
 ChameleonSoft: A Moving Target Defense System

Mohamed Azab
Bradley Department of Electrical

and Computer Engineering, Virginia Tech

Email: mazab@vt.edu

Riham Hassan
Computer Science, Virginia Tech

Email: rhabdel@vt.edu

Mohamed Eltoweissy1
Pacific Northwest National Laboratory

Email: mohamed.eltoweissy@pnnl.gov

Abstract— Ubiquitous cyber systems and their supporting

infrastructure impact productivity and quality of life

immensely. Their penetration in our daily life increases the

need for their enhanced resilience and for means to secure and

protect them. One major threat is the software monoculture.

Latest research work illustrated the danger of software

monoculture and introduced diversity to reduce the attack

surface. In this paper, we propose a biologically-inspired

defense system, ChameleonSoft, that employs multidimensional

software diversity to, in effect, induce spatiotemporal software

behavior encryption and a moving target defense. The key

principles are decoupling functional roles and runtime role

players; devising intrinsically-resilient composable online

programmable building blocks; separating logic, state and

physical resources; and employing functionally-equivalent,

behaviorally-different code variants. Given, our construction,

ChameleonSoft is also equipped with an autonomic failure

recovery mechanism for enhanced resilience. Nodes employing

ChameleonSoft autonomously and cooperatively change their

recovery and encryption policy both proactively and reactively

according to the continual change in context and environment.

In order to test the applicability of the proposed approach, we

present a prototype of the ChameleonSoft Behavior Encryption

(CBE) and recovery mechanisms. Further, using analysis and

simulation, we study the performance and security aspects of

the proposed system. This study aims to evaluate the

provisioned level of security by measuring the level of induced

confusion and diffusion to quantify the strength of the CBE

mechanism. Further, we compute the computational cost of

security provisioning and enhancing system resilience. A brief

attack scenario is also included to illustrate the complexity of

attacking ChameleonSoft.

Keywords— Cyber security, Ubiquitous computing, Software

diversity, Online programmability, Biologically-inspired security.

I. INTRODUCTION

Biological inspiration in computer security dates, at least,
to the definition of the term “computer virus” in the early
1980’s [23]. Self-propagating malware and computer worms
have clear life-like properties [24]. In contrast, currently used
defenses predominantly lack biological flavor. In nature,
diversity provides a defense against such self-propagating
threats by maximizing the probability that some individuals
will survive and replenish the population with a defense
against that particular threat. It has been noted that much of
the vulnerability of our networked computing systems can be
attributed to the monoculture or lack of diversity in our
software systems [1]. It is practically inevitable that software
will contain flaws. Our software monoculture enables attack
spread thus exposing the systems to large-scale attacks by
well-informed attackers.

Inspired by the resilience of diverse biological systems in
the sea chameleons, we propose a diversity-based defense
mechanism against software attacks, termed ChameleonSoft.

Sea chameleons or cephalopods employ multi-layer diversity
for different purposes. For example, they leverage their
capability to change their body color, texture and appearance
to induce diversity. Diversity is used to camouflage for
defense, disguise for hunting, and change color for
communication [22]. Similarly, ChameleonSoft utilizes
spatiotemporal software diversity to enhance software system
security, survivability and resilience.

ChameleonSoft is based on our Cell-Oriented
Architecture (COA). COA is a biologically inspired
architecture with active components called cells that support
the development, deployment, execution, maintenance, and
evolution of software. Cells separate logic, state and physical
resource management. Cells are dynamically composable
into organisms that are bound to functional roles at runtime.
Such construction supports online programmability, hot code
swapping and automated recovery. These features together
enable what we term as “ChameleonSoft Behavior
Encryption (or CBE)” akin to message encryption.

CBE applies spatiotemporal diversity in a way that makes
the attack target in continual random motion evading
attackers. CBE leverages the COA intrinsic separation of
concerns to realize temporal and spatial diversity. Temporal
diversity is applied by shuffling multiple functionally-
equivalent, behaviorally-different software variants at
runtime. In addition, CBE realizes spatial diversity by
enabling runtime seamless migration of cells from one
physical host node to another. The goal behind that is to hide
the potentially targeted software flaws that might be used to
penetrate the system.

COA divides the large missions of a huge software
program into smaller tasks. Each of these tasks is assigned to
one or more cells in the form of manually or automatically
generated sets of similar function and different-behavior
executable variants. These sets might have different
objectives targeting different quality attributes. Reliability,
performance, robustness, and mobility are examples of such
attributes. ChameleonSoft shuffles variants and sets to induce
diversity. The scope of shuffling extends beyond security
goals to the other quality attributes. The system might shuffle
to a variant that aims at high system performance in
overloaded but low security risk situations. Alternatively, the
system would resort to a higher security, perhaps lower
performance variant in higher risk situations.

Researchers in [4] mentioned that multi-variant systems
without appropriate recovery mechanism might face a larger
amount of coincident failures. ChameleonSoft is equipped
with multimode recovery mechanisms providing different
levels of fault tolerance granularity. Such feature increases
the system resilience against international and unintentional
failures.

1
The author is also affiliated with the Bradley Department of ECE

at Virginia Tech and the ECE Department at University of Arizona

Inspired by the sea chameleon dynamic change in
response to frequent changes in the environment;
ChameleonSoft autonomously and seamlessly change the
shuffling and recovery polices at runtime to suite the
continual dynamic changes of the surroundings. This
dynamic policy change enables ChameleonSoft to support
legacy software packages that cannot be chameleon-ized (re-
programmed to enable check-pointing needed for temporal
diversity). ChameleonSoft will use only space diversity to
encrypt the software behavior of such packages. In this case,
ChamelonSoft will use only one failure recover mode to
support this packages, the fine grain recovery. The details of
software chamelionaization are beyond the scope of this
paper. It is part of our future work to address this issue in our
sequel papers.

Our main contributions in this paper can be outlined as

follows:

1) A biologically inspired architecture as an

employment of a mission-oriented application

design and inline code distribution to enable

adaptability, dynamic re-tasking, and re-

programmability;

2) CBE mechanism that applies multidimensional

spatiotemporal diversity to mobilize attack target;

3) A multimode, autonomous situation-aware recovery

system for enhanced system resilience;

4) An elastic software platform that dynamically and

autonomously change shuffling, and recovery

policies to match the surroundings frequent

changes.

