
Consistent Replication in Distributed Multi-Tier
Architectures

Thomas Repantis
Akamai Technologies

Cambridge, MA 02142
trepanti@akamai.com

Arun Iyengar
IBM T.J. Watson Research Center

Hawthorne, NY 10532
aruni@us.ibm.com

Vana Kalogeraki
Dept. of Informatics, Athens University

of Economics and Business, Greece
vana@aueb.gr

Isabelle Rouvellou
IBM T.J. Watson Research Center

Hawthorne, NY 10532
rouvellou@us.ibm.com

Abstract—Replication is commonly used to address the scala-
bility and availability requirements of collaborative web applica-
tions in domains such as computer supported cooperative work,
social networking, e-commerce and e-banking. While providing
substantial benefits, replication also introduces the overhead of
maintaining data consistent among the replicated servers.In
this work we study the performance of common replication
approaches with various consistency guarantees and argue for
the feasibility of strong consistency. We propose an efficient,
distributed, strong consistency protocol and reveal experimentally
that its overhead is not prohibitive. We have implemented a
replication middleware that offers different consistencyprotocols,
including our strong consistency protocol. We use the TPC-W
transactional web commerce benchmark to provide a compre-
hensive performance comparison of the different replication
approaches under a variety of workload mixes.

Keywords-Replication, Consistency, Multi-Tier Architectures.

I. I NTRODUCTION

Multi-tier architectures are at the heart of modern enterprise
data centers, supporting a variety of collaborative applications.
Popular dynamic web applications, such as e-commerce, e-
banking, social networking websites, blogs, and wikis are built
using a multi-tier model. Multi-tier architectures provide sep-
aration of concerns between the presentation tier, realized by
a web server, the logic tier, realized by an application server,
and the data tier, realized by a database. The presentation tier
accepts user requests and provides service results back to the
user. The logic tier executes the required services to produce
the requested results. Finally, the data tier permanently stores
the state of services in a database. For example, in an online
store, a sale would result to an update in the inventory. The
different tiers are commonly hosted by separate machines in
the same data center.

Replication is commonly employed to improve the perfor-
mance [1] of such multi-tier architectures [2], [3], as wellas
the performance of other distributed environments, including
databases [4]. In all cases, multiple replicas of the same
data are maintained to tolerate failures, or concurrently serve
requests and consequently balance the load among multiple
machines. While replication can improve both scalability and
availability, it also introduces the problem of consistently
maintaining the replicated data. Two consistency models have
been widely used: Strong and weak consistency. With strong
consistency, all replicas of a data object served at any given

time must be identical. This is not necessarily true for weak
consistency, where different nodes can serve different versions
of the same data at the same time. Weak consistency can cater
to applications such as online forums and social networking
websites. On the other hand, strong consistency may apply
to e-banking, online retail stores, auction marts, and stock
brokerages.

A variety of replication solutions, stemming both from
academia and industry, have been proposed to address the
problem of consistent and scalable data replication in multi-
tier architectures [2], [3]. To increase throughput and de-
crease response time, all or some of the tiers are replicated
among several machines, which can then participate in serving
concurrent user requests. To address consistency maintenance
issues, the data tier is often not replicated [5], [6]. Whilenot
replicating the data tier avoids the synchronization overhead,
this non-replicated tier can become a performance bottleneck
and a single point of failure. Another common approach to
simplify consistency maintenance is to replicate the data tier
and only offer weak consistency guarantees. For example,
following a master replication scheme [7], [8], only a single
master replica accepts writes, while multiple slave replicas
serve reads. The updates are then propagated from the master
to the slaves lazily, while the slaves continue serving stale data
in the meantime. Yet another common approach for providing
strong consistency when replicating the data tier, is to rely
on group communication [9]. Following a group (or multi-
master) replication scheme [10]–[15], multiple replicas act
as masters and accept writes. A group communication layer is
then used to synchronize them, so that writes are applied in the
same order in all replicas. However, a group communication
layer can pose scalability challenges, while its configuration
involves multiple complex tradeoffs [2], [3], [9].

In this paper we provide a comprehensive study of common
replication approaches that offer various consistency guaran-
tees. By quantifying the performance overhead of providing
strong consistency, we motivate a distributed strong consis-
tency protocol that we propose. We focus on multi-tier archi-
tectures because of their popularity in real-world applications.
However, the protocols we discuss may be applicable to other
distributed architectures as well. We compare the performance
of i) no replication, ii) partitioning, in which different nodes
are responsible for different parts of the data, iii) replication

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247116



Data
Base

App
Server

Repli-
cat ion

Middle-
ware

Web
Server

Client

Client

Client

Client

Front-End

Data
Base

App
Server

Repli-
cat ion

Middle-
ware

Web
Server

Fig. 1. Replication model.

with weak consistency, iv) replication with strong consistency
using a traditional lock-based protocol, and v) replication with
strong consistency using our invalidation-based, distributed
protocol. Our protocol strives to minimize the communi-
cation overhead and increase performance. Unlike previous
strong consistency protocols in domains such as distributed
databases [16], our protocol does not require locking or lock
managers. Furthermore it enables coalescing updates that have
been overwritten.

We have implemented a multi-threaded Java replication
middleware that offers the different consistency protocols
we examine, including the strong consistency protocol we
propose. The middleware lies between the logic and the data
tier and is responsible for maintaining data consistent. To
compare the performance of the replication approaches in
real-world scenarios, we use the TPC-W transactional web
commerce benchmark [17], under a variety of workload mixes.
TPC-W defines various events representing user interactions
with an online bookstore. We report our findings regarding the
update overhead incurred, as well as the throughput and the
response times attained.

