

Protocol for Mitigating the Risk of Hijacking Social

Networking Sites

Jeffrey Cashion and Mostafa Bassiouni

Department of Electrical Engineering and Computer Science

University of Central Florida, Orlando, Florida USA

jcashion@knights.ucf.edu, bassi@cs.ucf.edu

Abstract- The proliferation of social and collaborative

media has been accompanied by an increased level of

cyber attacks on social networking and collaboration

sites. One serious type of attack is session hijacking

attacks which enable the attacker to impersonate the

victim and take over his/her networking session(s). In

this paper, we present a security authentication

protocol for mitigating the risk of hijacking social

networking and collaboration sites. The protocol is

based on the recognition that users of social and

collaborative media connect to their websites using a

variety of platforms and connection speeds. To

appeal to both mobile devices such as smart phones

or tablets using Wi-Fi connections and high-end

workstations such as PC’s using high-speed

connections, a novel Self-Configuring Repeatable

Hash Chains (SCRHC) protocol was developed to

prevent the hijacking of session cookies. The protocol

supports three different levels of caching, giving the

user the ability to forfeit storage space for increased

performance and reduced workload. Performance

evaluation tests are presented to show the

effectiveness and flexibility of the SCRHC protocol.

Index Terms - Social Networks, Session Cookies,

Session Hijacking, Security Protocols

I. INTRODUCTION

The growth of social media and the increase in the

number of users of social networking sites (SNSs) in the

past few years are mind-boggling. Initially, social media

has been used by ordinary people just for connecting

with friends and for making new friends. A large

population of people worldwide are now acclimated to

social networking and the use of modern technology

(e.g., smart phones, tablets, PDAs) to communicate with

friends and co-workers. Social media has recently started

taking important role in business as well. Companies

have started using social media websites such as Twitter

and Facebook for doing marketing, market research and

customer support. The proliferation of social media has,

however, been accompanied by a similar level of growth

in cyber attacks on social networking sites. In addition to

phishing and spamming attacks, threats to SNSs include

session hijacking attacks that enable the attackers to

view private photos, broadcast messages, see personal

web history, and do anything else that the owner of the

hijacked account can do. The threat of weak security to a

SNS could hurt its adoption and scare away future users

from engaging in the site any more than they already do.

For this reason, SNS owners should take a serious look

at this issue and seek to adopt a solution that is both

efficient and elegant.

In this paper, we investigate the problem of session

hijacking of social media and propose a protocol for

combating this type of attack. We present multiple

flavors of our protocol which are suited for a variety of

client platforms as well as connection speeds. The

flexibility of the protocol allows the client and server to

be configured to suit each user’s own personal

preferences. Flexibility also permits a website security

administrator to selectively offer the service provided by

the protocol and adjust the amount of resources he is

able to dedicate, given his current server ability. This

makes it easier for the protocol to gain acceptance.

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247167

II. SECURITY RISKS IN SOCIAL NETWORKS

There has been a recent surge in the number of research

reports and security-related blogs that alert the Internet

community to the serious security risks facing the users

of social networks. We discuss some of these reports

below.

A novel friend-in-the-middle attack (FIMA) on social

networks has been revealed in February 2011 [7]. The

FIMA is basically an active eavesdropping attack based

on the missing protection of the communication link

between users and social networking providers. Session

cookies of many social media sites are saved locally at

the client side. These cookies contain among other

information a shared hashed secret, which is used as a

proof that the user has been successfully authenticated.

As these cookies are transmitted unencrypted, the

communication between a user and the social media

provider is vulnerable to cookie hijacking. Thus, an

attacker could take over a user's social networking

sessions by sniffing out the HTTP cookies, since the

majority of social network providers do not support

HTTPS. By hijacking session cookies, it becomes

possible to impersonate the victim and interact with the

social network without proper authorization. Huber et al.

[7] showed that a friend-in-the-middle attack can be used

for context-aware spam and social phishing on a large

scale. The study in [7] presented an evaluation of the

feasibility of this attack on Facebook; the report also

noted that Facebook plans to offer optional HTTPS

support for their web service and advised users to make

use of this option once it will become available to

everyone.

