa arrives and is enqueued. Between timestamps 1 afdyious section in addition to all the primitives providegda
5, on every minute the queue is evaluated and no actionyiggitional Workflow Management System. Instead of buidin
taken, as the precondition is not satisfied, since aniy part 5 pew system from scratch we evaluated a number of open
of the window. At timestamp 5, eventis expired because the 5 ,rced workflow systems such as Taverna [12] and Kepler [9].
current window’s upper bound is more than its timestamp plyge chose Kepler as the base for CONFLUENCE because of our
the size of the window. Meaning thatcannot be part of any ¢ommon aim to support scientific workflows and because of its
subsequent windows. At timestamp 6, evieistenqueued. The gyiensibility. Kepler is a free open-source scientific vitmk
precondition is evaluated and no action is taken, since gy system, which was built on top of Ptolemyll, a software
part of the window. At timestamp 8, events enqueued. This gystem for modeling, simulating, and designing concugrent
time the precondition is satisfied since bétandc are part of (gg1-time systems. The suitability of Kepler, for implertiag
the wirjdow, and that makes it of sjze_Z events. The activity iy cwf model, comes from the underlying Ptolemyll system:
then triggered and once its execution is completed evemtsl «he yse of well defined models of computation that govern
c are deleted from the queue, since the “delesedevents” he interaction between componeRtsalso, Kepler's code is
flag is set. inherently extensible, proven by the fact that is beingvatyi
developed by nearly 20 different scientific projects. Itvyides
o a large library of basic actors (i.e., components représgnt
C. Push communication various tasks) as well as specialized actors, for easy béditga
In the push communication model, the data consumer r@ad composition of new applications. The library includes
ceives multiple data items asynchronously. We are intedestactors for database interfacing, data filtering, etc. anib it
in two communication patterns which follow this model [10]easily extensible to include domain-specific actors foioast
a) Broadcast the form of asynchronous communication irsuch as automatically annotating astronomical objects.
which a data producer sends the data items over a broadcasturthermore, programming workflows in Kepler is made
medium (i.e., channel), and the consumers “tune” in@asy for domain experts without any knowledge of program-
the channel to receive the available data. Each consurfi@ifg structures. Kepler provides an intuitive high-levisual
determines whether a data item is of interest or not. language for building workflows, where the designer can drag
b) Publish/Subscribethe form of asynchronous communicaand drop components and connect inputs with outputs quite
tion in which the consumers (subscribers) register thegasily. Configuring parameters is easily done using dialog
interest at a producer (publisher). Once data becom@xes and it also gives useful displays for debugging the

available, the producer sends the data to the individuaprkflows. Finally, Kepler was implemented in Java that
subscribers based on their expressed interest. simplifies our implementation of CONFLUENCE. All in all

The push model has not been supported by any workfidsepler was an ideal platform for us to build our model.
system, until recently when, parallel to our work, anothex. Kepler's actor-oriented modeling

workflow management system started to support it [11]. TheA workflow in Kepler is viewed as a composition of

lack of suppor_t of these pqtterns so far has been a diredt re?‘r‘r'dependent components callectors Actors have parameters
of an un_derlylng assurr_1pt|on th"%t data sources in Wor_kﬂo"(\ftcjnfiguring and customizing their behavior which can be set
are passive (e.g., data is stored in databases or data fies) &atically during the workflow design as well as dynami-

data consumers (users, tasks), are the only active erttis cally during runtime. Communication between them happens
can request and synchronously retrieve the data. These two

missing communication patterns require that the data ssurc 2http://ptolemy.eecs.berkeley.edu/objectives.htm

M MM Configure ports for Array To Sequence2

IName | EOORL 4 TR " KR S il [7O Tl Winsize WinStep Del... Supre... Group By Group By Expression
o ldlmle DE.. [] [10 seconds 10 seconds [| [M /stock
|ottput M DE... [} 1token 1token B B [

Commit | , Apply [Add Remove output [Help “ I Cancel

" L

Fig. 3: Modified Kepler form for configuring actor ports. Origtiorm the workflow designer can define in freeform text the
size and step of the window associated with specific portad&th cells denote non-editable parameters.

actor is unknown.