The rest of this paper is organized as follows: We begin by
describing our system model in section II. Section III describes
the design decisions behind our strong consistency protocol,
as well as its implementation. We proceed by providing an
overview of different replication approaches in section IV, and
comparing their design to our protocol. Section V presents
the experimental comparison of all the replication approaches,
while section VI discusses relevant work. Finally, sectionVII
concludes the paper.

II. SYSTEM MODEL

The replication model we are considering is illustrated in
Figure 1. We assume a client/server architecture, in which
clients use HTTP to access services provided by servers.
Clients are redirected to servers via a front-end. Thus, repli-
cation is transparent to the clients. The front-end strivesto
distribute user requests among two or more servers using a
load balancing scheme, for example round-robin. It is also
session persistent. Redirection happens at the beginning of
the interaction of a client with a server, and afterwards all

client requests related to the same user session are directly
communicating with the same server. There are several redi-
rection solutions [18] based on application, router, or DNS
enhancements, and these mechanisms are orthogonal to our
design.

A server can be hosted by one or more machines, but it
represents one logical unit in our model. Servers communicate
with each other to maintain consistency, which is required
for replication transparency. They communicate using TCP
sockets and are connected using a fast network connection,
for example belonging to the same LAN.

Each server assumes a tiered architecture, as shown in
Figure 1. The presentation tier, implemented by a web serveris
responsible for interaction with the clients, while the logic tier,
implemented by an application server, executes the business
logic. Finally, the state of each server is stored in the datatier,
implemented by a database. Our replication middleware lies
between the logic and the data tiers and provides consistent
replication. To maintain consistency among server replicas all
accesses to the data tier are intercepted. Thus, the logic tier
communicates only with our replication middleware, which is
responsible for making the actual database calls. This intercep-
tion can be active, by changing the application code running
on the logic tier, or passive, by having the middleware provide
an interface (e.g., JDBC) that makes it indistinguishable from
a database from the application’s perspective [15]. At each
server, writes are intercepted and in addition to being applied
locally they are collected and sent to the rest of the servers
in the form of updates. Every server also receives updates
from other servers and applies them locally. Depending on
the consistency requirements, reads can also be intercepted, to
ensure all updates have been applied before data are returned
to the user.

Strong consistency requires that all replicas of a data object
served at any point in time are identical. Thus, all updates must
have been applied to all replicas before any reads can proceed.
With weak consistency, on the other hand, different versions
of a data object can be served at the same time, depending on
the replica being accessed. In this case updates can be applied
lazily, irrespective of the reads currently taking place.

The consistency protocols we will be discussing apply
to any kind of data objects. However, in the application
environment of multi-tier architectures we are studying inthis
work, the objects we are interested in maintaining consistent
represent tables in the relational database of the data tier.

The metrics signifying the system’s performance, which
we are interested in optimizing, are throughput and response
time. Throughput is measured in user interactions per second
sustained by the system. Response time is the end-to-end time
spent to serve a client request, and includes the processing
time to execute the application logic and access the database,
as well as the communication time to transfer the request and
the reply between the client and a server.



III. I NVALIDATION -BASED STRONG CONSISTENCY

In this section we describe our invalidation-based, dis-
tributed, strong consistency protocol, and its implementation
in our replication middleware. The next section reviews other
common consistency protocols and compares them to ours.

A. Replication Middleware

Our distributed strong consistency protocol is implemented
in a multi-threaded Java replication middleware. The middle-
ware is responsible for maintaining the data tiers of all server
nodes consistent. We describe now how the copies of all tables
in the database of each node are kept consistent, assuming
all nodes maintain copies of all tables. We discuss dividing
tables across nodes in section IV-B. Each node follows a
three-phase protocol when it needs to update its copy of a
data table. The protocol ensures that the copies of the table
held by other nodes will be updated as well, and that all
nodes will be serving the same version of each table at all
times. The protocol has three phases for updating a table,
which include the exchange of corresponding messages: The
Invalidation Request, the Invalidation Reply, and the actual
Update. Invalidation requests and replies are used to coordi-
nate the updates on the shared data. Detailed descriptions of
the protocol and its different phases are given in sections III-B
and III-C respectively.

Figure 2 shows the building blocks of our replication
middleware, responsible for consistency maintenance of the
local tables and for communication with the remote nodes of
the distributed architecture. There are six major modules.The
Replica Access module is responsible for providing permission
to access tables in the local node and for sending Invalidation
Requests and Updates to the remote nodes. TheInvalidation
Requests Manager module keeps track of the Invalidation
Requests the local node makes and notifies the replica access
module once all remote nodes have replied to an Invalidation
Request. TheInvalidations Manager module keeps track of the
tables that have been invalidated and notifies the replica access
module once an invalid table has been updated with its new
version. TheMessage Sender module is responsible for send-
ing Invalidation Requests, Invalidation Replies, and Updates to
the remote nodes. TheMessage Receiver module is a thread
listening for incoming messages. Once a message is received,
a new thread that implements theMessage Processor module
is spawned to apply an Update, or to determine whether
an Invalidation Request should be positively or negatively
acknowledged. For efficiency, we can avoid the creation and
destruction of threads, by maintaining a pool of them equal to
the number of tables in the database.

When a node s1 needs to read a table t1 in the database, the
Replica Access grants that permission once the Invalidations
Manager notifies it that table t1 is not invalid as currently
being updated remotely. If t1 is currently being updated, the
notification takes place once the update is completed. We
use thread communication to implement these notification
mechanisms. Concurrent reads from multiple nodes on their
local copies of the same table, which has not been invalidated,

Fig. 2. Replication middleware implementation modules.

proceed independently. Thus, concurrent reads are allowedand
do not require communication with remote nodes.

B. Distributed Protocol Operation

We now describe our strong consistency protocol, before
laying out the details of its different phases in the following
section. Figure 3 shows an example of a protocol execution,
while algorithms 1 and 2 outline the execution on the sender
and receiver side of an update respectively.