In May 2011, Rosario Valotta [2] revealed an unpatched

vulnerability in all versions of Internet Explorer (IE) that

can be exploited to hijack people's online identities. The

attack tactic, dubbed cookie jacking, exploits a 0-day

vulnerability affecting every IE version on every

Windows OS box installation. The attack leverages on a

User Interface redressing approach and allows an

attacker to steal session cookies from any social media

site a victim is visiting. The 0-day attack can be

explained as follows. IE defines Security Zones as a

proprietary mechanism that allows users to group web

sites according to their source's trust. An attempt to

access an iframe source stored in a more-privileged zone

(e.g., local file on a PC) from a less-privileged zone

(e.g., Internet zone) will result in an Access Denied

error. However if the iframe source is set to a cookie file,

the iframe will successfully load the content. This is a 0-

day vulnerability that results in iframe loading the

cookie and, as claimed in [2], works across any IE

version on any Windows OS box.

In October 2010, security programmer E. Butler released

a free open source Firefox extension, called Firesheep

[3], to demonstrate the vulnerability of public Wi-Fi and

Web 2.0 applications to cookie-sniffing and to raise

awareness about the dangers of cookie hijacking. The

design of the Firesheep software is based on the

observation that it is common for web sites to protect

user’s password by encrypting the initial login only, and

not encrypting anything else. HTTP session hijacking is

when an attacker gets a hold of a user's cookie, allowing

them to do anything the user can do on a particular web

site. The ultimate goal of the Firesheep software is to put

pressure on service providers in order to adopt more

rigorous security policies and offer robust authentication

protocols to protect the people who depend on their

services. Concurrently Butler and Gallagher [4] reported

that social networking sites and many companies

including Facebook, Twitter, and even Google all fail to

protect users against session hijacking attacks. They

demonstrated this by releasing an open source tool

which shows a “buddy list” of people’s online accounts

being used around the attacker; the attacker simply

double clicks to hijack any selected user.

A report posted in May 2011 on the personal weblog of

security researcher Rishi Narang [5] has generated

considerable attention. The report shows that cookies of

the social networking LinkedIn site may be active for up

to a year. After the login process, LinkedIn creates a file

on the user’s computer which the site then uses for

quicker access later on, just like cookies on many other

sites. However, the extended expiry time for LinkedIn

means a bigger window of opportunity for cyber

criminals. If a hacker can access the relevant file, they

can continually access a user's account for extended

time.

III. PREVIOUS WORK

In [6], we presented a protocol to prevent cookie

hijacking in wireless networks. The protocol, called

Rolling Code, utilizes the initial secure HTTPS

authentication to exchange a shared secret between the

server and the user browser. The shared secret consists

of two components: a seed and value d, both of length

160 bits. For every transmission made from the client to

the server, the client first updates the value of d by

hashing it then generates a cookie code which is another

hash operation applied on the XOR of seed and the

updated value of d. The client sends the cookie code to

the server which will perform similar steps on the shared

secret stored at the server and compare the computed

cookie code with the received cookie code. A number of

other protocols prior to the Rolling Code protocol were

proposed in the literature. We briefly outline some of the

relevant protocols below.

Liu et al. [8] proposed a secure cookie protocol by

making modifications to improve an earlier protocol

proposed by K. Fu [9]. Their solution for ensuring

integrity of each cookie involved embedding a

username, expiration, data, and HMAC. This would

inject a lot of repetitive data if there were a lot of

cookies; each cookie would all have this information

embedded in it. Also, it is not confidentially protecting

the names of the cookies, but instead leaving them open

for all to see what kinds of information is being shared.

Their fundamental assumption is that their secure cookie

protocol would run on top of SSL, which is an expensive

protocol in terms of its computational overhead.

Recently, work has been done to establish formal

guidelines for a one-time-use cookie authentication

token [10] using hash chains. The use of a hash-chain

requires the client and server to establish how many

transactions they expect to do during the lifetime of the

connection. Such a value is expected to be estimated by

the website administrator ahead of time using metrics

based on usage statistics. This poses an obstacle when

trying to achieve a solution with minimal overhead.