Director 3) TheProcess NetworkPN) director is designed for manag-
ing workflows that require parallel processing. This dioect

10-ports wraps each actor in its own execution thread and the

workflow is driven by data availability.

consumer 4) The Continuous Tim&CN) director introduces the notion

actor of time for modeling workflows able to predict how a

. system evolves over time.

receiver 5) The Discrete Even{DE) director, which also works with

timestamps, measures average wait times and occurrence

Fig. 4: The semantics of component interaction is deterchine '2t€s- All the events (data and timestamp pairs) emitted

by a director, which controls execution and supplies theetsj fOM actors are placed in a global workflow timeline.
(called receivers) that implement communication A detailed description of these directors can be found irf.[13

Throughout the workflow execution, the director goes
through a set of phases, summarized as follows (described
in more detail in [9]):

producer
actor

through interfaces callegorts These are distinguished into R o
input ports and output ports and the connection between thé}nPre-lnltl_allzec Calls the .pre-|n|t|aI|ze method of.aII the_
is called achannel As part of the communication, between actors just before starting the workflow execution. This

the two ports, a data item (referred to as token in Kepler) js Phase is reached only once per workflow execution.
propagated from the output port to the input port. The recei¢) 1YPe-checkingo make sure that all the data types of tokens
ing point of a channel hasraceiverobject, which controls the ~ Petween the sending and receiving ends of the actors are
communication between the actors. The receiver objecttis no compatible. o
provided by the actor but by the workflow’s controlling ewtit 3) Ipltlallze: calls the |_n|t|aI|ze m_ethodlof each actor, every
called thedirector. The director defines the execution and time the workflow is ruf. Initialization tokens may be
communication models of the workflow. As such, whether the ransmitted from one actor to another, web-service pings
communication is synchronous or asynchronous (buffered) i MaY take place or other actions which need to be taken
determined by the designer of the director, not by the design_ P€fore the workflow starts running. S
of the actor. Figure 4 [9] shows how all these components &t 'tération: A workflow run may consist of multiple it-
organized as part of a workflow. erations, whgre in each iteration the dlrectp_r calls the
The execution and communication model of the workflow is methods:pre-fire (actor tests its firing preconditionsjre
governed by the model of computation defined bliector (actor performs its main function, usually by consuming

entity. That is, given the same actor configuration, diffiere toktenf fror[n the mthth_portsh andtrr:rodutcmg relsul;ts |rtlh|ts
execution semantics can be specified through the choice of aoutput por S) angpost- re (W. ere the aclor evaluates the
postconditions and decides if it should be fired again in the

particulardirector. Kepler provides five main directors, each ! ;
next iteration) of each actor.

exposing a different model of computation.
))) Workflows may be reused as part of a larger workflow
1) TheSynf:hronou_s Data Flo{sDF) d_|rect0r is designed for (parent). They are called sub-workflows. The parent workflow
sequential and simple workflows with the number of tOker\Eews a sub-workflow as a self contained actor and manages

produced by the actors known a-priori, thus the schedulifg; ¢ |ike any other actor. Sub-workflows may use different
order of the actors is defined before the execution starts.
2) The Dynamic Data Flow(DDF) director, like SDF, exe- 3Note that a workflow run is different than a workflow executisince
cutes the workflow in a single execution thread. Howevé}gfore a run a re-|n|t|§1I|zat|0n of the workflow with pos_ylbtilfferent
like SDF it does not use static schedulina. but does garameter values, data input etc. takes place. An execatiosists of many
uniike I u I uling, bu fRerent runs. In the CWf model though an execution corgtgirst one run

at runtime, since the number of tokens produced by easihce the workflow is long running and real-time.

director (i.e., employee different model of computatiomdrt have implemented a new type of receiver which is associated
the parent workflow, thus formingtderarchical heterogeneity with the directors that implement the window specifications
This new type of receiver defines windows by size and step.
The unit of measurement of these two parameters can be

The first requirement of our CWf model is the concurrerdf type token, time, or wave. These parameters can be set
execution of sequential activities which is governed as -mein freeform text in the modified form which is provided by
tioned earlier by the director entity. Concurrent exeauti® Kepler for configuring actor ports (Figure 3). Additionathe
natively enabled by the PN director included with Keplencel designer may define the windowed receiver as a "Group-by”.
every actor is executed in parallel in its own thread. HoweveAs we mentioned in Section II-B3, depending on the data type
PN does not support any notion of time needed by the windaf the tokens, the user may set a predicate in the form of a
operator. The notion of time is supported by the CN anghth query or scalar index to define the grouping element of
DE directors both of which, however, do not support parall¢ghe token. Since the group-by function may create a lot of
processing. Since none of the existing directors could lee ugroups, if the window definition is time-based the user may
to support the CWf requirements, we decided to implemealso choose to suppress the empty windows by toggling a
a new Continuous Workflow director by incorporating timeeheckbox.
based techniques used by DE.