When a node s1 needs to update a data table t1, it sends
invalidation requests to the rest of the nodes that have copies
of the same table. After s1 has received positive invalidation
replies fromall the nodes, indicating that they have invalidated
their copies, it can update t1.

When a node s2 receives s1’s invalidation request to in-
validate its copy of table t1, it responds with a positive or a
negative invalidation reply, depending on whether it will do so
or not. To decide whether it will invalidate its copy of t1, s2
checks whether it has sent or received an invalidation request
for t1. If that has been the case, s2 compares the timestamp of
that invalidation request to the timestamp of the invalidation
request of s1. The request with the earlier timestamp is
rejected. If both timestamps are equal, an ordering of the
nodes is imposed, for example by comparing the hashes of
each nodes’ IP and port and having the request from the node
with the largest hash value dominate. If the invalidation request
of s1 was the one with the latest timestamp, s2 invalidates t1
and sends a positive invalidation reply to s1. If the invalidation
request of s1 was the one with the earliest timestamp, s2 sends
a negative invalidation reply to s1.

Node s2 sends a negative invalidation reply if it has sent
or received an invalidation request with a later timestamp for
the same table t1. If s2 has sent an invalidation request for
t1, it is about to update it and its update will overwrite s1’s
update since it has a later timestamp. If s2 has received an
invalidation request for t1, another node is about to updateit
and its update will be the one to overwrite s1’s update, again
because it has a later timestamp.

Node s1 updates table t1 after it has received positive
invalidation replies from all other nodes maintaining copies
of t1. If s1 receives one or more negative invalidation replies,
it aborts its attempt to update t1 and its update will be ignored.
When s1 will receive the invalidation request for t1 from



s 1

s 3

s 2

s 4

I N V

I N V

I N V

I N V

I N V
I N V

s 1

s 3

s 2

s 4

A C K

N A C K

A C K

N A C K

A C K
A C K

s 1

s 3

s 2

s 4

U P D

U P D
U P D

i )  I n v a l i d a t i o n  R e q u e s t s i i i )  U p d a t e si i )  I nva l i da t i on  Rep l i es

Fig. 3. Sample message exchange between 4 nodes. In dashed lines the messages pertaining to s1’s update attempt. In solidlines the messages pertaining
to s2’s update attempt. INV: invalidation request, ACK: positive invalidation reply, NACK: negative invalidation reply, UPD: update.

s2 (with a timestamp which was later than that of its own
invalidation request) it will invalidate its copy of t1 and send s2
a positive invalidation reply. Consequently, after s2 willreceive
positive invalidation replies that all other nodes including s1
have invalidated their copies of t1, it will proceed with the
update.

It is important to note that the protocol correctness only
depends on the replies of the nodes that are actually intending
to perform an update. This is because they willalways send
a negative invalidation reply if they have a later timestamp,
whereas other nodes may or may not do so, depending on the
order with which these other nodes receive the invalidation
requests. Figure 3 shows an example of this case. In this
example both s1 and s2 send invalidation request messages.
s2’s timestamp dominates and therefore its update is applied.
Notice that even though s3 acknowledges positively to s1
because it received its request before the request of s2, the
protocol execution is successful. This is because s2 will always
send a negative invalidation reply to s1, since s2 has a later
timestamp. Therefore, s1 will never proceed with its update,
since that would require a positive invalidation reply from
all other nodes, including s2. In other words, the protocol
correctness only depends on the replies of the nodes that
are actually intending to perform an update (in this case s2’s
response to s1 (and s1’s response to s2)). These replies do
not depend on the ordered delivery of messages since they
only require local information. In the example of Figure 3, s2
only requires its local timestamp to decide sending a negative
invalidation reply to s1. Since s2’s invalidation reply will
be negative, and since s1 would require positive invalidation
replies from all nodes to proceed, s1 will not perform its
update. This is true regardless of the replies of the nodes that
are not intending to perform an update (s3 and s4) (which
depend on the order with which these nodes received s1’s and
s2’s invalidation requests). This explains why the protocol does
not require an atomic broadcast primitive to order the delivery
of messages.

C. Protocol Phases

We now describe in detail the three different protocol
phases, Invalidation Requests, Invalidation Replies, andUp-
dates, as well as their implementation in the replication
middleware which we illustrated in figure 2.

1) Invalidation Request: User requests received by nodes
result to updates in the data stored in the tables. When a node
s1 needs to write a table t1, similarly to when reading a table,
access needs to be granted. The Replica Access grants that
permission once the Invalidations Manager notifies it that table
t1 is not invalid as currently being updated remotely.

After the Invalidations Manager in node s1 has ensured
that t1 is not currently being updated, s1 sends Invalidation
Requests to all remote nodes that host copies of the table.
The Invalidation requests contain the name of the table that
is requested to be invalidated and a timestamp of when the
request was generated. The timestamp reflects the local timeat
node s1 that initiates the request. While the clocks of all nodes
can be loosely synchronized, the correctness of the protocol
does not depend on that. As explained in the next paragraphs,
the timestamps are used for the nodes to agree on a relative
order between them, and could therefore be arbitrary. Finally,
s1 also calls the Invalidation Requests Manager, which notifies
it once all remote nodes have replied.

2) Invalidation Reply: The remote nodes send Invalidation
Replies to node s1 that requested an invalidation. Invalidation
Replies specify the table the Invalidation Request referred
to and whether the Invalidation Request is granted (positive
reply) or not (negative reply). We now describe how nodes
decide whether they will send a positive or a negative Invali-
dation Reply.

When a node s2 receives an Invalidation Request from
node s1 to invalidate table t1, the Message Processor consults
the Invalidation Requests Manager to determine whether s2
has already sent Invalidation Requests for t1. If this is the
case, the timestamps of the local (s2’s) and the remote (s1’s)
Invalidation Requests are compared. The request with the later
timestamp dominates and the one with the earlier timestamp
will need to be retried. The Invalidations Manager on each
node keeps track of pending invalidation requests by that local
node and signals when they can be retried.