In addition to protocols that combat hijacking attacks,

there has been some work to develop software that helps

the user avoids sites that do not provide adequate

security and pose a threat to user privacy. An example of

this software is a recent plug-in for Firefox that can

notify users of such a threat [11].

IV. AUTHENTICATION PROTOCOL

In this section, we extend our work in [6] and present a

security authentication protocol for mitigating the risk of

hijacking social networking sites. It is important to

stress that our protocol is only intended to prevent

attacks related to cookie hijacking in social networks.

Specifically, our protocol cannot be used to combat a

myriad of other serious attacks including worm-based

attacks. One example of attacks that cannot be handled

by our protocol is the nefarious Koobface worm which

has repeatedly targeted users of social networking

websites such as Facebook, MySpace, and Twitter.

Koobface, whose name is Facebook scrambled, is used

by cybercreeps to hijack social media accounts without

hijacking session cookies. Basically, the Koobface attack

arrives in the form of a message from a friend asking to

download a special video player to view a video. The

download triggers an automated program that sends

copies of the same viral message to all of the victim’s

friends, while turning full control of the victim’s PC

over to the attacker.

Our protocol is based on the recognition that users of

social media such as Facebook connect to their web sites

using a variety of platforms. On one end, there are Wi-Fi

connections with users connecting via mobile smart

phones or tablets. On the other end, there are high-speed

connections with users connecting via high-end PC’s

and workstations. We therefore employ two different

authentication flavors: one for mobile devices using

wireless connections and the other for high-end

workstations using high-speed broadband connections.

The core of the two flavors is the same, but they differ in

how they exercise various aspects of the protocol.

For devices of all types and connections, we modify the

hash chains approach in order to overcome a known

limitation regarding the need to estimate the number of

transactions during the lifetime of a session. We call this

modification the Self-Configuring Repeatable Hash

Chains (SCRHC) Protocol. Below, we provide

motivation for SCRHC then present its basic design.

The hash chains approach has been used in the one-time-

cookies (OTC) authentication protocol [10] to prevent

session hijacking. The use of a hash-chain requires the

client and server to establish how many transactions they

expect to do during the lifetime of the session. Such a

value is expected to be estimated by the website

administrator ahead of time using metrics based on

usage statistics. If the number of transactions is

overestimated, the authentication in the early steps will

suffer from an unjustified large computational overhead.

If the number of transactions is underestimated, there

will be the undesirable synchronization overhead of

establishing a new secret and a new number for the

remaining transactions.

The hash chains approach can be formally described as

follows. In the m
th
 transaction of the session, the value of

the authentication Code to be transmitted from the client

to the sever will depend on the value of the initial secret

s, the estimated number of transactions in the session n,

and the value of the transaction index m as follows

 m = 1  Code = H
n
(s) // 1

st
 transaction

 m = 2  Code = H
n-1

(s) // 2
nd

 transaction

 …

 m = j  Code = H
n-j+1

(s) // j
th
 transaction

Notice that in the first transaction, the browser performs

the hash operation n times in order to obtain H
n
(s).

Let n be the number of transactions per session, which is

not known in advance. Rather than trying to estimate the

value of n, the SCRHC protocol uses a relatively small

value Gk, set to 10 in our testing, which we call the base

chain length. The actual chain length, k, is set to Gk at

first. If n is greater than k, both the client and server

execute a routine, called Repeat_Chain, denoted RC, to

compute a new value for k without exchanging any

messages or invoking new HTTPS authentication. This

modification is done by utilizing Gk and another value r,

which is initially set to one, and increases each time RC

is called. The value k is assigned the value of Gk

multiplied by r. For example, the first time that RC is

called, r is incremented to 2, and k is assigned the value

Gk × 2. The RC routine also changes the value of the

secret s to prevent repeat-attacks.

Our protocol supports three different levels of caching,

giving the user the ability to forfeit storage space for

increased speed and reduced work-load. The simplest

method is no caching. For each communication event,

the SCRHC_Step function must generate the code in its

entirety from scratch. This is the most time consuming

but also does not require any storage. There are

situations where storage space might simply not be

available or in limited supply, so we allow for this.