In order to test the applicability of the proposed approach,

we developed a prototype of the CBE mechanism. Further,

using analysis and simulation, we studied the performance

and security aspects of the proposed system. This study aims

to evaluate the provisioned level of security by measuring the

level of induced confusion and diffusion to quantify the

strength of the CBE mechanism. We also estimated the

computational cost of security provisioning, and enhancing

system resilience in ChameleonSoft with regards to the

amount of consumed resources, task completion time, and

recovery downtime. We also illustrated by brief attack

scenario the complexity of attacking ChameleonSoft.
The balance of this paper is as follows. Section 2 presents

a brief literature survey. Section 3 describes our COA.
Section 4 presents the moving target security mechanism.
Section 5 discusses the evaluation of the proposed system.
Finally the paper concludes in section 6.

II. RELATED WORK

Software diversity has a long history of research work in

the field of software security and fault tolerance dated back

to the 70’s. Basically software diversity was presented as

multiple independent solutions for the same problem.

The realization of that is to develop multiple independent
versions of a program with different teams using different
languages. The main goal from that approach was to increase
the attacker confusion by changing the behavior of the
software; which will make harder system exploitation. They
expected that at any given time the majority of these versions
will be working correctly [1, 2].

Some research work showed that there is a high
probability that a multi-variant software approach might face
many coincident failures [3, 4]. On the contrary other
research work suggested that from the cost and the reliability
point of view, the multi-variant approach is much better than
the one “good” version, especially in mission critical
applications where the cost of failure could be very high [20].

Diversity has been realized in various ways. Some work
presented it in the form of confusion induction paradigm [5,
6]; where diversity is used to confuse the attack in order to
complicate the attack process. A good example for
leveraging diversity for confusion induction is presented in
the form of a load-time binary transformation by [7]. Others
presented different solution for diversity realization based on
virtual machines called “private machine architecture” [8].
They used randomization to promote heterogeneity at the
machine level aiming to increase the cost of broad-based
binary attacks. Moreover, some commercial operating
systems realized the ideas of operating system randomization
[9, 10]. System call mappings, global library entry point, and
stack placement randomization are used to induce diversity
as mitigation for buffer overflow attacks.

Component diversity was investigated in Genesis [11],
were the idea of providing both design diversity in the form
of multiple variants representing different designs of the
same specification as well as data diversity were proposed.
Data diversity uses multiple copies of a single
implementation operating on different data inputs but
yielding the same desired results.

Massive-scale software diversity was presented by the
help of automated variant generation and utilizing
multicourse platforms. Compiler guided code variance
approach aims to present such automation [12]. A realization
of this massive-scale software diversity approach for the
purpose of detecting anomalies by replicated execution was
first presented by [13, 14, 15] they mixed diversity with
parallelism and check pointing. They execute different
variants of a program on a muticore environment while
monitoring any deviation in the program flow to issue an
intrusion alert.

A major drawback of existing solutions was the need for
virtualizing every input to the whole set of executing variants
at the same logical point to be able to detect the abnormal
deviation of the execution flow. More advanced approaches
with the objective of anomaly detection through detecting
flow deviation but with much less constraints were presented
in [16, 17, 18, 19].

These approaches generally apply different types of

diversity mainly for reliability by replication or for intrusion

detection by program flow deviation detection at runtime.

Based on our knowledge utilizing runtime hot shuffling of

software variants for behavior encryption was not previously

investigated. Further, existing solutions used diversity to

target specific quality attribute. Failure recovery mechanisms

were not investigated as most of these solutions presented

static diversity with low probability of failure. None of them

investigated the idea of presenting a comprehensive solution

that provides elastic, autonomous, resilient, situationally-

aware platform targeting different quality attributes, while

dynamically shuffling its software components to suit

changes in the surroundings. Another drawback of these

solutions was the massive use of resources to realize

diversity using virtualization techniques and multicore or

multiprocessor platforms. ChameleonSoft is designed to

support legacy systems with limited resources. It can

dynamically tailor its tasks to suit the dynamic change in

resource availability.

III. THE CELL ORIENTED ARCHETECTURE

In biology, sea chameleons, or chameleons for short,
well known for their capability to induce diversity.
chameleon colony may be perceived as a formation
group of chameleon organisms playing some r
missions covering different objectives. Each
comprises a set of cells that cooperate to accomplish
organism mission. Each organism cell has a dedicated task
that helps in the mission accomplishment. Some
have a directly related task to the organism mission
others might work to facilitate the success of other

Our COA is inspired by the chameleon
architecture The COA is an employment of a mission
oriented application design and inline code distribution to
enable adaptability, dynamic re-tasking, and re
programmability. The cell is the basic building block in
COA. It is the abstraction of a mission-oriented autonomous
active resource. Generic cells termed stem cells,
seamlessly created by the middleware or the chameleon cell
DNA (CCDNA). Further, they participate in emerging tasks
through a process called specialization. The CCDNA is a
middleware program that allows a physical workstation to
host cells and facilitates cell physical resource allocation and
management. Stem cells are free resources that abstract
node resources. They can encapsulate any of these resources
to represent a part of an organism.

Once specialized, cells exhibit application specific
behavior. Specialized cells have mission objective
being continuously sought. The cell monitoring and analysis
components are used to monitor performance parameters,
mission objectives, and other phenomena of interest.

Figure 1. Components of our COA

We envision applications built over COA as a group of
cooperating roles representing mission objectives. The term
organism is used to represent a role player that perform
dedicated mission. An organism might be composed of a
single or multiple cells based on its objectives
illustrates the different components of the COA.
following subsections illustrate the design aspects
COA architecture components namely the cell, the organism,
and the management layer.

se of resources to realize

diversity using virtualization techniques and multicore or

multiprocessor platforms. ChameleonSoft is designed to

support legacy systems with limited resources. It can

dynamically tailor its tasks to suit the dynamic change in

RCHETECTURE (COA)

, or chameleons for short, are
their capability to induce diversity. A

a formation of a
playing some roles for

different objectives. Each organism
cooperate to accomplish an

a dedicated task
Some cells might

e a directly related task to the organism mission while
the success of other cells.

chameleon colony
an employment of a mission-

oriented application design and inline code distribution to
tasking, and re-

is the basic building block in
ted autonomous

termed stem cells, are
chameleon cell

participate in emerging tasks
The CCDNA is a

physical workstation to
cell physical resource allocation and

Stem cells are free resources that abstract host
encapsulate any of these resources

cialized, cells exhibit application specific
behavior. Specialized cells have mission objective that are

monitoring and analysis
are used to monitor performance parameters,

mission objectives, and other phenomena of interest.

applications built over COA as a group of
objectives. The term

role player that performs a
might be composed of a

its objectives. Fig. 1
illustrates the different components of the COA. The

subsections illustrate the design aspects of the
he cell, the organism,

A. The Cell

Conceptually, the cell is the smallest active resource in a
distributed computing platform. Cells are generic virtual
computational units that acquire, on
specific functionality in the form of an executable code
variant.