If both timestamps are equal, an ordering of the nodes is
imposed, as was described in section III-B. If the local (s2’s)
Invalidation Request dominated, a negative Invalidation Reply
is sent from s2 to s1. If the remote (s1’s) Invalidation Request
dominated, the Invalidations Request Manager is called to
register the fact that the local request is unsuccessful, and
a positive Invalidation Reply is sent from s2 to s1. The



Invalidations Manager at s2 is called to register the fact that
table t1 is being updated.

When a node s3, that has not sent Invalidation Requests for
t1, but has received an Invalidation Request for t1 from s2,
receives an Invalidation Request for t1 from s1, it performsthe
timestamp comparison described above and sends a positive or
negative Invalidation Reply to s1. If s1’s Invalidation Request
dominates, s3 calls its Invalidations Manager to register the
fact that t1 is now being updated by s1 instead of s2.

3) Update: If at least one of the Invalidation Replies was
negative, this signifies that an update with a later timestamp
will be applied on t1 by another node. Therefore s1 postpones
its attempt to write on t1, notifying the Invalidation Requests
Manager that the request was unsuccessful and needs to be
retried. If all Invalidation Replies were positive, the update
can proceed. The Invalidation Requests Manager is called
to register the fact that the request was successful and the
Invalidations Manager is called to register the fact that table
t1 is currently being updated. The table is updated locally and
then Update messages are sent to the remote nodes.

Update messages are used to prefetch the table changes to
the remote nodes. They contain the name of the table that is
to be updated, the SQL statement that needs to be executed on
that table, and the parameters of that statement. By executing
the same statements with the same parameters on the same
tables, remote nodes maintain their data consistent.

After the Updates are sent, the Invalidations Manager at s1
is called again to register the fact that t1 is not being updated
anymore. The Invalidations Manager at s2 is called again when
the Update message for t1, sent from s1, is received by s2,
to register the fact that t1 is not being updated anymore.
The Invalidations Manager on each node awakes any pending
invalidation requests for t1, which had been unsuccessful and
can now be retried. In more fine-grained implementations, for
example when applying updates on a tuple- instead of a table-
level, if multiple nodes attempt to concurrently update the
same tuple, one writer can simply overwrite the other. In that
case, updates can simply be coalesced, by applying only the
latest one and ignoring the rest.

IV. REPLICATION APPROACHESBACKGROUND

Having proposed our invalidation-based strong consistency
protocol, we now compare it to common replication ap-
proaches and their corresponding consistency protocols.

A. Weak Consistency

In a weak consistency protocol different nodes can serve
different versions of the same data at the same time [7],
[8]. When a node needs to read a table in the database, no
communication with other nodes is required. Consequently,
concurrent reads are allowed.

When a node needs to write a table in the database, it does
so locally and then sends update messages to all other nodes,
all of which maintain copies of that table. Nodes continue
serving content before receiving and applying updates. There-
fore different versions of the same table may be served by
different nodes at the same time.

Algorithm 1 Sender algorithm.

SubmitUpdateRequest
Input: Local invalidation requestINVt for table t

Number of replicasS
Output: False (cancel request) or

True (grant request and send updateUPDt)
for each replicasi in S

send invalidation requestINVt to si

invalidation replies = 0
while invalidation replies< S

receive invalidation reply
invalidation replies++
if invalidation reply is negative (NACKt)

return False
return True

Algorithm 2 Receiver algorithm.

ApproveUpdateRequest
Input: Remote invalidation requestINVt for table t
Output: Positive invalidation replyACKt or

Negative invalidation replyNACKt

if (exists local or remote invalidation requestINVt’ and
timestamp(INVt’) > timestamp(INVt))
returnNACKt

else
returnACKt

For applications that do not require an accurate global state,
weak consistency can provide good performance, since both
read and write requests are served locally and thus don’t have
to block. Examples of applications for which users can tolerate
seeing a slightly different state of the system include online
forums and social networking websites. For instance, users
add responses to a conversation much slower than the speed
with which changes are propagated among nodes. Similarly,
it is acceptable that different users may see a change on
somebody’s profile with a small time variation.

B. Partitioning

A common technique to increase database performance
is to partition the data among several machines, which is
supported by all major DBMSs. A protocol that maintains data
consistent by partitioning them across nodes provides strong
consistency but no replication. In such a protocol data are
distributed across nodes. Partitioning of the data can happen
in different ways: i) Different tables can be stored in different
nodes. ii) A table can be divided horizontally among multiple
nodes, with its rows distributed across nodes, or iii) A table
can be divided vertically among multiple nodes, with its



columns separated into different tables and them stored in
different nodes. Common partitioning criteria include whether
the partitioning key of the table falls within a range of values,
whether it is included in a list of values, whether its hash has
a certain value, or a combination of the above.

A request to read or write a particular tuple in a table is
redirected to the node responsible for storing it. No communi-
cation with other nodes is required for either reading or writing
a tuple, since a single copy of each tuple exists in the system.
Thus, a node hosting the single copy of a data tuple serves all
reads and writes for it.

The advantage of partitioning is that it provides strong con-
sistency, without requiring communication between nodes for
reads or writes. The disadvantage is that no concurrent reador
write requests for the same tuple can be served, as only a single
copy of each tuple exists in the system. Still, performance is
improved in comparison to having a single node serving the
requests for all tuples, since requests for different tuples can
be served by different nodes simultaneously. However, queries
that touch multiple tables may have to contact multiple nodes
before they can be executed.