The second level of caching is what we call selective

dynamic caching. When the value k is first set at

initialization or when it is updated via the Repeat_Chain

function, we then decide how many hash values we will

store in cache. This amount is set to √k, spaced equally

apart. For example, if the value of k is set to 100, then

our cache would contain values for s hashed iteratively

the following number of times: {0, 10, 20, 30, 40, 50,

60, 70, 80, 90}. For each SCRHC_Step, the closest

cached hash value of s is fetched, and the remainder of

the hashing is done. For example, if k was initially

valued at 100 and is currently valued at 63, then

hash
60

(s) is fetched from cache, and then hashed 3 more

times to get the value hash
63

(s). This is clearly much

faster than performing the hash 63 times. Our testing

shows that this technique provides approximately a 10x

speedup when compared to SCRHC (no caching) while

only requiring the storage of a dozen or so values in

cache.

The third level of caching is full caching, where all of

the hashes are computed ahead of time and stored for

later reference. This requires the user to dedicate

considerably more storage than either of the other two

methods, but if this storage is available, it provides the

fastest performance. Our technique requires much less

space than OTC though, since our initial chain lengths

are short, thus requiring fewer cached hashes. As will be

shown in section V, our protocol requires around 1/10
th

the cache storage of OTC for any typical session.

A. Configuration for Mobile Devices

For mobile devices, we recommend that the client

dedicate as much space as they can to caching to reduce

the computational overhead. In some cases, however, it

is understood that the device might have very limited

storage capabilities, such as in embedded devices. In this

case, the device should at least try to opt for our

selective dynamic caching.

B. Configuration for High-end Workstations

For more powerful devices such as desktop computers,

we recommend that the client run full-caching. In a

typical desktop, RAM is overly abundant, so storing

every hash in cache is not such a wild idea. The amount

of memory required for full caching for SCRHC using

Gk = 10 (default value) for a session of 2,500

communications is roughly 5KB.

C. High-level Pseudo Code of SCRHC Protocol

The following is high-level pseudo code of the SCRHC

protocol. We include all three forms of caching for

clarity, but only one would be used at a time, and the

client and server can each use their own level of caching.

Initialization:

The initial value of the shared secret s and the base chain

length Gk are selected and exchanged between the server

and the client during the initial HTTPS authentication.

The cache is filled by the fillCache function, if required.

k := Gk // k is initially set to Gk × 1

r := 1 // r is the current chain number

Call fillCache()

Filling Cache:

This fills the cache, if it is being used.

fillCache (No Caching):

return //don’t do anything. No caching required.

fillCache (Selective Dynamic Caching):

miniCacheInterval := √k //square root of k

miniCacheK := k - miniCacheInterval //highest item

miniCacheIndex := cache.size - 1 //point to last item

cache[0] = s;

For i := 1 to miniCacheIndex Do

 cache[i] := hash
miniCacheInterval

(cache[i-1])

End-For

For example, if k is 100, then miniCacheInterval = 10,

miniCacheK = 90, and miniCacheIndex = 9.

The For-Loop essentially achieves the following:

cache[0] = hash
0
(s), cache[1] = hash

10
(s),

cache[2] = hash
20

(s), cache[3] = hash
30

(s),

cache[4] = hash
40

(s), cache[5] = hash
50

(s),

cache[6] = hash
60

(s), cache[7] = hash
70

(s),

cache[8] = hash
80

(s), and cache[9] = hash
90

(s).

The actual code is slightly more complex than this, but

the end result is equivalent.

fillCache (Full Caching):

cache[0] := s

//Perform the hash operation k times to obtain H
k
(s)

For i := 1 to k Do

 cache[i] := hash(cache[i-1])

End-For

Updating:

For every transmission (step) made from the client to the

server, the client will perform one of the following code

segments, depending on the level of caching used.