To add the notion of timed events to the PN model dd. Push communication
computation we encapsulate each data token within an eve
object. The event carries its timestamp (either the creati
time of the data or the time it entered the system), and |) T o
wave-tag. Since all current actors were implemented withoul) Web-socketsAn input actor initializes, within itself, a
being timestamp aware, they cannot output the timestamp of Web socket server listening to a specific port. The appli-
the events to the next receiving actor. To solve this problem cation built on top of the specific CWf has knowledge of
the CWf director associates a time-keeper object to each the portnumberand whenever it needs to push data to the
actor at initialization time. The time-keeper keeps tratk o ~ CWf it connects to the specific port and sends the data.
the timestamp information of the latest event processed by The use of web sockets enabled us to build applications
the actor. When the actor sends the result on a channel, thatrun on the clients browser. o
the receiver objects at the receiving ends of that channe?) Direct TCP connectionAn input actor initializes a con-
(which are receivers defined by the CWf director) will ask the ~ nection with a specific data stream source. This could be
time-keeper associated with the producing actor to progide =~ @ DSMS, or a generic service providing streaming data
timestamp for that event. This way we also solve the problem (€.9., Twitter streams). The socket connection object runs
of backwards compatibility, to support all the legacy astor within the containing actor_’s thread and blocks wh_enever
available in Kepler's library. Any CWi-specific actors caa b~ there are no data to receive. When new data arrive they
implemented with timestamp and wave awareness. are broadcasted to the input ports of the actors connected

The new Process Network Continuous Workflow (PNCwf) to that input actor’s output port. _
director is defined as a class which extends the PN directod) Using a mediatar In order to support more generic data
and implements the Interface for Continuous Workflow Di- feeds such as RSS streams, we used a mediator platform
rectors (ICWF). The ICWF requires the implementation of ~ called PubSubHubdb This service will aggregate data
some continuous workflow specific methods, e.g., for getting UPdates from multiple RSS feeds and push them directly

B. Continuous Workflow Director

r‘\TNe have implemented the push communication patterns
Sescribed in Section 1I-C in three ways:

the time-keeper objects of actors, for initializing theaisers to a URL deployed by the workflow server. Once that
capable of accommodating the timestamped events communi- URL is called, it will in turn forward the updates to
cations etc. the CWf using a predefined TCP port, much like what

Even though the PN director model of computation fits ~Nappens in the above case with the web-sockets server
the continuous workflows model, by allowing actors to run w!thmthe CWI. This allows us to integrate our workflows
concurrently, it is oblivious to any application or user Qya with a larger set of data sources.
of Service (QoS) requirements since it relies on the scleedul Since we are dealing with continuous workflows, most of
of the underlying operating system. For this reason, we &te time the results are also manifested as data streams. Thu
currently developing a new CWf director that adapts thée implementation also provides output actors to suppert t
scheduling techniques proposed for scheduling continucseme kind of push communications as those used for the input
queries [6]. actors. For instance, a client may connect to a known port
and get results pushed to her. Another way would be using
the mediator. Alternatively the output could be pushed gisin

The second requirement is to add queues on the inputseofiail, SMS, or other asynchronous types of communication
actors to buffer data. Although this is already implemerited as well as stored in a database that can be queried later.
certain models of computation in Kepler, window semantics
on these queues do not exist in any model of computation. Wéhttp://code.google.com/p/pubsubhubbub/

C. Windowed Receiver

" " Notify User: Stream Join: Order Id
Client Monitor S 4 rder
;i Shipping status Order status Ship Order | ¢ Ve Fastomar @ .
Client b .