Partitioning is a good approach for applications that do not
have a lot of concurrent requests for the same data tuple,
as those have to be served sequentially by the single node
that stores it. Partitioning, similarly to the next consistency
protocol we describe, provides strong consistency, and is
therefore suitable for a variety of applications that require it,
such as e-banking, online retail stores, auction marts, or stock
brokerages. Availability however may suffer, since the data are
not replicated across nodes.

In case partitioning is combined with replication and mul-
tiple but not all nodes maintain copies of each data table, the
invalidation-based strong consistency protocol we described
in section III can still be applied. The difference in this case
would be that every time a table needs to be updated, instead
of all the nodes, only the nodes that maintain copies of that
particular table would need to be contacted.

C. Lock-Based Strong Consistency

Locks are a common approach for ensuring strong consis-
tency [16], [19]. A lock-based strong consistency protocolcan
be implemented either in a centralized or in a distributed way.
In the centralized implementation there is a single node acting
as the lock manager, responsible for acknowledging requests
for reading or writing a table. In the distributed implementation
all nodes with copies of a table have to acknowledge requests
for reading or writing it. The centralized implementation has
the disadvantage of rendering one node a single point of
failure and a potential performance bottleneck. However, it
may reduce the number of message exchanges. We describe
the centralized implementation, and our description applies to
the distributed implementation as well, with the only change
being the one mentioned above.

When a node needs to read a table, it sends a readlock
acquire message to the lock manager. The readlock is granted
once the lock manager sends back a readlock grant message.

The node releases the readlock once it has read the table, by
sending a readlock release message to the lock manager. If
two readlock acquire messages are sent concurrently by two
nodes, both acquire the readlock.

Concurrent reads are allowed, i.e., a node that needs to read
a table that is readlocked can do so. The node sends a readlock
acquire message to the lock manager, which replies with a
readlock grant message. The node releases the readlock after
it has read the table, by sending a readlock release message
to the lock manager.

When a node needs to write a table, it sends a writelock
acquire message to the lock manager. The lock manager replies
with a writelock grant message. If the table is readlocked, the
lock manager sends the writelock grant message only after
it has received a readlock release message from all nodes
that were reading the table. Thus, a node has to wait for the
readlock release before being able to write a table.

A node releases the writelock once it has written the table,
by sending a writelock release message to the lock manager.
In the distributed implementation of the protocol, the update
is usually piggybacked on the writelock release message to
minimize the communication overhead. In the centralized
implementation of the protocol, besides the writelock release,
additional update messages may be required for the update to
reach all nodes.

If two or more writelock acquire messages for the same
table are sent concurrently by two nodes, a tiebreaker is used
in the distributed implementation of the protocol, whereasin
the centralized implementation the lock manager serializes
concurrent requests. An example of a tiebreaker is a predefined
order of the nodes, used to prioritize their requests.

Nodes that need to read or write a table that is writelocked
wait for the writelock release. They send readlock or writelock
acquire messages to the lock manager. The lock manager
replies with the corresponding grant message only after it has
received a writelock release message from the node that was
writing the table.

In comparison to a lock-based strong consistency proto-
col, the invalidation-based strong consistency protocol we
described in section III avoids the use of locking and lock
managers. While similarly to two-phase locking [16], [19],
invalidation-based strong consistency divides the operation in
phases, it does so only for write and not for read opera-
tions. Thus, in comparison to lock-based strong consistency,
invalidation-based strong consistency may increase the number
of requests served concurrently, as read requests for tables that
have not changed do not require any synchronization between
nodes. In contrast, a lock-based strong consistency protocol
requires the acquisition of a readlock.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We used the TPC-W transactional web commerce bench-
mark [17] to compare the performance of the different replica-
tion approaches, including our invalidation-based strongcon-
sistency protocol. TPC-W is an industry-standard, e-commerce



 0

 5000

 10000

 15000

 20000

 25000
M

es
sa

ge
s 

S
en

t p
er

 R
ep

lic
a

Consistency Overhead

Weak
Invalidation-Based Strong

Partitioned
Lock-Based Strong

Browsing Shopping Ordering

Fig. 4. Communication overhead (sent messages
per replica) to maintain consistency.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Average Shared Data Access Time (ms)

Invalidation-Based Strong
Lock-Based Strong

Browsing Shopping Ordering

Fig. 5. Average time (ms) to access a shared
data table.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Average Shared Data Write Time (ms)

Invalidation-Based Strong
Lock-Based Strong

Browsing Shopping Ordering

Fig. 6. Average time (ms) to write to a shared
data table.

benchmark that emulates an online bookstore. It defines the
operation of the store, as well as the workload. The benchmark
emulates multiple concurrent HTTP sessions, browsing and
buying products from the website. The workload includes
contention on data access and data update. The operation is
based on dynamic page generation with database accesses, and
the database consists of tables with various sizes, attributes,
and relationships. We used the Java implementation of TPC-W
by the University of Wisconsin-Madison [20].

We instantiated four servers, each one consisting of an
application server, a DBMS, and our replication middleware.
We also experimented with higher replication degrees in sec-
tion V-D. Requests were generated from a separate host, based
on the benchmark workload, and were redirected randomly
among the different servers. We used Apache Tomcat 6.0.13
as our application server and MySQL 5.0.41 as our DBMS.
The implementation of the replication middleware consistsof
approximately 3000 lines of Java code. It includes all the
replication approaches discussed in section IV, as well as
our invalidation-based strong consistency protocol presented in
section III. In partitioning we divided among servers tables that
were being updated, to save on consistency-related communi-
cation, without affecting application correctness. No updates
were exchanged for these tables, as each server was the only
one holding a copy of the corresponding table partition.

TPC-W specifies three different workload mixes:Browsing
consists of 95% browsing interactions, such as displaying
information about products, and 5% ordering interactions,such
as adding items to a shopping cart.Shopping consists of 80%
browsing and 20% ordering. Finally,ordering consists of 50%
browsing and 50% ordering. We conducted experiments with
a duration of 1000 seconds, and an additional 100 seconds of
ramp up and 100 seconds of ramp down times. The requests
were choosing among 144000 customers and 10000 items.