A single workstation can host one or more cells,
providing a flexible way to share the physical resour
among multiple applications. A cell can operate
independently as a unicellular organism that possesses
autonomous existence. It also could be part of a larger
structure that resembles multi-cellular organisms.
illustrates the different components that contribute to
construct the cell.

Figure 2. The Cell

Cells are instantiated at bootstrapping when the
manager initializes the cell components and ports with the
appropriate parameters based on the bootstrap context. The
I/O manager handles local and remote I/O communication
setup, I/O logging, and IP/Port/Virtual naming resolution.
The specialization process occurs when the
receives the executable variant that represents the application
specific functionality that the cell should
is responsible for the runtime termination and replacement of
the executing variants based on incoming shuffling
commands. Shuffling commands is the responsibility of the
shuffler unit; while the execution state preservation
responsibility of the state transaction manager (STM). The
shuffler applies a predetermined logic based on multiple
feedback inputs from different sources
decisions. Most of these sources are representations of the
situational awareness units within the
the Management Layer. The STM provides real
monitoring and preservation of the executing program states
and sensitive data. Further, it cooperates with the recovery
and replication manager (RRM) to successfully restore the
current state of an executing program in case of failure. The
STM is responsible for storing the recovery data externally
and internally in the data stores with the appropriate
committing frequency for each store.

B. The Organism

An organism is an autonomous logical execution uni
follows the logic patterns of role provide
interpretation of a dedicated mission dynamically assigned to
organisms. An organism might comprise a number of
wired together dynamically (at runtime) to form a software
structure having an independent execution context.

The simplest organism is composed of only a single cell.
A more complex organism may span any number of cells that
can be distributed among multiple physical computing hosts.

Conceptually, the cell is the smallest active resource in a
distributed computing platform. Cells are generic virtual

, on the fly, application
m of an executable code

A single workstation can host one or more cells,
providing a flexible way to share the physical resources

A cell can operate
independently as a unicellular organism that possesses
autonomous existence. It also could be part of a larger

cellular organisms. Fig. 2
illustrates the different components that contribute to

The Cell

Cells are instantiated at bootstrapping when the bootstrap
components and ports with the

appropriate parameters based on the bootstrap context. The
I/O manager handles local and remote I/O communication

up, I/O logging, and IP/Port/Virtual naming resolution.
when the execution unit

receives the executable variant that represents the application
specific functionality that the cell should acquire. Further, it

ermination and replacement of
the executing variants based on incoming shuffling
commands. Shuffling commands is the responsibility of the

while the execution state preservation is the
on manager (STM). The

shuffler applies a predetermined logic based on multiple
sources supporting shuffling

decisions. Most of these sources are representations of the
thin the cell, the organism and

ayer. The STM provides real-time
monitoring and preservation of the executing program states

it cooperates with the recovery
to successfully restore the

cuting program in case of failure. The
STM is responsible for storing the recovery data externally

data stores with the appropriate

is an autonomous logical execution unit that
follows the logic patterns of role providers. A role is an

dynamically assigned to
comprise a number of cells

wired together dynamically (at runtime) to form a software
ing an independent execution context.

is composed of only a single cell.
A more complex organism may span any number of cells that

hysical computing hosts.

The organism is the underlying physical structure for the
role functional element. Accordingly roles can transparently
span multiple physical hosts through network-wide execution
contexts. Exactly like any computing cloud, hosts with
limited capabilities can collectively participate in the
execution of complex autonomous roles.

Figure 3. The Organism

Fig. 3 shows the different components that form an
organism. The role manager is responsible for decomposing
the organism designated role into a set of tasks in the form of
executable variants to be assigned to the participating cells. It
is also responsible for profiling the needed resources for each
task to be executed. The stem cell factory is responsible for
instantiating generic cells that will acquire functional variants
to specialize. The structure manager and connectivity matrix
generator generate the organism composition structure of
cells. It is also responsible for drawing the connectivity
diagram that guides the DNS (responsible for resolving the
real host IP/Port mapping) to the virtual cell and organism
names. The working cells use this mapping at runtime to
direct incoming and outgoing communications. This is an
intrinsic to the COA’s separation of concerns that enables
CBE space diversity features. In case of cell movement, the
DNS will be instructed by the shuffler to maintain
communication redirection; while the STM handles state,
logic, and data maintainability. Finally the remote
deployment unit will instruct the stem cell factory to deploy
the generated cell on the selected remote host with the help
of a remote deployment agent installed on that host as a part
of the CCDNA.

C. The Management Layer

This layer is responsible for the organism creation, the
overall platform management and the host side APIs. It has a
major role in enhancing the cell situational awareness by
utilizing a set of monitoring and analysis units. The
Management Layer also monitors the working cells for
recovery assessment. Further, it provides the necessary
management tools for system administrators to manage,
analyze, and evaluate the working organisms. Fig. 4
illustrates the main components of the management layer
briefly described as follows.

Policy Manager: generates and assigns communication
policies, and bootstrap recovery and shuffling policies. It is
also involved in policy manipulation for management
purposes.

 Monitoring and Tracking: monitors executing
organisms to facilitate the administration tasks, and recovery
assessment.

Remote Deployment agent: host-based unit that
generates a suitable environment for the cell to be executed
over the host.

Mission Manager: converts missions into executable
roles.

Organism Factory: generates organisms according to the
mission interpreter output to play the designated role.

Data Store: a self-managed client server distributed
database component. It is responsible for storing the logging
and recovery data.