SCRHC_Step (No Caching):

Code := s

//Perform the hash operation k times to obtain H
k
(s)

For i := 1 to k Do

 Code := hash(Code)

End-For

k := k - 1 // decrement k

//Compute new values for the next transaction

If (k == 0) Then Call Repeat_Chain(s, Gk, r) End-If

SCRHC_Step (Selective Dynamic Caching):

If (miniCacheK > k) Then

 miniCacheK := miniCacheK - miniCacheInterval

 miniCacheIndex := miniCacheIndex - 1

End-If

//perform remaining hashes to obtain H
k
(s)

Code := cache[miniCacheIndex]

For i = miniCacheK to k - 1 Do

 Code := hash(Code)

End-If

k := k - 1 // decrement k

//Compute new values for the next transaction

If (k == 0) Then Call Repeat_Chain(s, Gk, r) End-If

SCRHC_Step (Full Caching):

Code := cache[k]

k:= k - 1 // decrement k

//Compute new values for the next transaction

If (k == 0) Then Call Repeat_Chain(s, Gk, r) End-If

The client will send the hash value Code to the server

using HTTP. When the server receives the transaction

request containing the value Code from the client, it will

execute the same SCRHC_Step routine using its own

parameter values: s, k, r and Gk. If the Code value

computed by the server matches the value received from

the user, the authentication is successful.

Repeat_Chain:

The Repeat_Chain routine is an important component in

the SCRHC protocol. It defines how the chain adapts

and changes over time to prevent repeat-attacks and also

triggers the cache values, if any, to be refreshed. In the

adaptive version, the value of k is changed based on the

value of r. We considered different alternatives to

compute the value of k and we only present the

multiplicative increase alternative in this paper. The

rationale of the multiplicative increase logic is that a

session that requires multiple calls to repeat the chain is

likely to be a long session and the number of remaining

steps in this session is likely to be relatively large. The

value of k is therefore increased linearly to both

accommodate short sessions and to also grow large

enough to respond properly to longer sessions. Calls to

the Repeat_Chain function introduce trivial

computational overhead when compared to that which

would be encountered from having a long chain. It is this

reason that we recommend a small initial value Gk and

linear growth of the chain. This multiplicative increase is

intended to make the next chain loop more suitable for a

long session without overshooting the value of k.

Repeat_Chain(s, Gk, r)

s := hash (s || s) //apply hash on concatenation

r := r + 1

k := Gk × r

Call fillCache()

The first step in the above code changes the value of the

initial secret to prevent repeat attacks. We have used the

concatenation operation to change the initial secret for

each new chain loop. The cache is also updated as

necessary.

V. PERFORMANCE EVALUATION

To analyze the expected performance of the SCRHC

protocol, we wrote a benchmark tool [1] using Java. To

compare the performance of SCRHC and OTC [10], we

also wrote an interpretation of the OTC solution.

It features hash chains to establish unique validation

values for each transaction.

Performance comparisons were made between our

protocol and OTC. Our tests modeled the limitation

encountered at initialization regarding the lack of

accurate knowledge of the session length (number of

transactions during the lifetime of the session). For each

value of the estimated session length, we averaged the

results of 1000 tests in which the actual session length

varied from 0.5x expected length to 1.5x expected

length, randomly distributed uniformly. This was done

to give an approximation as to what performance could

be expected when the actual session length of a real

client does not match the expected session length

programmed by the website administrator. The expected

session length in our tests ranged from 100 to 2500. The

metrics used to evaluate performance are the number of

hashes required (lower is better) and the required cache

size to hold the cached hashes, if caching is used.

Figure 1: Complete Performance Comparison

(Lower is better)

Figure 1 illustrates that all three flavors of the SCRHC

protocol exceed the performance of the equivalent OTC

hash chain method. For the two non-caching methods,

OTC requires approximately ten times as many hashes

as SCRHC. If you insist on not using caching, then our

method is clearly faster, by an order of magnitude. If you

are on a mobile platform and do not want to dedicate any

memory to caching, then our protocol offers a significant

performance advantage. Another observation from

Figure 1 is the dynamic caching algorithm that we

implement which yields another order-of-magnitude

reduction in computation time when compared to

SCRHC with no caching, while requiring minimal

storage. This is ideal for those who can dedicate at least

a small amount of memory for caching. Finally, you can

see that the two non-caching flavors are nearly another

order-of-magnitude faster than dynamic caching, but not

quite. This of course comes at the expense of potentially

large amounts of storage space. SCRHC still holds a

30% reduction in workload versus OTC with full

caching. This leads to Figure 2, for more details.