The primary metrics of TPC-W are WIPS and WIRT. WIPS
refers to the average number of completed Web Interactions
Per Second and measures the system throughput. WIRT refers
to the average Web Interaction Response Time and measures
the end-to-end time elapsed before a client request receives a
response.

B. Consistency Overhead

In the first set of experiments we compared the overhead of
the various consistency protocols with regards to communica-
tion and data access.

Communication overhead.Figure 4 shows the messages
sent per replica to maintain consistency. We show the results
for the different workload mixes. We observe that as the
number of write operations increases in the workload, the
number of messages exchanged increases as well. The lock-
based strong consistency protocol incurs a higher number
of messages than our invalidation-based strong consistency
protocol, since messages need to be exchanged for reading in
addition to writing data. We have implemented the distributed
version of the lock-based protocol. A centralized implemen-
tation would reduce the messages exchanged, but possibly
overload a particular node. Partitioning the data reduces the
communication overhead significantly.

Access time.Figure 5 shows the average time required
to access a shared data table, in ms. Weak consistency and
partitioning are not displayed, since they do not require coordi-
nation with remote nodes and are therefore much faster. Since
lock-based strong consistency requires message exchangesfor
both reads and writes we observe a high shared data access
time, regardless of the workload. Our invalidation-based strong
consistency protocol only pays the communication price when
writing data, which is more common in the ordering workload.
We see that invalidation-based strong consistency significantly
reduces the average access time compared to lock-based strong
consistency, especially for mostly read-only workloads.

Write time. Figure 6 shows the average time required to
write a shared data table, in ms. As the number of writes
increases in the workload, there is a higher possibility that
writes will coincide in time. In this case invalidation-based
strong consistency can incur additional overhead to serialize
them. Even though the average time to write on shared data is
higher for invalidation-based strong consistency, that price is
paid less frequently than with lock-based strong consistency.
This is because writes to shared data are much more frequent
in the latter case, as is shown in Figure 8. Again, weak
consistency and partitioning are not displayed, since theydo
not require coordination with remote nodes and are therefore
much faster.



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Shared Data Accesses

Invalidation-Based Strong
Partitioned

Lock-Based Strong

Browsing Shopping Ordering

Fig. 7. Number of accesses of shared data.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Shared Data Writes

Invalidation-Based Strong
Partitioned

Lock-Based Strong

Browsing Shopping Ordering

Fig. 8. Number of writes to shared data.

 0

 0.05

 0.1

 0.15

 0.2

S
ec

on
ds

Average Response Time

No Replication
Weak

Invalidation-Based Strong
Partitioned

Lock-Based Strong

Browsing Shopping Ordering

Fig. 9. Average response time (s) for different
consistency protocols and workloads.

 0

 1

 2

 3

 4

 5

 6

In
te

ra
ct

io
ns

 p
er

 S
ec

on
d

Average Throughput

No Replication
Weak

Invalidation-Based Strong
Partitioned

Lock-Based Strong

Browsing Shopping Ordering

Fig. 10. Average throughput for different con-
sistency protocols and workloads.

 0

 1

 2

 3

 4

 5

 6

 7

 8

In
te

ra
ct

io
ns

 p
er

 S
ec

on
d

Average Throughput

4 replicas
6 replicas
8 replicas

Browsing Shopping Ordering

Fig. 11. Average throughput for increasing
replicas (invalidation-based strong consistency).

Data accesses.Figure 7 shows the number of accesses
to shared data, which also depends on the throughput sus-
tained by the different protocols. We observe that partitioning
decreases the amount of shared data accesses by orders of
magnitude in the case of the ordering workload. This shows
that carefully choosing to partition tables that are being
updated we can eliminate a lot of the shared data accesses and
consequently the communication overhead they incur. Weak
consistency is not shown, since none of the data accesses
are shared, in the sense that they do not require online node
coordination.

Data writes. Figure 8 shows the number of writes to
shared data. As expected, the number of writes increases as
the workload becomes more write-heavy. Again, partitioning
eliminates a lot of shared data writes, while lock-based strong
consistency requires significantly more shared data writes.
Weak consistency is not shown, for the same reason as in
the previous figure.

C. Replication Performance

In the second set of experiments we compared the perfor-
mance of the various replication schemes, focusing on the
TPC-W metrics of response time (WIRT) and throughput
(WIPS). We also compared the performance of the replication
schemes to the performance of a single server serving user
requests (“No Replication”).

Response time.Figure 9 shows the average response time
in seconds, for the different consistency protocols, as well
as for the case of using a single server. We observe that

maintaining strong consistency has significant overhead, which
however still does not outweigh the replication benefit. Strong
consistency is not significantly more expensive than weak
consistency. Partitioning on the other hand provides significant
benefits in terms of response time, by decreasing the commu-
nication overhead between nodes. It is important to analyze
response time in conjunction with throughput, as serving less
user requests can decrease response time. This is for example
the case with lock-based strong consistency.

Throughput. Figure 10 shows the average throughput, in
completed interactions per second, again for the different
replication schemes. We observe that the write-heavy ordering
workload decreases the throughput of the strong consistency
protocols. This is because of the required synchronization
between nodes. The latter is avoided by partitioning. The
throughput during read-heavy workloads, on the other hand,
is not affected by our invalidation-based strong consistency
protocol. The throughput of the lock-based strong consistency
protocol however decreases even during the shopping work-
load, due to the use of readlocks. Thus readlocks result in
throughput decrease even for primarily read-heavy workloads.

D. Invalidation-Based Strong Consistency Scalability

In the third set of experiments we focused on the scalability
of our invalidation-based strong consistency protocol.

