Consistent Replication in Distributed Multi-Tier
Architectures

Thomas Repantis Arun lyengar Vana Kalogeraki Isabelle Rouvellou
Akamai Technologies IBM T.J. Watson Research Centddept. of Informatics, Athens UniversityBM T.J. Watson Research Center
Cambridge, MA 02142 Hawthorne, NY 10532 of Economics and Business, Greece Hawthorne, NY 10532
trepanti@akamai.com aruni@us.ibm.com vana@aueb.gr rouvellou@us.ibm.com

Abstract—Replication is commonly used to address the scala- time must be identical. This is not necessarily true for weak
bility and availability requirements of collaborative web applica- consistency, where different nodes can serve differersions
tions in domains such as computer supported cooperative Wer 4t the same data at the same time. Weak consistency can cater

social networking, e-commerce and e-banking. While provithg ¢ licati h line f d ial networki
substantial benefits, replication also introduces the ovéread of 0 applications such as oniineé forums and social networking

maintaining data consistent among the replicated serversin Websites. On the other hand, strong consistency may apply
this work we study the performance of common replication to e-banking, online retail stores, auction marts, andkstoc
approaches with various consistency guarantees and arguerf prokerages.

the feasibility of strong consistency. We propose an effiang, A variety of replication solutions, stemming both from

distributed, strong consistency protocol and reveal expementally . .
that its overhead is not prohibitive. We have implemented a ac@demia and industry, have been proposed to address the

replication middleware that offers different consistencyprotocols, Problem of consistent and scalable data replication in imult
including our strong consistency protocol. We use the TPC-W tier architectures [2], [3]. To increase throughput and de-
transactional web commerce benchmark to provide a compre- crease response time, all or some of the tiers are replicated
hensive performance comparison of the different replicabn 5y 0ng several machines, which can then participate inrggrvi
approaches under a variety of workload mixes. . .
concurrent user requests. To address consistency maigcgna
Keywords-Replication, Consistency, Multi-Tier Architectures. jssues, the data tier is often not replicated [5], [6]. Whitet
replicating the data tier avoids the synchronization ogath
this non-replicated tier can become a performance bottlene
Multi-tier architectures are at the heart of modern entsepr and a single point of failure. Another common approach to
data centers, supporting a variety of collaborative apfibms. simplify consistency maintenance is to replicate the digta t
Popular dynamic web applications, such as e-commerce,agd only offer weak consistency guarantees. For example,
banking, social networking websites, blogs, and wikis aré b following a master replication scheme [7], [8], only a simgl
using a multi-tier model. Multi-tier architectures progidep- master replica accepts writes, while multiple slave reglic
aration of concerns between the presentation tier, rehlize serve reads. The updates are then propagated from the master
a web server, the logic tier, realized by an application eervto the slaves lazily, while the slaves continue servingestaita
and the data tier, realized by a database. The presentaionih the meantime. Yet another common approach for providing
accepts user requests and provides service results babk tostrong consistency when replicating the data tier, is tg rel
user. The logic tier executes the required services to m@dwn group communication [9]. Following a group (or multi-
the requested results. Finally, the data tier permanetdhgs master) replication scheme [10]-[15], multiple replicas a
the state of services in a database. For example, in an onlasemasters and accept writes. A group communication layer is
store, a sale would result to an update in the inventory. Tkieen used to synchronize them, so that writes are applidtkin t
different tiers are commonly hosted by separate machinessame order in all replicas. However, a group communication

|I. INTRODUCTION

the same data center. layer can pose scalability challenges, while its configarat
Replication is commonly employed to improve the perfolinvolves multiple complex tradeoffs [2], [3], [9].
mance [1] of such multi-tier architectures [2], [3], as wad In this paper we provide a comprehensive study of common

the performance of other distributed environments, inclgd replication approaches that offer various consistencyajua
databases [4]. In all cases, multiple replicas of the sartees. By quantifying the performance overhead of providing
data are maintained to tolerate failures, or concurrergtyes strong consistency, we motivate a distributed strong eensi
requests and consequently balance the load among multii@ecy protocol that we propose. We focus on multi-tier archi
machines. While replication can improve both scalabilityl a tectures because of their popularity in real-world appiices.
availability, it also introduces the problem of consistkgnt However, the protocols we discuss may be applicable to other
maintaining the replicated data. Two consistency modele hadistributed architectures as well. We compare the perfaoma
been widely used: Strong and weak consistency. With stroafji) no replication, ii) partitioning, in which differentades
consistency, all replicas of a data object served at anyngivare responsible for different parts of the data, iii) region

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247116

[j?- client requests related to the same user session are directl

ff L 7 A L 7 R . B R
“Client web I Amp I [bata communicating with the same server. There are several redi-
. /’S-' S Prste =] vese rection solutions [18] based on application, router, or DNS

ware

enhancements, and these mechanisms are orthogonal to our

Front-End deS|gn.
— A server can be hosted by one or more machines, but it
Client o web I_> represents one logical unit in our model. Servers commtmica
L S with each other to maintain consistency, which is required
EE[for replication transparency. They communicate using TCP
ctient L sockets and are connected using a fast network connection,

, o for example belonging to the same LAN.
Fig. 1. Replication model.