User Order
Role: Customer, Demo Name:Test Demo Start time: 2011-07- Bole: Manager, Demo Name:Test Demo Start time: 2011-07-
<—J 25 13:39:51, User ID: 1035 25 13:39:51, User ID: 1034

Order Delay Extract:
Monit Order Id ;
ontior rer Camcorder Blue-ray Disk 30

Order Split

Array offitems T ($299.99) ? Player >

P & N G b ($129.95) 25
larehouse roup-by: | [oup;bye Lapto \
Tt i Tt plop Ja't
ems Finder emS| Warehouse Id Order Id (5699.99) > DSLR N 0 [N
1 | ($1199.00) pe
Out-o?Fslock Ilestlatus Keyboard | 5 L0 e ey
($19.99) Flat screen TV YLV
% Notify Manager W&ﬁ:}z}fe Warehouse | | W’\aﬂr:r:;u:e ($650.00) 10 ¢ =
of Out-of-stock | “Out-of-stock | stock status Sicercipetcl Item Order status Shopping Cart §
Manager 0 10,000 20000 30,000 40,000
empty Timestamp
Warehouse
User M shippeditems [l numOfOrders
Submit Order >

Fig. 5: High level design of a continuous workflow for SUppIy .., snosping car
Chain Management reactive application. T
(a) Customer’s Ordering Panel (b) Company Manager’s Panel

> History Length: | 60secs 4

Workflow Conection: CONNECTED

Fig. 6: Supply Chain Management application: The custosner’

panel where the users submit their orders. Company masager’
Having CONFLUENCE as a working prototype we starteglanel updated in real-time with statistics on the number of

building applications to show its applicability both in theorders submitted per second and the number of shipments

business as well as the scientific domains. In this section wfde per second.

present two of these applications, from which the first one

was demonstrated during SIGMOD 2011 [14]. The second

one has been developed as part of the Astrosipetiject, for

enabling collaboration and data analysis within the astnon

community.

IV. CONTINUOUS WORKFLOW APPLICATIONS

receives notifications when things go wrong more than once
and in more than one way, e.g., when an item is reported out
of stock more than once in some specified period, or when
A. Supply chain management multiple orders have been delayed or canceled. The company
. _ manager also has a real time view (Figure 6b) of the current
Supply chain management applications are generally built .
X . volume of orders and shipments to customers, updated every
to manage the workload of a business which handles produc

. second. The statistics are computed using window semantics
orders from customers, fulfillment of these orders from the

warehouses and seamless bookkeeping of all of the trags_certam parts of the workflow. The windows have a size of

actions that take place. Ideally the system should provi ﬁsecond and a step of 1 secon_d. The Qdministrator’s role is_ to
analytics on the state of the supply chain. In this scenarjo -9¢€ parameters, such as window sizes, or tune up S.ett'f'gs
the objective was to design a continuous workflow capab'f?e thg scheduler to make the execution fit the application’s
of serving as the integration layer between databases in i gwements. i o i
warehouses, the web server providing the user interfacemnd 19uré 7 shows the precise specification of the continuous
dering system, and other administrator interfaces. Adidtily, WOI_’kﬂOW supportmg the Supply Chain Management appli-
it should provide real-time analytics and event notificasi®o cation. The .dl_r.ector can be Seen at the top-cente_r of the
help the managers alleviate problems as quickly as possiM’é’rkﬂOW Qefmmon. The workflow is also marked_wnh the
The high-level design of the workflow is depicted in Figurdf€€ sections, each one responsible for supporting roles 1
5. The users of this system are split into four categories; AS Part of this application the only actors that we had to
(1) Clients, (2) Warehouse manager, (3) Company Manadg}plement ourselves were the push communication enabling

and (4) Administrator. Roles 1-3 interact with the workflowctors. The rest of the workflow uses “of-the-shelf” actors

through a web interface (through a mobile device or a laptopfovided by Kepler. Even for processing window operator

and role 4 interacts with the workflow directly through th&®Sults, such as counting the size of the window every second
Kepler interface. we used the already available “Array Length” actor. The
A client submits orders with multiple items, using the we%‘"”dowed receiver is designed to produce windows as array

interface depicted in Figure 6a, and receives a notificatime ©°KeNS, thus making the use of the "Array Length” actor, plug

her order has been shipped. A warehouse manager notifies3A&-P!ay- _ _
system when an item is out of stock and also receives ordef-urthermore, to test the capacity of the system and its
requests from the system and fulfills them. Note that an orc®ility to handle high loads we implemented the roles of
may contain objects that are available in different warelesu Customers and warehouse managers as automated processes
The workflow takes care of routing the order requests that automatically interacted with the workflow. In the case

the appropriate warehouse manager. The company mandjdhe customers the automated process would randomly pick
some products from a list and submit them as an order. The

Shttp://db.cs.pitt.edu/group/projects/astroshelf warehouse manager process would wake up in intervals and

'RC'O SupplyChainManagement.