Replication degree. Figure 11 shows how the average
throughput is affected as more replicas are added to the system.
We observe that read-heavy workloads can see a larger per-
formance benefit from increased replication. This is because



less updates need to be coordinated with remote replicas.
Additionally, the performance benefit of replication decreases
as the replication degree increases. This can be explained by
the fact that larger numbers of replicas require more messages
to be exchanged in order to maintain consistency, especially
for write-heavy workloads. Replication degrees such as the
ones shown in Figure 11 are common for online applications
up to a medium scale. Related work has also used similar
setups, ranging from 1 to 9 servers [5]–[8], [13], [15], [21].

VI. RELATED WORK

Consistency tradeoffs have been explored when replicating
for availability. The CAP dilemma states that a replication
system can provide only two out of sequential Consistency,
high Availability, and resilience to network Partitions [22],
[23]. Reduced consistency can be traded off with increased
availability [24], [25]. TACT [25] provides a continuous con-
sistency model to bound the provided availability as a function
of numerical error, staleness, or order error.

The performance overheads of consistency have first been
studied in the domain of distributed databases. [4] has pre-
sented an average case analysis for major replication models.
The taxonomy presented includes eager replication (strong
consistency) versus lazy replication (weak consistency),as
well as group replication, in which all replicas accept writes
versus master replication, in which only a master replica
accepts writes.

Solutions to the consistency problem in the domain of
distributed databases can be divided in three categories: Lock-
based, timestamp-based, and optimistic approaches. In all
cases each replica is responsible for serializing the trans-
actions that access local tables, and the additional protocol
each time is used to enforce global serialization. Lock-based
approaches [16] use a lock manager to achieve this goal.
Timestamp-based approaches [16] utilize the generation of
an agreed timestamp ordering between the replicas. Finally,
optimistic approaches [26], [27] require global validation
before a transaction is committed, or a global ordering on
committing transactions.

[2], [3] provide overviews of replication approaches in
order to enhance web application performance of multi-tier
architectures. Having a single data tier supporting multi-
ple web and application servers is a common replication
scheme [5], [6]. While not replicating the data tier avoids the
synchronization overhead, this non-replicated tier can become
a performance bottleneck and a single point of failure.

Master (or master-slave) replication, in which reads and
writes are separated, is another common replication model [7],
[8]. In this model only a single master replica accepts writes,
while multiple slave replicas serve reads. Having a single
master solves the synchronization and consistency mainte-
nance issues. To improve performance however, updates are
only propagated asynchronously from the master to the slave
replicas. Thus, this model offers only weak consistency.

In group (or multi-master) replication, in which multiple
replicas act as masters and accept writes, a group commu-

nication system is used to synchronize them, so that writes
are applied in the same order in all replicas. This is the
approach employed in several systems [10]–[15]. Write con-
flicts may lead to retries, presenting potentially a scalability
bottleneck [4]. Moreover, group communication, in addition to
requiring significant message exchanges, also calls for balanc-
ing complex implementation and configuration tradeoffs [2].

In distributed versioning [21], [28] and snapshot isolation
[7], [12] multiple versions of data tables are maintained, so
that concurrency can be increased to improve performance.
In distributed versioning [21], [28] and snapshot isolation
[7], [12] multiple versions of data tables are maintained, so
that concurrency can be increased. In [21], [28] multiple
nodes operate concurrently on data and reads are redirected
by a centralized, conflict-aware scheduler to a node with a
current copy of the table they require. Having a centralized
scheduler offers tight consistency control but can potentially
limit scalability. In [12] multi-version caching is employed at
the application server in addition to the database. In this case
a multicast-based group communication system is needed to
synchronize the replicas.

Gossiping has also been proposed as a means to replicate
the soft state of the logic tier in multi-tier architectures[29],
in order to minimize accesses to the data tier. This technique
however only offers weak consistency.

Data partitioning, as was explained in sections IV-B is
another technique that aims at increasing concurrency in group
replication, allowing each node to be responsible for a subset
(partition) of the data. In the case of database replication, par-
titioning takes place either horizontally (dividing rows across
nodes), or vertically (dividing columns). Common partitioning
criteria include a range, a list of values, a hash function, or
a combination of the above, applied to the partitioning key
of a table. All major DBMSs support partitioning, including
IBM DB2, Oracle, Microsoft SQL Server, PostgreSQL, and
MySQL. While partitioning provides performance benefits
such as the ones outlined in section V, the data are not repli-
cated, which may have availability implications. Additionally,
queries that touch multiple tables may need to travel through
more than one nodes.

[30] discusses replication for TPC-W, which is also the ap-
plication benchmark we use for our performance comparison.
The authors discuss improvements in availability and perfor-
mance that can be obtained by taking into account application-
specific semantics. Focusing on the particular application, the
authors present a design for distributed objects that each
manages a specific subset of shared information. While we
also use TPC-W for our evaluation, the invalidation-based
strong consistency protocol we propose makes no application-
specific assumptions.

VII. C ONCLUSION

In this paper we have presented common replication ap-
proaches with various consistency guarantees, and proposed
an efficient, distributed, strong consistency protocol. Wehave
compared the design of our protocol to established approaches



and discussed its implementation in a replication middleware
for multi-tier architectures. We have used the TPC-W trans-
actional web commerce benchmark to conduct a compre-
hensive experimental evaluation of five different replication
approaches. In our experiments we have compared the per-
formance of no replication to that of partitioning, as well as
to the performance of replication with weak consistency, with
lock-based strong consistency and with our invalidation-based
strong consistency. We have provided an experimental com-
parison using a variety of realistic workloads to demonstrate
the practicality of our invalidation-based strong consistency
protocol. Our implementation of different common replication
approaches allowed us toquantify the performance differences
among them, and in particular to quantify the performance hit
of providing strong consistency depending on the workload
type.