Each server assumes a tiered architecture, as shown in
Figure 1. The presentation tier, implemented by a web séver
responsible for interaction with the clients, while theibotier,
using a traditional lock-based protocol, and v) replicatidth |mplem_ented by an application Server, execute_zs the busines

logic. Finally, the state of each server is stored in the tata

strong consistency using our invalidation-based, disteth . T . .
protocol. Our protocol strives to minimize the communiimplemented by a database. Our replication middleware lies

cation overhead and increase performance. Unlike previ&%twee_n the Iogic_ an_d the d_ata tiers and provides co_nsistent
strong consistency protocols in domains such as distnibulrém“cat'on' Tohma(\]:ntaln_ con5|st_ency amogg_rsr?rvert:epllaia :
databases [16], our protocol does not require locking ok |o@CCESSES to the ata_tler are mFerc_epte - [AUS, the ce_g|c_t|
managers. Furthermore it enables coalescing updatesatat frommunicates only with our replication middleware, whish i
been overwritten responsible for making the actual database calls. Thisdepe

We have implemented a multi-threaded Java repIicati(Sil‘?n can b.e gctive, by changing thg applica_tion code runn.ing
middleware that offers the different consistency protscoPn ?hte I?g|c er, OrJFIJDaBS?V?Bbt)/ ha\émg_:hedml?dlev_va;]reggfvl
we examine, including the strong consistency protocol i Intertace (e.g.,) that makes it indistinguishal

propose. The middleware lies between the logic and the dgtéjatabage from _the apphcatlon’s. perspgctlve [15.]' At each
tier and is responsible for maintaining data consistent. G Ver, writes are intercepted and in addition to beingiedpl

compare the performance of the replication approaches.?r‘fa"y they are collected and sent to the rest OT the servers
the form of updates. Every server also receives updates

real-world scenarios, we use the TPC-W transactional w h d los th locallv. D d
commerce benchmark [17], under a variety of workload mixe om other servers and applies them focally. Lepending on
e consistency requirements, reads can also be inted;dpte

TPC-W defines various events representing user interacti Il undates h b lied before dat Bt
with an online bookstore. We report our findings regardirey tr?ﬂn;#;euzerup ates have been applied before data are returne

update overhead incurred, as well as the throughput and f

response times attained. Strong consistency requires that all replicas of a datacobje
The rest of this paper is organized as follows: We begin B¢rved at any point in time are identical. Thus, all updatestm
describing our system model in section Il. Section |1l d#8S have been applied to all replicas before any reads can ptocee
the design decisions behind our strong consistency prbtoogith weak consistency, on the other hand, different version
as well as its implementation. We proceed by providing ajf a data object can be served at the same time, depending on
overview of different replication approaches in sectiondvid the replica being accessed. In this case updates can bedppli
comparing their design to our protocol. Section V presenigzily, irrespective of the reads currently taking place.
the experimental comparison of all the replication appheac

while section VI discusses relevant work. Finally, sectigh ~ The consistency protocols we will be discussing apply
concludes the paper. to any kind of data objects. However, in the application

environment of multi-tier architectures we are studyinghis
Il. SYSTEM MODEL work, the objects we are interested in maintaining consiste

. o represent tables in the relational database of the data tier
The replication model we are considering is illustrated in

Figure 1. We assume a client/server architecture, in whichThe metrics signifying the system’s performance, which
clients use HTTP to access services provided by serverge are interested in optimizing, are throughput and respons
Clients are redirected to servers via a front-end. Thudj-regime. Throughput is measured in user interactions per skecon
cation is transparent to the clients. The front-end striwees sustained by the system. Response time is the end-to-ead tim
distribute user requests among two or more servers usingpent to serve a client request, and includes the processing
load balancing scheme, for example round-robin. It is aldiine to execute the application logic and access the dagabas
session persistent. Redirection happens at the beginrfingas well as the communication time to transfer the request and
the interaction of a client with a server, and afterwards athe reply between the client and a server.

with weak consistency, iv) replication with strong conesisty

Local Remote

[1l. I NVALIDATION -BASED STRONG CONSISTENCY Access Requests (Acoess Requosts
. . i . X i . . Message
In this section we describe our invalidation-based, di: Replica Access Sender
tributed, strong consistency protocol, and its implemigorna
. . . n . . Remote
in our replication middleware. The next section reviewseoth Access Requests
. jdation Requesis Message
common consistency protocols and compares them to ours S Posonr
A. Replication Middleware [
1 X
Our distributed strong consistency protocol is implemeénte Inbalidations Message
in a multi-threaded Java replication middleware. The naedl Manager Frocessor

ware is responsible for maintaining the data tiers of alveer
nodes consistent. We describe now how the copies of allgable Fig. 2. Replication middleware implementation modules.
in the database of each node are kept consistent, assuming
all nodes maintain copies of all tables. We discuss dividing
tables across nodes in section IV-B. Each node follows pgoceed independently. Thus, concurrent reads are allawed
three-phase protocol when it needs to update its copy ofd@ not require communication with remote nodes.
data table. The protocol ensures that the copies of the taple . . .
held by other nodes will be updated as well, and that afl Disiributed Protocol Operation
nodes will be serving the same version of each table at allWe now describe our strong consistency protocol, before
times. The protocol has three phases for updating a tadRying out the details of its different phases in the follogi
which include the exchange of corresponding messages: H>ion. Figure 3 shows an example of a protocol execution,
Invalidation Request, the Invalidation Reply, and the actual while algorithms 1 and 2 outline the execution on the sender
Update. Invalidation requests and replies are used to coordind receiver side of an update respectively.
nate the updates on the shared data. Detailed descriptfons dVhen a node sl needs to update a data table t1, it sends
the protocol and its different phases are given in sectit¥® | invalidation requests to the rest of the nodes that haveesopi
and IlI-C respectively. of the same table. After s1 has received positive invaldati
Figure 2 shows the building blocks of our replicatiomeplies fromall the nodes, indicating that they have invalidated
middleware, responsible for consistency maintenance ef tieir copies, it can update t1.
local tables and for communication with the remote nodes of When a node s2 receives sl1's invalidation request to in-
the distributed architecture. There are six major modules. validate its copy of table t1, it responds with a positive or a
Replica Access module is responsible for providing permissiomegative invalidation reply, depending on whether it widl b
to access tables in the local node and for sending Invatidatior not. To decide whether it will invalidate its copy of t1, s2
Requests and Updates to the remote nodes.|Mvaidation checks whether it has sent or received an invalidation r&que
Requests Manager module keeps track of the Invalidationfor t1. If that has been the case, s2 compares the timestamp of
Requests the local node makes and notifies the replica acdbss invalidation request to the timestamp of the invalinfat
module once all remote nodes have replied to an Invalidatioequest of sl1. The request with the earlier timestamp is
Request. Thénvalidations Manager module keeps track of the rejected. If both timestamps are equal, an ordering of the
tables that have been invalidated and notifies the replicassc nodes is imposed, for example by comparing the hashes of
module once an invalid table has been updated with its n@&ch nodes’ IP and port and having the request from the node
version. TheMessage Sender module is responsible for send-with the largest hash value dominate. If the invalidaticquest
ing Invalidation Requests, Invalidation Replies, and Upddo of s1 was the one with the latest timestamp, s2 invalidates t1
the remote nodes. Thelessage Receiver module is a thread and sends a positive invalidation reply to s1. If the invaiion
listening for incoming messages. Once a message is receiveguest of s1 was the one with the earliest timestamp, sxsend
a new thread that implements thessage Processor module a negative invalidation reply to s1.
is spawned to apply an Update, or to determine whetherNode s2 sends a negative invalidation reply if it has sent
an Invalidation Request should be positively or negativelyr received an invalidation request with a later timestaom f
acknowledged. For efficiency, we can avoid the creation atite same table t1. If s2 has sent an invalidation request for
destruction of threads, by maintaining a pool of them egmal tl, it is about to update it and its update will overwrite s1's
the number of tables in the database. update since it has a later timestamp. If s2 has received an
When a node sl needs to read a table t1 in the database,ithalidation request for t1, another node is about to update
Replica Access grants that permission once the Invalidaticand its update will be the one to overwrite s1's update, again
Manager notifies it that table t1 is not invalid as currentlpecause it has a later timestamp.
being updated remotely. If t1 is currently being updated, th Node sl updates table t1l after it has received positive
notification takes place once the update is completed. \Wwalidation replies from all other nodes maintaining @i
use thread communication to implement these notificatiarfitl. If s1 receives one or more negative invalidation gl
mechanisms. Concurrent reads from multiple nodes on thiiaborts its attempt to update t1 and its update will be igdor
local copies of the same table, which has not been invalidat®vhen s1 will receive the invalidation request for t1 from