Figure 4. The management layer

IV. CHAMELEONSOFT MOVING TARGET DEFENSE

APPROACH

We promote the novel moving target approach by
ChameleonSoft as a defense mechanism against software
attacks. Inspired by the chameleon diversity employment for
camouflaging, ChameleonSoft encrypts software behavior by
employing multidimensional diversity. The outcome is a
continuous spatiotemporal change of the network behavior
to, in effect, move the attack target away from the attacker.
Our system is equipped with an autonomous, situational
aware, multi-mode failure recovery mechanisms. Such
recovery mechanisms enhance the system resilience against
both intentional and un-intentional failures.

A. Behavior encryption

Typical encryption entails transforming the plain text into
an unrecognizable message to the interceptor. Strong
encryption schemes have two major properties namely
confusion and diffusion. The confusion property virtually
prohibits interceptors from predicting the ciphertext resulting
from changing one character in the plaintext. An effective
confusion is enforced via a complex functional relationship
between the plaintext, key pair and the ciphertext. Confusion
aims at maximizing the time that the attacker consumes to
determine the relationship between the plaintext and the key
pair. Diffusion is the other property of strong encryption
schemes. Diffusion enables the cipher to spread the plaintext
information over the entire ciphertext so that the changes in
the plaintext affect many parts of the ciphertext [21].

Behavior encryption in ChameleonSoft is analogous to
typical encryption in the way it exhibits the confusion and
diffusion properties. ChameleonSoft induces confusion by
dynamically changing the behavior of the executing software
variant using runtime shuffling of code variants. The
dynamic software behavior change makes it more difficult
for an attacker to generate a profile with the possible flaws of
the executing variant. The shuffling pattern is a supervised

reflection for the continuous change in the environs. In
ChameleonSoft, an effective confusion is determined by how
complex to correlate the change in the output behavior
relative to a single induced change in the environment.

ChameleonSoft induces diffusion by generating a random
virtually intractable significant change in the spatiotemporal
network behavior using the cell independent decision making
capability. Each cell in the network takes its own shuffling
decision regarding when to shuffle the current variant, the
shuffling frequency, and the variant selection for the next
shuffle. These decisions are guided by a continuous feedback
from the situational awareness units that monitor the cell
surroundings and the shuffling policy.

For example, an attacker might be able to induce a
change in the system surroundings “like overloading the
network” to force the system to shuffle the currently
executing variant. The cells close to the induced event
change their variant set to target a different quality attribute
(e.g. performance) that suits the induced change in the
environment. Further, an alert is announced based on a
predetermined announcement policy to other remote cells to
inform them about that event. Based on that announcement,
these cells make independent shuffling decisions regarding
their currently executing variants. Those who decide to
shuffle shall replace the current variant by another one from
the same set to preserve their previously targeted quality
attribute. These independent decisions make the attack target
“a flaw in a specific variant” in continual random motion
evading attacks.

We propose a variant layout randomization technique to
increase the level of CBE’s confusion induction. The system
assigns the variant shuffling index based on a predetermined
sequence. Variants’ indices are shuffled internally within
each cell based on a cell independently generated random
number that changes over time. This random number is used
to shift the next executing variant selection index to a random
location in the variant layout space.

Software behavior encryption by runtime hot shuffling of
software variants is a realization of ChameleonSoft temporal
diversity. ChameleonSoft realizes space diversity by
seamlessly moving the cell at runtime among different
physical hosts. During this process, the COA autonomously
maintains communications, cell sensitive data, and state
logic.

ChameleonSoft can follow different shuffling policies at
runtime to suit the dynamic change in the surrounding
environment. A policy change might induce a change in the
shuffling frequency for more security, or the shuffling
orientation to favor time over space diversity or vice versa.
ChameleonSoft can use space diversity only mode to encrypt
the software behavior of legacy software packages that
cannot be chameleon-ized (by enabling check-pointing). In
this case ChameleonSoft will deploy multiple remote replicas
for the cells executing such legacy packages. All replicas will
receive same inputs, communication redirection between
cells output ports will be used to achieve space diversity
among these replicas. Software chameleonization is beyond
the focus of this paper, we intended to present the details of
this process in our sequel papers.

The overall diversity induced by our system can be
expressed in the form of X missions represented in Y roles.
These roles are played by M organisms, composed of K cells.

Each cell has P quality attribute sets containing Z software
variants, to be executed on Q nodes all over the network with
average of R shuffling events/sec.

Our current work focuses on the behavior encryption
through hot shuffling of software variants. We anticipate
employing the variant generation process of [17] for an
automated variant generation. Also functional programming
tools are helpful in manually generating these variants.

B. ChameleonSoft multi-mode failure recovery mechanism

Chameleons employ different diversity techniques to
increase the resilience of their camouflaging process against
attacker visual observation. Changing body color, texture,
and appearance are examples for such techniques. They
recover from a technique failure by switching to another
technique. Similarly, ChameleonSoft applies different
diversity techniques for camouflaging to enhance the system
resilience against attacker utilization of possible software
flaws. Applying diversity might involve multiple
interruptions of the executing variants. Doing so might lead
to multiple coincident failures. Therefore, we designed an
autonomous, dynamic, situational aware, multi mode failure
recovery mechanism to resolve possible coincident failures.
A major outcome of this recovery mechanism is the failure
resilience enhancement not only against coincidental failures,
but also against malicious induced failures by adversaries.

ChameleonSoft can dynamically and autonomously
change the cell recovery policy to cover different fault
tolerance granularity levels. Such levels might target
reliability, survivability and resource usage optimization. For
fine grained recovery against logical failures, a cell can have
one or more replicas on the same physical host. Further, for
more fine grained recovery against logical or physical node
failure, a cell might have one or more replicas on different
physical hosts. In ChameleonSoft replicas need to only
replicate the STM and the data store units of the cell. The
remaining cell components stay in hibernation waiting for
resurrection when the replicas take over. ChameleonSoft
does that to minimize the resource usage by these replicas.

In a resource constrained environment, ChameleonSoft
can follow a more coarse grained recovery that might save
some of the resources used by replicas while compromising
some of the execution states. The cell is designed to send a
periodic behavior change beacon messages containing its
sensitive data, the currently executing set, variant, and the
last executed state to be saved on a secure remote data store.
These messages are mainly used to server communication
and recovery objectives; while they might have other uses as
illustrated in subsection C. In case of failure ChameleonSoft
retrieves the last stored message for the failed cell. It
leverages the message content and any available
communication logs to restore the failed cell to its prior state
before failure.