REFERENCES

[1] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel, “Performance
impacts of autocorrelated flows in multi-tiered systems,”Performance
Evaluation, vol. 64, no. 9–12, pp. 1082–1101, October 2007.

[2] E. Cecchet, A. Ailamaki, and G. Candea, “Middleware-based database
replication: The gaps between theory and practice,” inProceedings of
ACM SIGMOD, June 2008.

[3] S. Sivasubramanian, G. Pierre, M. Steen, and G. Alonso, “Analysis of
caching and replication strategies for web applications,”IEEE Internet
Computing, vol. 11, no. 1, pp. 60–66, January/February 2007.

[4] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication
and a solution,” inProceedings of ACM SIGMOD, June 1996.

[5] L. Cao and M. T. Ozsu, “Evaluation of strong consistency web caching
techniques,”World Wide Web, vol. 5, no. 2, pp. 95–124, 2002.

[6] M. H. S. Attar and M. T. Ozsu, “Alternative architecturesand protocols
for providing strong consistency in dynamic web applications,” World
Wide Web, vol. 9, no. 3, pp. 215–251, October 2006.

[7] C. Plattner and G. Alonso, “Ganymed: Scalable replication for transac-
tional web applications,” inProceedings of the 5th ACM/IFIP/USENIX
International Middleware Conference (MIDDLEWARE), October 2004.

[8] C. Plattner, G. Alonso, and M. T. Ozsu, “DBFarm: A scalable cluster for
multiple databases,” inProceedings of the 7th ACM/IFIP/USENIX In-
ternational Middleware Conference (MIDDLEWARE), November 2006.

[9] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group communica-
tion specifications: A comprehensive study,”ACM Computing Surveys,
vol. 33, no. 4, pp. 427–469, December 2001.

[10] B. Kemme and G. Alonso, “Don’t be lazy, be consistent: Postgres-R, a
new way to implement database replication,” inProceedings of the 26th
International Conference on Very Large Data Bases (VLDB), 2000.

[11] M. Patino-Martinez, R. Jimenez-Peris, B. Kemme, and G.Alonso,
“Middle-R: Consistent database replication at the middleware level,”
ACM Transactions on Computers, vol. 23, no. 4, pp. 375–423, 2005.

[12] F. Perez-Sorrosal, M. Patino-Martinez, R. Jimenez-Peris, and B. Kemme,
“Consistent and scalable cache replication for multi-tierJ2EE appli-
cations,” in Proceedings of the 8th ACM/IFIP/USENIX International
Middleware Conference (MIDDLEWARE), November 2007.

[13] Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenez-Peris, “Enhanc-
ing edge computing with database replication,” inProceedings of 26th
Symposium on Reliable Distributed Systems (SRDS), September 2007.

[14] Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu, “On
the performance of consistent wide-area database replication,” in Johns
Hopkins University, Center for Networking and Distributed Systems
(CNDS) Technical Report CNDS-2003-3, December 2003.

[15] E. Cecchet, M. Julie, and W. Zwaenepoel, “C-JDBC: Flexible database
clustering middleware,” inProceedings of the USENIX Annual Technical
Conference, June 2004.

[16] P. A. Bernstein and N. Goodman, “Concurrency control indistributed
database systems,”ACM Computing Surveys, vol. 13, no. 2, pp. 185–
221, June 1981.

[17] Transaction Processing Performance Council, “TPC Benchmark W (Web
Commerce) Specification,” February 2002.

[18] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal, “Active names:
Flexible location and transport of wide-area resources,” October 1999.

[19] G. Ricart and A. Agrawala, “An optimal algorithm for mutual exclusion
in computer networks,”Communications of the ACM, vol. 24, no. 1, pp.
9–17, January 1981.

[20] T. Bezenek, T. Cain, R. Dickson, T. Heil, M. Martin, C. McCurdy,
R. Rajwar, E. Weglarz, C. Zilles, and M. Lipasti, “Characterizing a
Java implementation of TPC-W,” inProceedings of the 3rd Workshop
On Computer Architecture Evaluation Using Commercial Workloads
(CAECW), January 2000.

[21] K. Manassiev and C. Amza, “Scaling and continuous availability in
database server clusters through multiversion replication,” in Proceed-
ings of the 37th IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), June 2007.

[22] E. A. Brewer, “Lessons from giant-scale services,”IEEE Internet
Computing, vol. 5, no. 4, pp. 46–55, July/August 2001.

[23] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” ACM SIGACT
News, vol. 33, pp. 51–59, June 2002.

[24] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,and A. J.
Demers, “Flexible update propagation for weakly consistent replication,”
in 16th ACM Symposium on Operating Systems Principles (SOSP), 1997.

[25] H. Yu and A. Vahdat, “The costs and limits of availability for replicated
services,”ACM Transactions on Computer Systems, vol. 24, no. 1, pp.
70–113, February 2006.

[26] H. Kung and J. Robinson, “On optimistic methods for concurrency
control,” ACM Transactions on Database Systems, vol. 6, no. 2, pp.
213–226, June 1981.

[27] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari, “Efficient optimistic
concurrency control using loosely synchronized clocks,” in Proceedings
of ACM SIGMOD, May 1995.

[28] C. Amza, A. Cox, and W. Zwaenepoel, “Distributed versioning: Con-
sistent replication for scaling back-end databases of dynamic content
web sites,” inProceedings of the 4th ACM/IFIP/USENIX International
Middleware Conference (MIDDLEWARE), June 2003.

[29] T. Marian, M. Balakrishnan, K. Birman, and R. Renesse, “Tempest:
Soft state replication in the service tier,” inProceedings of the 38th
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), June 2008.

[30] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar, “Improving
availability and performance with application-specific data replication,”
IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 1,
pp. 106–120, January 2005.