i) Invalidation Requests ii) Invalidation Replies iii) Updates

Fig. 3. Sample message exchange between 4 nodes. In daskedheé messages pertaining to s1's update attempt. Inls@islthe messages pertaining
to s2's update attempt. INV: invalidation request, ACK: itiee invalidation reply, NACK: negative invalidation rigp UPD: update.

s2 (with a timestamp which was later than that of its own 1) Invalidation Request: User requests received by nodes
invalidation request) it will invalidate its copy of t1 andred s2 result to updates in the data stored in the tables. When a node
a positive invalidation reply. Consequently, after s2 wélteive s1 needs to write a table t1, similarly to when reading a table
positive invalidation replies that all other nodes inchglisl access needs to be granted. The Replica Access grants that
have invalidated their copies of t1, it will proceed with thg@ermission once the Invalidations Manager notifies it tahtg
update. t1 is not invalid as currently being updated remotely.

It is important to note that the protocol correctness only After the Invalidations Manager in node s1 has ensured
depends on the replies of the nodes that are actually imgndihat t1 is not currently being updated, s1 sends Invalidatio
to perform an update. This is because they wflays send Requests to all remote nodes that host copies of the table.
a negative invalidation reply if they have a later timestamfThe Invalidation requests contain the name of the table that
whereas other nodes may or may not do so, depending on iheequested to be invalidated and a timestamp of when the
order with which these other nodes receive the invalidatieequest was generated. The timestamp reflects the locahtime
requests. Figure 3 shows an example of this case. In thisde s1 that initiates the request. While the clocks of aflaso
example both s1 and s2 send invalidation request messages. be loosely synchronized, the correctness of the prbtoco
s2's timestamp dominates and therefore its update is @pplidoes not depend on that. As explained in the next paragraphs,
Notice that even though s3 acknowledges positively to $ie timestamps are used for the nodes to agree on a relative
because it received its request before the request of s2, theer between them, and could therefore be arbitrary. inal
protocol execution is successful. This is because s2 withps s1 also calls the Invalidation Requests Manager, whicHiasti
send a negative invalidation reply to s1, since s2 has a laeonce all remote nodes have replied.
timestamp. Therefore, s1 will never proceed with its update 2) Invalidation Reply: The remote nodes send Invalidation

since that would require a positive invalidation reply fronkepjies to node s1 that requested an invalidation. Invédida

all other nodes, including s2. In other words, the protoc@lejies specify the table the Invalidation Request reterre
correctness only depends on the replies of the nodes t&?tand whether the Invalidation Request is granted (p@sitiv
are actually intending to perform an update (in this case sgegpw) or not (negative reply). We now describe how nodes

response to s1 (and sl's response to s2)). These repliesydeide whether they will send a positive or a negative Iavali
not depend on the ordered delivery of messages since theyion Reply.

only require local information. In the example of Figure 3, s

S :) . . When a node s2 receives an Invalidation Request from
only requires its local timestamp to decide sending a negati : .
. S . s S . 'node s1 to invalidate table t1, the Message Processor ¢snsul
invalidation reply to sl. Since s2's invalidation reply il

be negative. and since s1 would require positive invaligati the Invalidation Requests Manager to determine whether s2
9 ' q P has already sent Invalidation Requests for t1. If this is the

Le%ftz f_rl%rir; iilltrzgdrees ;:) d|2;(::§fe '?h,esrle VIYQ\IS r(‘)?tthpeernfg;gs I:Esase, the timestamps of the local (s2’s) and the remote)(sl’s
P : 9 P nvalidation Requests are compared. The request with the la

are not intending to perform an update (s3 and s4) (which . . S
depend on the order with which these nodes received s1’s glrrgﬁestamp dominates and the one with the earlier timestamp

s2's invalidation requests). This explains why the protoaes will need to be retried. The Invalidations Manager on each
not require an atomic broadcast primitive to order the @ejiv node keeps track of pending invalidation requests by tretilo

node and signals when they can be retried.
of messages.)))
If both timestamps are equal, an ordering of the nodes is

imposed, as was described in section IlI-B. If the local {52’
Invalidation Request dominated, a negative InvalidatiepliR