Figure 2: Comparing Performance and Storage

Requirements (Lower is better)

From Figure 2 you can see that the processing

requirements (solid lines, left y-axis) increase linearly

with the number of expected transactions per session.

SCRHC requires approximately 70% as much

processing as OTC, which is admittedly not a large

advantage, but the real advantage is the associated

storage requirements [in 160-bit hashes] (dashed, right

y-axis). You can see that SCRHC with full caching

requires around 1/10
th
 as much storage for any expected

session length. This would be very advantageous on a

mobile device where storage might be limited.

Figure 3: Comparing Requirements (Lower is better)

In Figure 3 we give a more detailed look at the storage

requirements for all three flavors that require it. The

important thing to note is how minimal the requirements

are for dynamic caching. After analyzing Figure 1 and 3,

it is clear that by shifting from OTC to SCRHC with

dynamic caching, you can reduce your required

processing by around 99% and only need a dozen or so

hashes committed to cache.

VI. CONCLUSION

In this paper, we presented a novel variation of hash-

chains that proved to offer better performance than

similar methods while offering enough flexibility to run

it on a variety of platforms. Our selective dynamic

caching technique significantly reduced workloads while

requiring trivial amounts of storage. We conclude that

our algorithm could provide valuable security to Social

Networking Sites in a flexible and adaptable manner.

REFERENCES

[1] Self-Configuring Repeatable Hash-Chain Protocol Tool,

http://www.jeffcashion.com/research/schrc/

[2] R. Valotta “Cookie Jacking UI redressing attacks”

Presented in Swiss Cyber Storm 3 Security Conference,

Rapperswil, Switzerland, May 12-15, 2011.

[3] E. Butler “FireSheep: Cookie Snatching Made Simple”

ToorCon Conference, San Diego, CA, October 22-24,

2010.

[4] E. Butler and I. Gallagher “Hey Web 2.0: Start

Protecting User Privacy Instead of Pretending to”

ToorCon Conference, San Diego, CA, October 22-24,

2010.

[5] R. Narang “LinkedIn SSL Cookie Vulnerability” Blog

posted May 21, 2011. Available at

 http://www.wtfuzz.com/blogs/linkedin-ssl-cookie-

vulnerability/

[6] J. Cashion and M. Bassiouni “Robust and Low-Cost

Solution for Preventing Sidejacking Attacks in Wireless

Networks using a Rolling Code” to appear in the

Proceedings of the 7th ACM International Symposium

on QoS and Security for Wireless and Mobile Networks

(ACM Q2SWinet), Miami Beach, Florida, October 31-

November 4, 2011.

[7] M. Huber, M. Mulazzani, E. Weippl,G. Kitzler, S.

Goluch, "Friend-in-the-Middle Attacks: Exploiting

Social Networking Sites for Spam," Internet Computing,

IEEE , vol.15, no.3, pp.28-34, May-June 2011

[8] A. X. Liu, J. M. Kovacs, C. Huang, and M.G. Gouda.

“A Secure Cookie Protocol.” IEEE, 2005.

[9] K. Fu, E. Sit, K. Smith, and N. Feamster. “Dos and

don’ts of client authentication on the web.” Proceedings

of the 10
th

 USENIX Security Symposium, August 2001.

[10] I. Dacosta, S. Chakradeo, M. Ahamad, and P. Traynor.

“One-Time Cookies: Preventing Session Hijacking

Attacks with Disposable Credentials.” Technical Report.

Georgia Institute of Technology, 2011. Available at

 http://smartech.gatech.edu/bitstream/handle/1853/37000/

GT-CS-11-04.pdf

[11] R. D. Riley, N. M. Ali, K. S. Al-Senaidi, and A. L. Al-

Kuwari. “Empowering Users Against SideJacking

Attacks.” SIGCOMM’10, 2010.