The coarse-grained recovery mode is always on by
default enabling the support of multiple concurrent recovery
policies. The remote safe store is updated regularly with
beacon messages from all working cells. Each cell will
independently and dynamically set its own message update
frequency. Such update frequency could be influenced by the
change of the current recovery policy. The update frequency
might decrease in fine grained recovery mode; while they
should increase with lower granularity recovery.

ChameleonSoft can change cell recovery policy at
runtime to respond to changes in the surrounding
environment. For example, in a resource constrained
situation, the system might choose the coarse grained mode
until more resources are available at which time the system
could go for the finer grained mode.

Fine grain recovery by replication is the most suitable
failure recovery option for cells executing legacy software
packages as it can work with or without check pointing. In
this case the whole cell will be replicated at bootstrap time
ChameleonSoft will connect all replicas to the same input
channel to guaranty correct synchronization. A replica takes
over when it controls the output of the cell.

C. Decision making in ChameleonSoft

In chameleons, color shuffling decision making source
and location depends mainly on the targeted changing speed.
In fast changing chameleons, shuffling decisions are mostly
controlled by the brain with dedicated connections “nerves”,
or through distributed decision making cells all over the
body. In ChameleonSoft, we favor the later approach as it is
more realizable and computationally cost effective from the
communication and resource consumption point of views.
The decision making unit in ChameleonSoft is an intrinsic
cell component enabling independent decision making. More
complex decisions affecting a group of cells or organisms are
handled by distributed decision making units. These units are
responsible for directing the network behavior change for
global purposes. The decision making unit depends mainly
on the situational awareness unit to guide its decisions. The
details of these units are described in the following
subsections.

1) Sensing and situational awareness:
In chameleons, color change is used for exchanging

messages between colony members. Chameleons send
commands, alerts, and guidelines through changing their
body texture or color. In ChameleonSoft the behavior
change beacons are akin to the chameleon color change
messages. We use these beacons to send commands, alerts,
and guidelines to other cells or organisms in the system.

Automated management and analysis units use these
stored beacons to generate more meaningful status reports.
These reports contain information, directions, and commands
that the management want to deliver to a certain area in the
network. The reports are classified according to the
geographical area that they target. Each cell checks for new
reports targeting its area while updating its own beacons on
regular basis. Such reporting mechanism extends the
situational awareness limits of each cell for more accurate
decision-making. Specifically, the management to guide
performance boosting, attack resolution, or attack
containment in a certain area can use the reports. The details
of these usages are not the focus of this paper. We only focus
on using these reports for diffusion induction and recovery
policy change direction.

Local situation awareness is achieved by the use of a
group of sensors in the form of API’s. These sensors are
frequently used between cells and the CCDNA hosting them
to sense any phenomena of interest. The sensors’ feedback
with the regular global report feeds are the main source of
information supporting shuffling and recovery policy change
to be discussed in the next subsection.

2) Shuffling and recovery dynamic policy change:
Shuffling decisions can be classified into two main

categories. The first is shuffling the currently executing set to
suit a local change in the environment. These changes might
include performance overload or security issues. The second
is to randomly shuffle the currently executing variant for
behavior encryption. Such shuffling could be based on a
randomly adjusted timer in each cell for confusion induction.
It could also be for diffusion induction where cells randomly
shuffle the current variant to diffuse the change in the
network behavior in response to an induced change in the
surrounding environment.

Shuffling decisions for diffusion induction are guided by
the regular report feeds targeting the cell’s area. A set
shuffling announcement in a message targeting a specific
network area means that each cell in this area is encouraged
to shuffle its current variant for diffusion induction. The
management attaches these announcements to the next
generated report when it detects a variant set change in any
part of the network. Each cell takes its own decision whether
to shuffle its variant or not based on the available resources,
current workload, and the allowable downtime.

ChameleonSoft may dynamically change the cell
recovery policy at runtime. The change is guided by the
application requirements and host conditions. In a stable
situation with non-mission critical application, a coarse-
grained recovery policy can be used, while in a more
hazardous situation, a fine-grained recovery is preferred. The
cell utilizes the available information about the current
working environment with the application profile to decide
the appropriate recovery policy to use. As the surroundings
change, the cell changes the current recovery policy to suit
these changes.

D. Attacking ChameleonSoft

A resourceful software attacker might use multiple
sophisticated tools to target our system. She might use
scanning tools searching for specific flaws in the executing
variants that would mostly exist in a performance oriented
variant. These tools direct the attacker when and where to
start utilizing these flaws to attack the cell. The whole attack
would only succeed if the attacker manages to do all of the
above within the execution time of the variant containing the
targeted flaw. ChameleonSoft situational awareness unit
would be searching for such scanning and penetration
attempts. Any sign of such actions necessitates a variant set
change to a security oriented set or even an increase in the
variant shuffling frequency in the current set.

Even if the attack succeeds, it can only cause a variant
crash. This event simply calls for recovery and the variant is
replaced autonomously by another variant. The state is
probably restored to the last execution checkpoint before
crash.

An adversary that has physical access to the host
machines might launch a more drastic attack targeting the
CCDNA program to crash all the executing cells on this
machine. The fact that the CCDNA program should have a
static behavior makes it vulnerable to attacks even if it was
built with secure tools. The COA is designed to increase the
level of granularity of mission execution by fractionizing the
missions into a set of interconnected parts distributed over
different hosts. Doing so increases the system resilience
against massive failures. ChameleonSoft defense missions

are divided over multiple cells that might be hosted over
different hosts. Crashing one host does not kill the whole
application. Further, these cells might have replicas on other
hosts that will automatically take over upon failure. The
worst case scenario is that these cells might have no replicas.
In this case, the management layer will sense the failure
either by detecting a discontinuation of the beacon message
postings from these cells, or by a notification from other cells
that where in communication with the failed cells. The
management layer autonomously replaces these failed cells
and use communication logs and stored check points to
restore the last execution state before failure. In a more
targeted attack where the attacker attempt to fail a specific
cell in the process of disabling the execution of a certain
mission. ChameleonSoft Space shuffling makes it even
harder for the attacker to determine the exact physical
location of the targeted cell to attack. The attacker must tailor
her tools to launch his attack on a moving cell. In doing so he
must have access to all other physical hosts that this call
might move to.