We now describe in detail the three different protocas sent from s2 to sl. If the remote (s1's) Invalidation Rexjue
phases, Invalidation Requests, Invalidation Replies, dpd dominated, the Invalidations Request Manager is called to
dates, as well as their implementation in the replicatioegister the fact that the local request is unsuccessfu, an
middleware which we illustrated in figure 2. a positive Invalidation Reply is sent from s2 to sl. The

C. Protocol Phases

Invalidations Manager at s2 is called to register the faat thAlgorithm 1 Sender algorithm.
table t1 is being updated. _
When a node s3, that has not sent Invalidation Requests fatbmitUpdateRequest

t1, but has received an Invalidation Request for t1 from siput: Local invalidation requesi N'V; for tablet
receives an Invalidation Request for t1 from s1, it perfothes Number of replicasS

timestamp comparison described above and sends a positiv@utput: False (cancel request) or

negative Invalidation Reply to s1. If s1's Invalidation Regt True (grant request and send upd&t®D,)
dominates, s3 calls its Invalidations Manager to register tfor each replicas; in .S

fact that t1 is now being updated by s1 instead of s2. send invalidation request\VV; to s;

3) Update: If at least one of the Invalidation Replies wasnvalidation replies = 0
negative, this signifies that an update with a later timeptarwhile invalidation replies< S
will be applied on t1 by another node. Therefore s1 postpones receive invalidation reply

its attempt to write on t1, notifying the Invalidation Regts® invalidation replies++
Manager that the request was unsuccessful and needs to béf invalidation reply is negativeN AC K;)
retried. If all Invalidation Replies were positive, the apel return False

can proceed. The Invalidation Requests Manager is callsturn True
to register the fact that the request was successful and the
Invalidations Manager is called to register the fact thatea
tl is currently being updated. The table is updated locally a
then Update messages are sent to the remote nodes. Algorithm 2 Receiver algorithm.
Update messages are used to prefetch the table changes to
the remote nodes. They contain the name of the table thatAgproveUpdateRequest
to be updated, the SQL statement that needs to be executedngpuit: Remote invalidation requestVV; for tablet
that table, and the parameters of that statement. By exgcutDutput: Positive invalidation replyACK; or
the same statements with the same parameters on the same Negative invalidation replyW AC K,
tables, remote nodes maintain their data consistent. if (exists local or remote invalidation requdsvV;’ and
After the Updates are sent, the Invalidations Manager at s1 timestamp{NV;’) > timestamp{NV}))
is called again to register the fact that t1 is not being ugdiat return NACK;
anymore. The Invalidations Manager at s2 is called agaimwhelse
the Update message for t1, sent from sl, is received by s2,return ACK;
to register the fact that t1 is not being updated anymore.
The Invalidations Manager on each node awakes any pending
invalidation requests for t1, which had been unsuccessfdl a
can now be retried. In more fine-grained implementations, fo
example when applying updates on a tuple- instead of a tablefor applications that do not require an accurate globag stat
level, if multiple nodes attempt to concurrently update theeak consistency can provide good performance, since both
same tuple, one writer can simply overwrite the other. Int thiad and write requests are served locally and thus doné hav

case, updates can simply be coalesced, by applying only tadlock. Examples of applications for which users can aiker
latest one and ignoring the rest. seeing a slightly different state of the system include ramli

forums and social networking websites. For instance, users
IV. REPLICATION APPROACHESBACKGROUND add responses to a conversation much slower than the speed
Having proposed our invalidation-based strong consistengith which changes are propagated among nodes. Similarly,
protocol, we now compare it to common replication apt is acceptable that different users may see a change on
proaches and their corresponding consistency protocols. somebody’s profile with a small time variation.

A. Weak Consistency

In a weak consistency protocol different nodes can ser@é
different versions of the same data at the same time [7],A common technique to increase database performance
[8]. When a node needs to read a table in the database,isido partition the data among several machines, which is
communication with other nodes is required. Consequentiypported by all major DBMSs. A protocol that maintains data
concurrent reads are allowed. consistent by partitioning them across nodes providesigtro

When a node needs to write a table in the database, it deesisistency but no replication. In such a protocol data are
so locally and then sends update messages to all other nodédributed across nodes. Partitioning of the data can émapp
all of which maintain copies of that table. Nodes continuia different ways: i) Different tables can be stored in diffet
serving content before receiving and applying updatesréFhenodes. ii) A table can be divided horizontally among mudipl
fore different versions of the same table may be served hgpdes, with its rows distributed across nodes, or iii) A ¢abl
different nodes at the same time. can be divided vertically among multiple nodes, with its