EBEREERO L EERD

[Gompnrumu | Data | Outline |
-
~Search Components - "'ﬁ‘"i Director Manager
Q (" search)
ETIE—— | GET— T
Advanced. (_ sources) Cancel Customer 3
| All Ontologies and Folders ¥]
Windowed Port
L4 @ Components Array To Sequence? Array Length Evem e
» [Projects Customer outout
» [& statistics
> Actors
b Cwls @
> Dataturbine
> Directors
» MyWorkflows
> Opendap
[2 R
Warehouse
0 results found.
ad Lok e
|
- i || A Warehouse Output
T g | ket Warehouse
- -
& h— gister Sor
L |
3 s
i 3
o i v
- I € =] “ >

Fig. 7: Implementation a continuous workflow for Supply Ghddanagement reactive application.

service orders from its work list. As an initial stress tes wBy interacting with the workflow, the users may refine the
spawned 20 customers and 3 warehouse manager proceasestations, iterating over them until they reach a consens
to see the robustness of our system. The system was runnifgnipulating annotations can be done using the SkyView, the
without any problems, until we stopped it after three hoAss. Galaxy Classifier or the Supernovae Classifier.

part of our future work we plan to further test the system by The system interactions and flow of events are as follows
measuring more metrics (e.g., response time) and sc&abilinumbered as in Figure 8):

in number of users that can be supported. _)
1) Using the Astroshelf’s user interface the astronomers ca

define and name areas in the sky that are of interest to them.
In the context of the NSF project funding the research and Additionally they may define the type of events they are
development of CONFLUENCE, we have been working with interested in (e.g., new annotation, new supernova, galaxy
a group of astrophysicists to develop a complete platform, classification, etc.) This expression of interest is pugbed
called AstroShelfwhich will enable them to collaboratively = CONFLUENCE and it is registered into an R-Tree spacial
annotate sky objects and phenomena, as well as visualie par index which resides inside the actor “Tag Interest”. We
of the sky using different algorithms. This includes a user used an R-Tree for its ability to index multi-dimensional
interface (dashboard) with the ability to display sky imgge information and quickly match spatial queries with the
an annotations management system and a monitoring moduleareas defined by the users.
for real-time processing of annotations and sky updatetever?) Using the SkyView the users can annotate objects, group of
The monitoring module is realized within CONFLUENCE. A objects or arbitrary points in the sky with any information
high-level design of the system is shown in Figure 8. they deem important to share. Using either the Galaxy or
Specifically, we have designed a continuous workflow to Supernovae classifiers the users can classify types of-galax
run on CONFLUENCE as part of the monitoring module. The ies or supernovae, respectively. These classifications are
goal of this workflow is to monitor the activity of inserting, recorded as annotations as well. All of these annotatians ar
updating or deleting annotations as well as integrating the inserted into the Annotations Engine through a specialized
detection of transient events from various sky surveys that API.
are of interest to the users, all in real-time. After progess 3) Every time a new annotation is inserted into the Annota-
these events the workflow will ask for feedback from the users tions Engine, this event is detected by the Event Reporting

B. Astroshelf’s collaboration backend

Astroshelf -
Supernova == Annotgtlons
Classifier @ Engine
(MySQL, REST-
PubSubHubub SkyView Create | glassfish, JAVA EE)
Mediator Annotation
A Galaxy
SkyAlert @ Classifier Event
Reporting 7y
Push updates to workflow
|
‘ CONFLUENCE - Collaboration Continuous Workflow 7
— Identify Host Run EAZY on
Classification/ Tag Interest | Supemova Galaxy. | galaxies.
| Annotations/Ext. [—¥ (spacial - Get user's Include in SN
Events Input matching of Object type feedback . classification.
. —® Annotation type
i interests and Filter <4>
Expression of > annotation Attach/Join
Interest Input coordinates) meta-data from
Other ; external
catalogues
I —
Notify interested Split neg/pos ositive Evaluate
users of) Concensus
ik (GROUP-BY: .
classification. . (time based) —1—
annotationld, .
Get response ; Ranking/
sentiment) - -y
(neg/pos) Negative classifying

Fig. 8: High-level design of a continuous workflow for the fsthelf collaboration platform.

module and directly forwards it to the continuous work- email, SMS, twitter etc.