V. CHAMELEONSOFT EVALUATION

We use simulation to evaluate the security and
performance of ChameleonSoft. Further, we developed a
prototype with multi mode recovery policy as a step towards
realizing the proposed system.

A. Security analysis

We simulated the behavior encryption module using
Matlab to assess the provisioned level of security. We mainly
measure the level of induced confusion and diffusion to
quantify the strength of ChameleonSoft behavior encryption
mechanism. Table I shows the parameters used in the
simulation. The network parameters are mainly static
parameters used to setup the experiments. The shuffling
event parameters represent the spatiotemporal distribution of
shuffling commands to induce confusion while the attack or
change in environment parameters show the spatiotemporal
distribution of attack events and the event type that
necessities variant set change to respond to the change.
Events shuffling variants selection parameters represent the
selection criteria of the next variant to be shuffled while the
independent shuffling decision on each cell parameter
represents when the cell should take shuffling decision for
diffusion induction.

TABLE I. SIMULATION PARAMETERS

Classificatio

n

Parameter P_Type Run1 Run2 Run3

Network Network size

Static 10*1

0

10*1

0

10*1

0

shuffling variants in

each set

Static 8 8 8

shuffling sets Static 5 5 5

Exp_Time Static 15 15 15

Event Normal
Shuffling

event

Timing Poisso
n

20 18 16

Location Normal 10,2 8,3 6,5
Attack or

change in

environm

ent event

Timing Poisso

n

21 20 21

Location Normal 11,3 9,4 10,2

Type Unifor

m

10 10 10

Software Shuffling Variants

Selection

Unifor

m

10 10 10

Shuffling Independent shuffling

decision on each cell

Unifor

m

10 10 10

1) Simulator Design:
We devised a cell representation to simulate the COA

behavior encryption module. Our simulator starts by
deploying cells all over the network based on the input
parameters. Each cell should have a representation for a
group of software variant sets for each possible induced
change in the network. Each of these sets contains a group of
similar functionally different behavior variants. After
automatically deploying these cells, our attack event
generator produces different events following the user
predetermined settings.

The variant shuffling at each cell works seamlessly for
confusion induction. The set shuffling occurs only in
response to an induced change in a specific network location.
Further, independent variant shuffling decision is taken at
random locations to increase the level of behavior change
diffusion all over the network.

2) Simulation Results:
We examined the behavior encryption module through

three experiments with different simulation parameter values.
The experiments aimed to measure the effect of changing
attack arrival rate and location with the change of shuffling
event generation on the behavior output as illustrated in Fig.
5 and 6. The effect of continuous variant shuffling with our
diffusion induction mechanism on the output behavior was
obvious. A simple change in any of those inputs leads to a
significant change in the output. Our primary goal in this
study is to illustrate the effect of our behavior encryption on
the network behavior after attack events. This study focuses
only on the security analysis of the system by showing the
level of induced confusion and diffusion. Performance
analysis will be discussed in the next subsection.

Figure 5. Induced Confusion and Diffusion

Fig. 5A gives a snapshot on the set and variant
distribution over the cells at the bootstrap. Each column
represents a cell in the network where the value represents
the current executing set index or variant index. In Fig. 5B
we illustrate the behavior output after short period of
continuous behavioral encryption for the three experiments.
We notice that the behavior changes are diffused all over the
network. This can be seen by the massive change in the
behavior of the whole network by the end of the experiment.

We plotted the number of induced changes in the network
cells over time as shown in Fig. 6A reflecting the level of
induced confusion at each timer tick. The reason for that is to
track the continuous change in the overall network behavior
through the whole experiment. Fig. 6B illustrates the
accumulating change in the network behavior over time
reflecting the effect of re-encryption and the increase in
complexity of correlating the input to the output over time.

Figure 6. Induced Confusion and Diffusion

B. Performance Analysis

In this section, we scrutinize an analytical study on the
performance aspects of ChameleonSoft. The goal of this
study is to estimate the computational cost of security
provisioning, and enhancing system resilience using the
amount of consumed resources, task completion time, and
recovery downtime measures. Table II shows the parameters
that we used for this study.

TABLE II. PARAMETERS USED FOR THIS STUDY

Parameter Symbol Assumed Value

Shuffling decisions F 10 ,20,30

Time to load a variant T 0.01

Time to instantiate a cell C 0.02

Average time to process
communication logs

L 0.09

Average time for execution E 5

Processing time P 0.02

DNS Processing time D 0.01

Space shuffling decisions S 5

Frequency of failure U 10,20,30

We define equations (1,2 and 3) to estimate the total
down time of the cell for time T with shuffling frequency F
towards evaluating the effect of CBE on the task completion
time. Further, we define equations (4, and 5) to evaluate the
effect of ChameleonSoft multi-mode recovery mechanism
from the system stability, resource consumption and recovery
downtime perspectives.

ChameleonSoft apply temporal and space diversity to
induce the needed confusion to encrypt the software
behavior. These employments have a clear impact on the
overall task completion time. The following equations aims
to express that effect in case of applying only temporal
diversity, spatiotemporal diversity and in case of a static
environment with no diversity.

� � � � � � �

C � E � 	T � P�
 	F � 1�

	C � E � 	T � P�
 	F � 1�� � 	D
 S�

Equation (1) estimates the execution time of a program
executing in a static behavior software environment without
any appliance for diversity. Equation (2) aims to estimate the
effect of applying only temporal diversity over the execution
time of the program. The main difference between (1) and (2)
is the added values reflecting the time needed to load the
variant after each shuffle with some processing time
consumed through this process. Usually these values are
small compared to the overall execution time of the program.
Further, the COA divides large missions into smaller tasks to
be executed over the cells. The execution overlap of the
independent tasks might even lower the overall execution
time of the mission. Further, with the cell independent
decision making at each cell can set its own shuffling
frequency to satisfy the overall application requirement.