Partitioning

columns separated into different tables and them storedTihe node releases the readlock once it has read the table, by
different nodes. Common partitioning criteria include Wtex sending a readlock release message to the lock manager. If
the partitioning key of the table falls within a range of vedu two readlock acquire messages are sent concurrently by two
whether it is included in a list of values, whether its hash haodes, both acquire the readlock.
a certain value, or a combination of the above. Concurrent reads are allowed, i.e., a node that needs to read
A request to read or write a particular tuple in a table ia table that is readlocked can do so. The node sends a readlock
redirected to the node responsible for storing it. No commuracquire message to the lock manager, which replies with a
cation with other nodes is required for either reading otingi readlock grant message. The node releases the readlock afte
a tuple, since a single copy of each tuple exists in the systeiinhas read the table, by sending a readlock release message
Thus, a node hosting the single copy of a data tuple servestaltthe lock manager.
reads and writes for it. When a node needs to write a table, it sends a writelock
The advantage of partitioning is that it provides strong-corcquire message to the lock manager. The lock managerseplie
sistency, without requiring communication between nodes fwith a writelock grant message. If the table is readlockked, t
reads or writes. The disadvantage is that no concurrentaeadock manager sends the writelock grant message only after
write requests for the same tuple can be served, as only ke sirity has received a readlock release message from all nodes
copy of each tuple exists in the system. Still, performasce that were reading the table. Thus, a node has to wait for the
improved in comparison to having a single node serving thieadlock release before being able to write a table.
requests for all tuples, since requests for different tsiglan A node releases the writelock once it has written the table,
be served by different nodes simultaneously. However,igsierby sending a writelock release message to the lock manager.
that touch multiple tables may have to contact multiple sodén the distributed implementation of the protocol, the upda
before they can be executed. is usually piggybacked on the writelock release message to
Partitioning is a good approach for applications that do notinimize the communication overhead. In the centralized
have a lot of concurrent requests for the same data tuglaplementation of the protocol, besides the writelock sk
as those have to be served sequentially by the single nadiitional update messages may be required for the update to
that stores it. Partitioning, similarly to the next consisty reach all nodes.
protocol we describe, provides strong consistency, and islf two or more writelock acquire messages for the same
therefore suitable for a variety of applications that regui, table are sent concurrently by two nodes, a tiebreaker id use
such as e-banking, online retail stores, auction martstomks in the distributed implementation of the protocol, whergas
brokerages. Availability however may suffer, since theadae the centralized implementation the lock manager serilize
not replicated across nodes. concurrent requests. An example of a tiebreaker is a prestifin
In case partitioning is combined with replication and mulerder of the nodes, used to prioritize their requests.
tiple but not all nodes maintain copies of each data tabke, th Nodes that need to read or write a table that is writelocked
invalidation-based strong consistency protocol we dbedri wait for the writelock release. They send readlock or woitél
in section Ill can still be applied. The difference in thissea acquire messages to the lock manager. The lock manager
would be that every time a table needs to be updated, insteaglies with the corresponding grant message only afteast h
of all the nodes, only the nodes that maintain copies of thigtceived a writelock release message from the node that was

particular table would need to be contacted. writing the table.
] In comparison to a lock-based strong consistency proto-
C. Lock-Based Strong Consistency col, the invalidation-based strong consistency protocel w

Locks are a common approach for ensuring strong constikescribed in section Il avoids the use of locking and lock
tency [16], [19]. A lock-based strong consistency protazad managers. While similarly to two-phase locking [16], [19],
be implemented either in a centralized or in a distributegl. wainvalidation-based strong consistency divides the opmranh
In the centralized implementation there is a single nodim@ct phases, it does so only for write and not for read opera-
as the lock manager, responsible for acknowledging reguetsons. Thus, in comparison to lock-based strong consigtenc
for reading or writing a table. In the distributed implenmaian invalidation-based strong consistency may increase theeu
all nodes with copies of a table have to acknowledge requestgequests served concurrently, as read requests foisteide
for reading or writing it. The centralized implementatioash have not changed do not require any synchronization between
the disadvantage of rendering one node a single point rddes. In contrast, a lock-based strong consistency mbtoc
failure and a potential performance bottleneck. However, requires the acquisition of a readlock.
may reduce the number of message exchanges. We describe
the centralized implementation, and our description @&gpio .
the distributed implementation as well, with the only chang® Experimental Setup
being the one mentioned above. We used the TPC-W transactional web commerce bench-

When a node needs to read a table, it sends a readloctirk [17] to compare the performance of the different replic
acquire message to the lock manager. The readlock is grartied approaches, including our invalidation-based stroog-
once the lock manager sends back a readlock grant messaggency protocol. TPC-W is an industry-standard, e-cormme

V. EXPERIMENTAL EVALUATION

Consistency Overhead Average Shared Data Access Time (ms) Average Shared Data Write Time (ms)
25000 18 18
Weak —— Invalidation-Based Strong —— Invalidation-Based Strong ——
Invahdat\on—Baze?‘_SI_trong == 16 H Lock-Based Strong s 16 Lock-Based Strong s
artitioned T —
20000 H Lock-Based Strong s

14 14

12 12

15000

10 10

10000

Messages Sent per Replica

5000

o N B O ®
o N & O ®

0

Browsing Shopping Ordering Browsing Shopping Ordering Browsing Shopping Ordering

Fig. 4. Communication overhead (sent messagigs 5. Average time (ms) to access a shaFeg. 6. Average time (ms) to write to a shared
per replica) to maintain consistency. data table. data table.

benchmark that emulates an online bookstore. It defines e Consistency Overhead
operation of the store, as well as the workload. The benckmar |, the first set of experiments we compared the overhead of
emulates multiple concurrent HTTP sessions, browsing afit various consistency protocols with regards to comnasnic
buying products from the website. The workload includef;n and data access.
contention on data access and data update. The operation {§ommunication overhead.Figure 4 shows the messages
based on dynamic page generation with database accessess@Rt per replica to maintain consistency. We show the msult
the database consists of tables with various sizes, @#8bufor the different workload mixes. We observe that as the
and relationships. We used the Java implementation of TPC{Wymber of write operations increases in the workload, the
by the University of Wisconsin-Madison [20]. number of messages exchanged increases as well. The lock-
We instantiated four servers, each one consisting of gased strong: consistency p_roto_col incurs a higher n_umber
o - . Of messages than our invalidation-based strong consistenc
application SEIVeT, a DBMS' gnd our rgplu_:aﬂon mIdOIIE?Warerotocol since messages need to be exchanged for reading in
We also experimented with higher replication degrees in s addition to writing data. We have implemented the disteiout

tion V-D. Requests were generated from a separate host ba\?eersion of the lock-based protocol. A centralized implemen

on the benchmark workload, and were redirected randon?l jon would reduce the messages exchanged, but possibly
among the different servers. We used Apache Tomcat 6.0, Verload a particular node. Partitioning the data redubes t

as our application server and MySQL 5.0.41 as our DBMS L N
. . S : ... communication overhead significantly.
The implementation of the replication middleware consigts . . : .
! . . Access time.Figure 5 shows the average time required
approximately 3000 lines of Java code. It includes all the . .
L . . . 0_access a shared data table, in ms. Weak consistency and
replication approaches discussed in section IV, as well as

our invalidation-based strong consistency protocol preskin partitioning are not displayed, since they do not requierds
. o g nation with remote nodes and are therefore much fastereSinc
section Ill. In partitioning we divided among servers tattleat