flow on CONFLUENCE. Other types of events pushed ®) The notified users then use the Astroshelf interface to
the monitoring workflow are transient events detected by express their opinion on the annotated objects or classi-
various sky surveys (e.g., LSETwhich are also available fications. The opinions are tagged as positive or negative
through an aggregation service, called SkyAlert. and split accordingly. The “Split neg/pos” step groups the
4) Once the aforementioned events enter the system they arepinions according to the object id and the sentiment of
tagged by the “Tag Interest” actor with the user ids of those the opinion. The window size of the group by is time
who previously expressed interest in the area and type of based to measure the density of each opinion with respect
the object attached to the annotation (interaction 1). Then to temporal bounds.

they are filtered depending on the event type, and follow) The final step of the workflow is to evaluate the overall
different paths in the workflow. consensus on the various opinions (positive or negative).

a. Supernovae events need to be handled differently thanlt will then create another annotation on the object that
other events. Firstly, the supernova object is matched captures the consensus. This new annotation goes back into
with its host galaxy and this matching is verified by the workflow and the cycle continues.
the user through the browser interface. Then the objectAs it can be seen from the steps described above, the process
is run through the EAZY algorithm to calculate theof annotating sky objects is a loop which runs until the users
redshift probability distribution. collaboratively converge to a significant opinion.

b. All other events are joined with data available from
various external catalogs. This information will help the
users when they provide feedback about an annotationA comprehensive study is presented in [8] which enumerates

5) Once all the necessary data have been attached to the Hbqavarlous“_congol pgtterns_ reqllered by workflow ?pplnuad;;.]_ h
objects, then the users tagged on those objects are notifiedattern “is the abstraction from a concrete form whic

directly on their browser (as shown in the figure) or throug Feps recurring in spgcific n_on-arbitrary contexts” [15heT
20 patterns studied in [8] include more complex control

structures, than the ones described by WfMC [16], such as

V. RELATED WORK

Shttp://www.lsst.org

XOR-split, Differed Choice, Multiple Instances etc. Thésdp receivers), a set of source actors designed to handle input
to define the workflow model in more detail and down térom various types of data stream providers, and user aterf
specific imperative workflow requirements. The study alsmodifications for defining window semantics. Finally, we
elaborates on which of these patterns could be realizeddascribed the implementation of two real-life applicason
workflow management systems and languages, availableuaing our model, one from the business domain and the other
the time of the study. A newer study [17] also evaluatdsom the scientific domain. These applications enable e t
how each pattern can be implemented in each of Kepler [@pllaboration between different users within the appiaat
Triana [18] and Taverna [12]. What we are mostly interestattesting to the ease of use and applicability of our system.

n ar_e t.he patt?flms. which ar?.baSIC to enabling data.Stre%\gknowledgments This research was supported in part by NSF
monitoring applications. Specifically tHtushcommunication rants 11S-0534531 and OIA-1028162. We thank the Astrégbah:
patterns. Moreover Taverna and Triana only support one MO(EG i ’

of Computation, and are also less effective in supporting as Marai, Timothy Luciani, Rebecca Hachey, Roxana Ghenrgh
many patterns as Kepler.

and our astronomy collaborators: Arthur Kosowsky, Jeffdeyvman,
Parallel to our work, another survey/position paper which

deals with the basic characteristics and requirementsief sc
entific workflow management systems makes the distinctio]
betweenstatelessaand statefulactors [19]. Stateless actors are
oblivious to their previous invocations in the same run, as
opposed to stateful actors, which are required in models of
computation that allow loops in the workflow definition, amd/ [3]
support pipeline parallel execution, which are aware of the
previous runs and may even involve data items from previo 4}
invocations (as we are doing by employing windowed queues
on the actor inputs). We have also identified these requinésne
in our continuous workflow model paper [3].

Nova [11] is a system built by Yahoo! which supports
stateful incremental processing. It deals with data in dargl’]
batches using disk-based processing, and does batch ieemem[8
tal processing for Yahoo's data processing use-caseshwhic
deal with continually arriving data. Even though it is siamil
to CONFLUENCE, in the sense that it is continually proceg;sin[g]
data pushed from various Yahoo! data sources, on Pig/Hadoop
workflows with a goal of low latency, it lacks support off10]
window semantics, extensibility in scheduling policieslan [11]
is constrained by the limited number of workflow patterns
supported by Pig/Hadoop. It is also short of a High Level
Visual workflow programming language which makes systems,
like this more accessible to other domain experts (e.g.siphy
cists, astronomers). A similar approach to cloud based data
stream processing using Pig/Hadoop workflows is followqgg]
by HStreaming. It has the same limitations in terms of
workflow flexibility and high level visual workflow language,
but this one supports a subset of the window semantics tl[ulélﬂ
CONFLUENCE supports.