The spatiotemporal diversity appliance effect on the
execution time is estimated in (3). The main difference
between (2) and (3) is the effect of the space diversity. In
space diversity a cell migrates from one physical host to
another. The management layer instantiate a new cell in the
new physical location to replicate the migrating cell. This cell
will be in full time synchronization with the main cell exactly
as a replica. The execution process will be interrupted only
for the duration of redirecting the communication to the new
location. The time needed to terminate the old cell does not
affect the execution time of the task as it will occur after
migration and operation restoration. We used (1, 2 and 3)
with the parameters in Table II to draw Fig. 7 in order to
visualize the effect of shuffling frequency change over the
task completion time.

Figure 7. shuffling decision frequency effect on the task completion time.

Fig. 7 illustrates that increasing the level of induced
confusion by increasing the frequency of shuffling towards
enhancing the level of provisioned security linearly affects
the task completion time. Similarly, complicating the
correlation between the input and output network behavior
by employing both the temporal and space diversity add
more time to the overall task completion time. As mentioned

(1)

(3)

(2)

before ChameleonSoft is capable of changing its diversity
appliance technique at runtime to suit the surrounding
environment change and the application dynamic
requirements. The reason behind enabling such feature is to
provide some guarantees that the system shall always
consider using the right resources at the right time towards
balancing the security and performance output of the system.

ChameleonSoft employ different recovery mechanism
with different levels of granularity to suit the dynamic
change in the surroundings. Fine grained recovery by Cell
replication might consume more resources in order to
guarantee short recovery downtime and successful
restoration of all the previous states before failure. As
mentioned before ChameleonSoft optimize the replication
resource usage by replicating only the STM and data store
components of the cell. The remaining components of the
cell remain in hibernation waiting for resurrection when the
replica takes over. Equation (4) aims to estimate the total
recovery time of a failed cell in case of fine grained recovery
by replication. The overall recover time depends on the
processing time that mainly represents the time needed to
resurrect the hibernated replica components with the time
spent to detect the failure.

ChameleonSoft usually uses coarse grained recovery
mode in resource constrained environments to save the
resources used by the replicated cell components. Restoring
a failed cell with no replica might involve remote data store
queries, collecting communication logs from other cells, and
analyzing these logs for unsaved lost states. This process
increases the overall recovery time without any guarantee for
a successful restoration for all states before failure. Equation
(5) estimates the overall time needed to recover a filed cell
that has no replicas. The main difference between (5) and (4)
is that in (5) we added the time consumed in instantiating a
new cell to replace the failed cell and the time needed to
reload the variant. This process is eliminated in case of
replication as the replica instantiation and the variant loading
occurs in parallel with the main cell instantiation and variant
loading. Further, we added the time needed to process
communication logs in order to restore lost states; which
might be a significant amount of time. We used (4) and (5)
with the parameters in Table II to draw Fig. 8 in order to
visualize the effect of the recovery policy on the recovery
downtime with respect to the change in the frequency of
failure.

P
 U

	� � � � � � ��
 �

Fig. 8 shows the effect of replication on the failure
recovery downtime. The figure shows that the fine grained
recovery decreases the recovery downtime to a great extent
compared with the coarse grained recovery especially when
the cell faces large failure incidents. The main reason behind
that is the elimination of the time spent in re-instantiating the
cell and processing the communication logs.

ChameleonSoft might leverage its capability to change
the shuffling and recovery policy at runtime to optimize the
resource usage, the recovery downtime, and the level of
provisioned security. The shuffling frequency can be
lowered with a coarse grained recovery mode in secure stable
situations. In more hazardous conditions, this value is
increased and the recovery mode can be more fine grained to
enhance system security and robustness.

Figure 8. The replication effect on the recovery downtime

C. Hot-shuffling prototype

We developed a prototype of the CBE based on our
COA. The prototype realized an organism composed of
multiple cells deployed on different physical hosts. The
prototype encrypts the executing module behavior by
continuous hot-shuffling at runtime. We managed to
implement hot-shuffling on multiple communicating cells
that apply different failure recovery policies with different
granularity levels.

Assumptions: We assume that the variant designer will
include a checkpoint at each transitional stage of the
program. This checkpoint will be sent through a dedicated
channel to the state transaction manager each time the
program enters a new checkpoint. At bootstrapping, the
program must ask the state transaction manager about the last
known checkpoint and begins the execution process at that
point. The system can also work with an automated variant
compiler like the one presented in [17], with simple
modifications to realize our assumption in the output
variants. We also assume that a copy of all the volatile
memory content being used by the variant will be attached to
each message sent to the STM. Doing so will guarantee data
restoration validity at each shuffle because the checkpoints
will always be synchronized with the data in memory.

1) The Shuffling process:
 At bootstrapping, the executing variant retrieves the last

checkpoint through the state transaction manager that will
send zero if the variant is starting fresh. The executing
variant keeps sending checkpoint updates throughout its
execution lifetime.

At a shuffling event, the execution unit will immediately
terminate the executing program and launch the new variant.
The new variant retrieves the last known checkpoint through
the state transaction manger to pursue the task of the previous
variant. Before variant execution, the STM starts memory
restoration process to synchronize the volatile memory
content with the execution checkpoint.

We employed the regular checkpoint update solution
versus one time update upon termination of the current
executing variant. Our rationale for such design decision is to
enforce autonomous resilience to failure since the
termination event might not occur due to some malfunction.
In such a case, the state transition manager will not receive
the most recent checkpoint update.

Space diversity was not in the scope of this prototype
version, but we intend to realize that in the next versions. The
realization will be as follows, after a space shuffling
decision, the shuffler will instruct the remote deployment
unit to deploy a new cell with the same profile t a remote

(4)

(5)

location. The new cell will have the same logic. The STM
unit of both the new and the old cells will communicate with
each other to maintain states and sensitive cell data. Upon
shuffling, the DNS will have to maintain communication
profiles based on the new cell location. At that point, the old
cell will be terminated and the new one will take over. The
old cell will be working through the whole shuffling process.
The cell downtime will only include the time needed for the
DNS to maintain communications, which is a simple update
in a database record.

2) The auto recovery mechanisms:
We developed hot and cold recovery schemes. The hot

recovery is based on replicas where a cell is replicated at
bootstrapping. The replica monitors checkpoint updates in an
attempt to detect a failure event in which case the whole cell
is killed and the replica takes over. The cell resumes its work
automatically from the last known checkpoint and a new
replica for it is generated.