: . lock-based strong consistency requires message exchfmmges
were being updated, to save on consistency-related coramuni 9 yreq 9 g

. . : N oth reads and writes we observe a high shared data access
cation, without affecting application correctness. No afed 9

time, regardless of the workload. Our invalidation-bageohg
were exchanged for these tables, as each server was the Qniv., - .
one holding a copy of the corresponding table partition conrsistency protocol only pays the communication pricerwhe
" writing data, which is more common in the ordering workload.
TPC-W specifies three different workload mix@owsing e see that invalidation-base_d strong consistency siguniti
consists of 95% browsing interactions, such as displayifgduces the average access time compared to lock-baseg stro
information about products, and 5% ordering interactisnsh consistency, especially for mostly read-only workloads.
as adding items to a shopping ca@hopping consists of 80% erte time. Figure 6 shows the average time reqwred. to
browsing and 20% ordering. Finallgrdering consists of 50% Write a shared data table, in ms. As the number of writes
browsing and 50% ordering. We conducted experiments wiffFréases in the workload, there is a higher possibility tha
a duration of 1000 seconds, and an additional 100 secondd'6fes will coincide in time. In this case invalidation-leas
ramp up and 100 seconds of ramp down times. The reque¥f&ng consistency can incur additional overhead to szgial

were choosing among 144000 customers and 10000 itemstheém. Even though the average time to write on shared data is
higher for invalidation-based strong consistency, thatepis

The primary metrics of TPC-W are WIPS and WIRT. WIP$aid less frequently than with lock-based strong consisten
refers to the average number of completed Web Interactiofisis is because writes to shared data are much more frequent
Per Second and measures the system throughput. WIRT refarghe latter case, as is shown in Figure 8. Again, weak
to the average Web Interaction Response Time and measur@ssistency and partitioning are not displayed, since tiey
the end-to-end time elapsed before a client request rexaivenot require coordination with remote nodes and are thesefor
response. much faster.

Average Response Time

Shared Data Accesses Shared Data Writes 0.2

7000 7000
Invalidation-Based Strong E—— Invalidation-Based Strong E—
Partitioned === Partitioned ===

6000 Lock-Based Strong s 6000 Lock-Based Strong

No Replication ——
Weak ——

Invalidation-Based Strong =1
B Partitioned =
0.15 H Lock-Based Strong s

5000 - 5000

4000 N 4000

Seconds
IS)
Y
T
1

3000 ~q 3000

2000 o 2000

1000 [~ - 1000

Browsing Shopping Ordering

Browsing Shopping Ordering Browsing Shopping Ordering

Fig. 9. Average response time (s) for different

Fig. 7. Number of accesses of shared data. Fig. 8. Number of writes to shared data. .
consistency protocols and workloads.

Average Throughput Average Throughput

No Replication —— 4 teplicas
Weak —= 6 replicas
Invalidation-Based Strong === 7 1|_8 replicas
Partitioned = T
Lock-Based Strong i
4 i

Interactions per Second
~ w
T T
i i
Interactions per Second
IS
T

N
T
i

Browsing Shopping Ordering Browsing Shopping Ordering

Fig. 10. Average throughput for different conFig. 11. Average throughput for increasing
sistency protocols and workloads. replicas (invalidation-based strong consistency).

Data accessesFigure 7 shows the number of accessamaintaining strong consistency has significant overheadw
to shared data, which also depends on the throughput shewever still does not outweigh the replication benefitoSg
tained by the different protocols. We observe that partitig consistency is not significantly more expensive than weak
decreases the amount of shared data accesses by ordemow$istency. Partitioning on the other hand provides Baanit
magnitude in the case of the ordering workload. This showenefits in terms of response time, by decreasing the commu-
that carefully choosing to partition tables that are beingjcation overhead between nodes. It is important to analyze
updated we can eliminate a lot of the shared data accessesrasgonse time in conjunction with throughput, as servisg le
consequently the communication overhead they incur. Weaker requests can decrease response time. This is for exampl
consistency is not shown, since none of the data accestescase with lock-based strong consistency.
are shared, in the sense that they do not require online nod&hroughput. Figure 10 shows the average throughput, in
coordination. completed interactions per second, again for the different

Data writes. Figure 8 shows the number of writes toreplication schemes. We observe that the write-heavy gler
shared data. As expected, the number of writes increasesnvaskload decreases the throughput of the strong consistenc
the workload becomes more write-heavy. Again, partitigninprotocols. This is because of the required synchronization
eliminates a lot of shared data writes, while lock-baseangfr between nodes. The latter is avoided by partitioning. The
consistency requires significantly more shared data writekroughput during read-heavy workloads, on the other hand,
Weak consistency is not shown, for the same reason asidgnnot affected by our invalidation-based strong consisten

the previous figure. protocol. The throughput of the lock-based strong consiste
o protocol however decreases even during the shopping work-
C. Replication Performance load, due to the use of readlocks. Thus readlocks result in