(6]

[15]

VI. CONCLUSIONS
[16]

In this paper we presented the fundamental primitives of
a continuous workflow model, which laid the basis for us g7
build CONFLUENCE, our CONtinuous workFLow ExeCution
Engine. Towards this we used Kepler, which is a complets]
workflow management system; in particular, we implemented
our continuous workflow model as a new module in Kepler.
Our module includes a director implementing a new model &0]
computation with its own communications model (windowed

http://hstreaming.com/

Michael Wood-Vasley, Brian Cherinca, and Anja Weyant.

REFERENCES

J. Delaney and R. Barga, “A 2020 vision for ocean sciénige,The

Fourth Paradigm: Data-Intensive Scientific Discovelly Hey, S. Tans-
ley, and K. M. Tolle, Eds. Microsoft Research, 2009, pp. B-3

T. Hey, S. Tansley, and K. M. Tolle, EdsThe Fourth Paradigm: Data-
Intensive Scientific Discovery Microsoft Research, 2009.

P. Neophytou, P. K. Chrysanthis, and A. Labrinidis, “Tows continuous
workflow enactment systems,” i@ollaborateCom 2008, pp. 162-178.
W3C, “Web services glossary - http://www.w3.org/trAgkoss/.”

D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. l@eSeidman,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring strea A new
class of data management applications,VinDB, 2002.

M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Rsy “Algo-

rithms and metrics for processing multiple heterogeneaugimuous
queries,”ACM Trans. Database Systol. 33, no. 1, 2008.

W. van der Aalst, A. Barros, A. ter Hofstede, and B. Kiepasski,

“Advanced workflow patterns,” irCooplS 2000, pp. 18-29.

] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, andFA.Barros,

“Workflow patterns,’Distributed and Parallel Databasesol. 14, no. 1,
pp. 5-51, 2003.

B. Ludascheret al, “Scientific workflow management and the ke-
pler system,"Concurrency and Computation: Practice and Experience
vol. 18, no. 10, pp. 1039-1065, 2006.

W. A. Ruh, F. X. Maginnis, and W. J. Brown, “Enterprisepéipation
integration: A wiley tech brief,” 2001.

C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. LarssoA. Neu-
mann, V. B. N. Rao, V. Sankarasubramanian, S. Seth, C. Tiad@j-T
Cornell, and X. Wang, “Nova: continuous pig/hadoop workfgwin
Proceedings of SIGMO[2011, pp. 1081-1090.

T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R..M
Greenwood, T. Carver, K. Glover, M. R. Pocock, A. Wipat, and.iP
“Taverna: a tool for the composition and enactment of bmimfatics
workflows,” Bioinformatics vol. 20, no. 17, pp. 3045-3054, 2004.

J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludv® Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity - pi@emy
approach,”Proceedings of the IEER/0l. 91, no. 1, pp. 127-144, 2003.
P. Neophytou, P. K. Chrysanthis, and A. Labrinidis, tflaence:
Continuous workflow execution engine,” iAroceedings of SIGMOD
2011, pp. 1311-1314.

D. Riehle and H. Zillighoven, “Understanding and wggsipatterns in
software development,TAPOS vol. 2, no. 1, pp. 3-13, 1996.

WIMC, “Workflow management coalition: Terminology & agsary
(wfme- tc-1011),” 1999.

1 S. Migliorini, M. Gambini, M. L. Rosa, and A. ter Hofsted“Pattern-

based evaluation of scientific workflow management systdresruary
2011.

D. Churches, G. Gombas, A. Harrison, J. Maassen, CirRoh, M. S.
Shields, I. J. Taylor, and |. Wang, “Programming scientifiud adis-
tributed workflow with triana servicesConcurrency and Computation:
Practice and Experiencevol. 18, no. 10, pp. 1021-1037, 2006.

B. Ludascher, M. Weske, T. McPhillips, and S. BowerS§cientific
workflows: Business as usual?” Business Process Manageme2@09.