In the cold recovery mode, the state transaction manager
is instructed at bootstrapping to send the checkpoint update
to an external data store with a predetermined frequency. The
frequency of checkpoint update is a tradeoff between the
recovery time and accuracy of restoring the last checkpoint
and the network load. In this case, the management layer
monitors the cell failure and instantiates a new cell with a
recovery signal. When the newly instantiated cells detects
this signal, it retrieves the last stored checkpoint to resume
work. Communication logs between the cell and the
surrounding cells are used for fine grained recovery of any
lost execution steps.

VI. CONCLUSION

In this paper we presented ChameleonSoft as a moving
target defense mechanism against software attacks. The
system is built over our novel cell oriented architecture.
ChameleonSoft leveraged COA to employ multidimensional
spatiotemporal diversity and hot shuffling of variants, hence
effecting software execution behavior encryption.
ChameleonSoft also employs multi-mode, autonomous,
situationally-aware recovery system. Further, it adjusts
system shuffling and recovery policies at runtime to meet the
continuous change in its operational environment. A
prototype implementation, and a simulation and analytical
study were presented to discuss the performance impact of
CBE on the system and to illustrate the applicability of the
presented approach. The studies showed that CBE can
encrypt the execution behavior by confusion and diffusion
induction at a reasonable overhead. There are several
interesting challenges to be addressed in the future. These
include autonomous detection and profiling of behavior;
adjusting shuffling decisions based on that profile; realizing
the space diversity; software chameleon-ization including
formalizing an automated variant generation system, and
presenting alternatives for legacy non chameleon-izable
software; and rigorous simulation and experimental
evaluation of confusion, diffusion and shuffling policies and
mechanisms.

VII. REFERENCES

[1] A. Avizienis and L. Chen, “On the implementation of n-version
programming for software fault tolerance during execution,” IEEE
COMPSAC 77, pages 149–155, 1977.

[2] B. Randell, “System structure for software fault tolerance,” IEEE
Transactions on Software Engineering, 1:220–232, 1975.

[3] J. C. Knight and N. G. Leveson, “An experimental evaluation of the
assumption of independence in multiversion programming,” IEEE
Transactions on Software Engineering, 12(1):96–109, 1986.

[4] D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee, D. F.
McAllister, M. A. Vouk, and J. J. P. Kelly, “An experimental
evaluation of software redundancy as a strategy for improving
reliability,” IEEE Transactions on Software Engineering, 17(7):692–
702, 1991.

[5] F. Cohen, “Operating system protection through program evolution,”
Computers and Security, 12(6):565–584, Oct.1993.

[6] C. Pu, A. Black, C. Cowan, and J. Walpole, “A specialization toolkit
to increase the diversity of operating systems,” ICMAS Workshop on
Immunity-Based Systems, Nara, Japan, Dec. 1996.

[7] J. E. Just and M. Cornwell, “Review and analysis of synthetic
diversity for breaking monocultures,” ACM Workshop on Rapid
Malcode (WORM ’04), pages 23–32, 2004.

[8] D. A. Holland, A. T. Lim, and M. I. Seltzer, “An architecture a day
keeps the hacker away,” SIGARCH Computer Architecture News,
33(1):34–41, 2005.

[9] M. Chew and D. Song, “Mitigating buffer overflows by operating
system randomization,” Technical Report CMU-CS-02-197,
Department of Computer Science, Carnegie Mellon University, Dec.
2002.

[10] J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Transparent runtime
randomization for security,” 22nd International Symposium on
Reliable Distributed Systems (SRDS’03), pages 260–269, 2003.

[11] J. C. LKnight, J. W. Davidson, D. Evans, A. Nguyen-Tuong, C.
Wang, "Genesis: A Framework for Achieving Software Component
Diversity," Technical Report AFRL-IF-RS-TR-2007-9, University of
Virginia, January 2007

[12] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer
systems,” 6th Workshop on Hot Topics in Operating Systems
(HotOS-VI), pages 67–72, 1997.

[13] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Intrusion detection
using parallel execution and monitoring of program variants in user-
space,” Eurosys 2009, April 2009.

[14] B. Salamat, A. Gal, and M. Franz, “Reverse stack execution in a
multi-variant execution environment,” Workshop on Compiler and
Architectural Techniques for Application Reliability and Security
(CATARS’08), June 2008.

[15] B. Salamat, A. Gal, T. Jackson, K. Manivannan, G. Wagner, and M.
Franz, “Multi-variant program execution: Using multi-core systems to
defuse buffer-overflow vulnerabilities,” International Workshop on
Multi-Core Computing Systems (MuCoCoS 2008), March 2008.

[16] T. Jackson, B. Salamat, G. Wagner, Ch. Wimmer, and M.Franz, “On
the Effectiveness of Multi-Variant Program Execution for
Vulnerability Detection and Prevention,” International Workshop on
Security Measurements and Metrics (MetriSec 2010), September
2010.

[17] M. Franz, “E unibus pluram: Massive-Scale Software Diversity as a
Defense Mechanism,” New Security Paradigms Workshop 2010
(NSPW 2010), September 2010.

[18] T. Jackson, Ch. Wimmer, and M. Franz, “Multi-Variant Program
Execution for Vulnerability Detection and Analysis,” Sixth Annual
Cyber Security and Information Intelligence Research Workshop
(CSIIRW’10), April 2010.

[19] B. Salamat, T. Jackson, G. Wagner, Ch. Wimmer, and M. Franz,
“Run-Time Defense against Code Injection Attacks using Replicated
Execution,” IEEE Transactions on Dependable and Secure
Computing. IEEE Computer Society, 2011.
doi:10.1109/TDSC.2011.18

[20] L. Hatton, “N-version design versus one good version,” IEEE
Software, 14(6):71–76, 1997.

[21] Charles P Pfleeger, Shari Lawrence Pfleeger., Security in Computing,
Prentice Hall, Third Edition., 2003, page 62,ISBN:0-13-035548-8.

[22] James Wood, Kelsie Jackson. (2011, Jun). How Cephalopods
Change Color. Available:
http://www.thecephalopodpage.org/cephschool/

[23] F. Cohen, “Computer Viruses,” PhD thesis, University of Southern
California, 1985.

[24] E. H. Spafford, “Computer viruses as artificial life,” Journal of
Artificial Life, 1(3):249–265, 1994.