In the second set of experiments we compared the perfthroughput decrease even for primarily read-heavy woddoa
mance of the various replication schemes, focusing on the o) .
TPC-W metrics of response time (WIRT) and throughplf- nvalidation-Based Strong Consistency Scalability
(WIPS). We also compared the performance of the replicationIn the third set of experiments we focused on the scalability
schemes to the performance of a single server serving uséour invalidation-based strong consistency protocol.
requests (“No Replication”). Replication degree. Figure 11 shows how the average
Response timeFigure 9 shows the average response tinteroughputis affected as more replicas are added to therayst
in seconds, for the different consistency protocols, ad wale observe that read-heavy workloads can see a larger per-
as for the case of using a single server. We observe tliatmance benefit from increased replication. This is begaus

less updates need to be coordinated with remote replicagation system is used to synchronize them, so that writes
Additionally, the performance benefit of replication dexses are applied in the same order in all replicas. This is the
as the replication degree increases. This can be explaynedapproach employed in several systems [10]-[15]. Write con-
the fact that larger numbers of replicas require more messafjicts may lead to retries, presenting potentially a sciitsbi
to be exchanged in order to maintain consistency, espgcidiottleneck [4]. Moreover, group communication, in additto
for write-heavy workloads. Replication degrees such as thequiring significant message exchanges, also calls famnbal
ones shown in Figure 11 are common for online applicatiomsy complex implementation and configuration tradeoffs [2]
up to a medium scale. Related work has also used similarn distributed versioning [21], [28] and snapshot isolatio
setups, ranging from 1 to 9 servers [5]-[8], [13], [15], [21] [7], [12] multiple versions of data tables are maintainedl, s
that concurrency can be increased to improve performance.
In distributed versioning [21], [28] and snapshot isolatio
Consistency tradeoffs have been explored when replicatifj, [12] multiple versions of data tables are maintaineal, s
for availability. The CAP dilemma states that a replicatiothat concurrency can be increased. In [21], [28] multiple
system can provide only two out of sequential Consistenaydes operate concurrently on data and reads are redirected
high Availability, and resilience to network Partitions2[2 by a centralized, conflict-aware scheduler to a node with a
[23]. Reduced consistency can be traded off with increasedrrent copy of the table they require. Having a centralized
availability [24], [25]. TACT [25] provides a continuous o scheduler offers tight consistency control but can poadigti
sistency model to bound the provided availability as a fiemct limit scalability. In [12] multi-version caching is empled at
of numerical error, staleness, or order error. the application server in addition to the database. In thgec
The performance overheads of consistency have first beemulticast-based group communication system is needed to
studied in the domain of distributed databases. [4] has ptmchronize the replicas.
sented an average case analysis for major replication model Gossiping has also been proposed as a means to replicate
The taxonomy presented includes eager replication (strothg soft state of the logic tier in multi-tier architectuf@®],
consistency) versus lazy replication (weak consistenag), in order to minimize accesses to the data tier. This teclniqu
well as group replication, in which all replicas accept esit however only offers weak consistency.
versus master replication, in which only a master replica Data partitioning, as was explained in sections IV-B is
accepts writes. another technique that aims at increasing concurrencyon@r
Solutions to the consistency problem in the domain oéplication, allowing each node to be responsible for a subs
distributed databases can be divided in three categortek-L (partition) of the data. In the case of database replicapian
based, timestamp-based, and optimistic approaches. In t@ilbning takes place either horizontally (dividing rowsrass
cases each replica is responsible for serializing the tram®des), or vertically (dividing columns). Common partitiag
actions that access local tables, and the additional pwbtocriteria include a range, a list of values, a hash functian, o
each time is used to enforce global serialization. Loclketasa combination of the above, applied to the partitioning key
approaches [16] use a lock manager to achieve this gaosfl.a table. All major DBMSs support partitioning, including
Timestamp-based approaches [16] utilize the generation |BM DB2, Oracle, Microsoft SQL Server, PostgreSQL, and
an agreed timestamp ordering between the replicas. FinaNyySQL. While partitioning provides performance benefits
optimistic approaches [26], [27] require global validatiosuch as the ones outlined in section V, the data are not repli-
before a transaction is committed, or a global ordering @ated, which may have availability implications. Additadly,
committing transactions. queries that touch multiple tables may need to travel thnoug
[2], [3] provide overviews of replication approaches imrmore than one nodes.
order to enhance web application performance of multi-tier [30] discusses replication for TPC-W, which is also the ap-
architectures. Having a single data tier supporting mulfplication benchmark we use for our performance comparison.
ple web and application servers is a common replicatiofhe authors discuss improvements in availability and perfo
scheme [5], [6]. While not replicating the data tier avoile t mance that can be obtained by taking into account applizatio
synchronization overhead, this non-replicated tier cazobe specific semantics. Focusing on the particular applicatiom
a performance bottleneck and a single point of failure. authors present a design for distributed objects that each
Master (or master-slave) replication, in which reads anfanages a specific subset of shared information. While we
writes are separated, is another common replication m@dlel [also use TPC-W for our evaluation, the invalidation-based
[8]. In this model only a single master replica accepts \gritestrong consistency protocol we propose makes no applicatio
while multiple slave replicas serve reads. Having a sing#pecific assumptions.
master solves the synchronization and consistency mainte-
nance issues. To improve performance however, updates are VIl. CONCLUSION
only propagated asynchronously from the master to the slaven this paper we have presented common replication ap-
replicas. Thus, this model offers only weak consistency. proaches with various consistency guarantees, and prdpose
In group (or multi-master) replication, in which multiplean efficient, distributed, strong consistency protocol. Nege
replicas act as masters and accept writes, a group comroampared the design of our protocol to established appesach

V1. RELATED WORK

and discussed its implementation in a replication middtewa[18] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal, “Ag names:
for multi-tier architectures. We have used the TPC-W trans-

o

actional web commerce benchmark to conduct a compre-
hensive experimental evaluation of five different repimat

approaches. In our experiments we have compared the pétt
formance of no replication to that of partitioning, as wedl a
to the performance of replication with weak consistencyhwi

lock-based strong consistency and with our invalidatiaseul
. . . 21]
strong consistency. We have provided an experimental coin—
parison using a variety of realistic workloads to demortstra
the practicality of our invalidation-based strong coresisly
protocol. Our implementation of different common replioat
approaches allowed us tpantify the performance differences[23]
among them, and in particular to quantify the performante hi
of providing strong consistency depending on the Workloatgz‘]

type.

(1]

(2]

(3]

(4]
(5]
(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel, “Perftance
impacts of autocorrelated flows in multi-tiered systenfetformance
Evaluation, vol. 64, no. 9-12, pp. 1082-1101, October 2007.

E. Cecchet, A. Ailamaki, and G. Candea, “Middlewaredzhslatabase
replication: The gaps between theory and practice,Pinceedings of
ACM SIGMOD, June 2008.

S. Sivasubramanian, G. Pierre, M. Steen, and G. Alon&oalysis of
caching and replication strategies for web applicatiohEEE Internet
Computing, vol. 11, no. 1, pp. 60-66, January/February 2007.

J. Gray, P. Helland, P. O'Neil, and D. Shasha, “The dasgéreplication
and a solution,” inProceedings of ACM SSGMOD, June 1996.

L. Cao and M. T. Ozsu, “Evaluation of strong consistenagbvecaching
techniques,"World Wde Web, vol. 5, no. 2, pp. 95-124, 2002.

M. H. S. Attar and M. T. Ozsu, “Alternative architecturasd protocols
for providing strong consistency in dynamic web applicasi®y World
Wide Web, vol. 9, no. 3, pp. 215-251, October 2006.

C. Plattner and G. Alonso, “Ganymed: Scalable replaratior transac-
tional web applications,” irProceedings of the 5th ACM/IFIP/USENIX
International Middleware Conference (MIDDLEWARE), October 2004.
C. Plattner, G. Alonso, and M. T. Ozsu, “DBFarm: A scatabluster for
multiple databases,” ifProceedings of the 7th ACM/IFIP/USENIX In-
ternational Middleware Conference (MIDDLEWARE), November 2006.
G. V. Chockler, I. Keidar, and R. Vitenberg, “Group comnica-
tion specifications: A comprehensive studdCM Computing Surveys,
vol. 33, no. 4, pp. 427-469, December 2001.

B. Kemme and G. Alonso, “Don't be lazy, be consistentstgoes-R, a
new way to implement database replication,”Froceedings of the 26th
International Conference on Very Large Data Bases (VLDB), 2000.

M. Patino-Martinez, R. Jimenez-Peris, B. Kemme, and Afonso,
“Middle-R: Consistent database replication at the middievlevel,”
ACM Transactions on Computers, vol. 23, no. 4, pp. 375-423, 2005.
F. Perez-Sorrosal, M. Patino-Martinez, R. JimenezsPand B. Kemme,
“Consistent and scalable cache replication for multi-tiREE appli-
cations,” in Proceedings of the 8th ACM/IFIP/USENIX International
Middleware Conference (MIDDLEWARE), November 2007.

Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenezi®e‘Enhanc-
ing edge computing with database replication,”Hroceedings of 26th
Symposium on Reliable Distributed Systems (SRDS), September 2007.
Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C.ufu, “On
the performance of consistent wide-area database répii¢ain Johns
Hopkins University, Center for Networking and Distributed Systems
(CNDS) Technical Report CNDS-2003-3, December 2003.

E. Cecchet, M. Julie, and W. Zwaenepoel, “C-JDBC: Hxidatabase
clustering middleware,” ifProceedings of the USENIX Annual Technical
Conference, June 2004.

P. A. Bernstein and N. Goodman, “Concurrency controbistributed
database systems&CM Computing Surveys, vol. 13, no. 2, pp. 185—
221, June 1981.

Transaction Processing Performance Council, “TPCcBerark W (Web
Commerce) Specification,” February 2002.

[22]

[25]

[26]

[27]

(28]

[29]

Flexible location and transport of wide-area resourcestoB@er 1999.
G. Ricart and A. Agrawala, “An optimal algorithm for nual exclusion
in computer networks,Communications of the ACM, vol. 24, no. 1, pp.
9-17, January 1981.

T. Bezenek, T. Cain, R. Dickson, T. Heil, M. Martin, C. Kauardy,
R. Rajwar, E. Weglarz, C. Zilles, and M. Lipasti, “Charaiteg a
Java implementation of TPC-W,” iRroceedings of the 3rd Workshop

On Computer Architecture Evaluation Using Commercial Workloads

(CAECW), January 2000.

K. Manassiev and C. Amza, “Scaling and continuous atmlity in

database server clusters through multiversion repliedtim Proceed-

ings of the 37th IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), June 2007.

E. A. Brewer, “Lessons from giant-scale service$EEE Internet

Computing, vol. 5, no. 4, pp. 46-55, July/August 2001.

S. Gilbert and N. Lynch, “Brewer's conjecture and thedibility of
consistent, available, partition-tolerant web servicesaCM S GACT

News, vol. 33, pp. 51-59, June 2002.

K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimand A. J.
Demers, “Flexible update propagation for weakly consisteplication,”
in 16th ACM Symposium on Operating Systems Principles (SOSP), 1997.
H. Yu and A. Vahdat, “The costs and limits of availalilitor replicated
services,”ACM Transactions on Computer Systems, vol. 24, no. 1, pp.
70-113, February 2006.

H. Kung and J. Robinson, “On optimistic methods for camency
control,” ACM Transactions on Database Systems, vol. 6, no. 2, pp.
213-226, June 1981.

A. Adya, R. Gruber, B. Liskov, and U. Maheshwari, “Efféait optimistic
concurrency control using loosely synchronized clocks Pioceedings

of ACM SGMOD, May 1995.

C. Amza, A. Cox, and W. Zwaenepoel, “Distributed versig: Con-
sistent replication for scaling back-end databases of mymaontent
web sites,” inProceedings of the 4th ACM/IFIP/USENIX International

Middleware Conference (MIDDLEWARE), June 2003.

T. Marian, M. Balakrishnan, K. Birman, and R. Renessgemipest:
Soft state replication in the service tier,” Proceedings of the 38th

IEEE/IFIP International Conference on Dependable Systems and Net-

works (DSN), June 2008.

] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. lyengamfiroving

availability and performance with application-specifidadeeplication,”
|EEE Transactions on Knowledge and Data Engineering, vol. 17, no. 1,
pp. 106-120, January 2005.

