
Change Propagation in Decentralized Composite Web Services

Walid Fdhila, Aymen Baouab, Karim Dahman,
Claude Godart, Olivier Perrin, and François Charoy

LORIA - INRIA - UMR 7503
BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France

{firstname.lastname}@loria.fr

Abstract—Every company wants to improve the way it does
business, or produce things more efficiently, and make greater
profit. Therefore, business processes have become subject to
evolutionary changes, which in turn increase the need for an
efficient change support. In this sense, many researches were
conducted to deal with business process adaptation to changes.
The latter may result in the restructuring of the whole or a
part of the process. Most of the proposed approaches focus on
adaptation to changes in centralized processes. In sharp con-
trast to these works, our operation of change adaptation that
we present in this paper, concerns decentralized orchestrations.
Indeed, many recent approaches were proposed to decompose a
composite web service into small partitions. Since the activities,
the control and data flows are distributed over these partitions,
it becomes difficult to specify the changes directly. Moreover,
changing a derived partition may affect the way it interacts
with others. In order to overcome these deficiencies, we propose
a design-time methodology to support changes in decentralized
business processes. We mainly demonstrate how to propagate
the changes made on a centralized specification of composite
web service to its resulting decentralized sub-processes.

Keywords-decentralized orchestrations, business process,
change propagation, web service.

I. I NTRODUCTION

Recently, many approaches were proposed to partition
business processes [1], [2], [3]. The partitioning transforms
the centralized process into behaviorally equivalent dis-
tributed sub-processes. These partitions are executed in-
dependently at distributed locations and can be invoked
remotely. They directly interact with each other using asyn-
chronous messaging without any centralized control. The
flexibility introduced by the derived decentralized processes
on the other hand raises new requirements like adaptation
to change. Indeed, in today’s dynamic business world, the
economic success of an enterprise increasingly depends on
its ability to react to changes within its environment in a
quick and flexible way [4]. Changes may range from simple
modifications of the process to a complete restructuring of
the business process to improve efficiency. In the context
of the decentralized service orchestrations, applying these
changes in a straightforward manner on the derived par-
titions is a complex maintenance task, since the control
and data flows are decomposed over multiple partitions. In
this sense, this paper presents a method for adaptation to

change in the decentralized composite web services. In sharp
contrast to previous works [5], [6], our change adaptation
concerns decentralized orchestrations. Given a well-behaved
structural update on a centralized orchestration, our approach
automates the change forward propagationthat consistently
propagates the update to the derived decentralized partitions.
This includes the identification of the partitions concerned
by the modification, and the incorporation of the necessary
changes in each of them. The main advantage of this method,
is that only concerned partitions by the change are affected,
and there is no need to recompute the whole decentralization
or redeploy all the partitions.

This paper is structured as follows. Section II presents
the formal definitions needed to provide a generic approach,
while section III details our adaptation to change mechanism
for the decentralized processes. In sections IV and V we
discuss the related work, summarize the contribution and
outline future directions.

II. FORMAL MODEL

In order to provide a generic approach for change adap-
tation in the decentralized business processes, we adopt a
high level reasoning using an abstract notation. The com-
posite web services are generally captured by means of an
orchestration model: a process model in which each activity
represents either an intermediate work step (e.g. a data
transformation) or an interaction with one of the services
participating in the composition (thecomponent services).
The process model specifies the control-flow and data-flow
relations between activities, using a specialized language
such as the Business Process Execution Language (WS-
BPEL) or the Business Process Modeling Notation (BPMN).

Definition 1 (Process):Formally, a processP is a tuple
(O, D , Ec, Ed, S) where

• O is a set of objects which can be partitioned into
disjoint sets of activitiesA, events (start andend) and
control patternsCT R (AND,XOR,Sequence, etc),

• D is a set of data,
• Ec is a set of control edges where,Ec ⊂ O×O.
• Ed is a a set of data edges where,Ed ⊂ A×A×D,
• S is the set of services invoked by the process.

A process activity consists of a one-way or a bidirectional
interaction with a service via the invocation of one of its
operations. The set of activities that refer to the same service
s is denotedAs | s ∈ S. We define thepreset (postset)
of an activityai, denoted•ai (ai•), as the set of activities
which may executejust before (after)ai and related to it
by a set of control dependencies. In this paper, we consider
that the processes are structured [7].

The partitioning of a composite web service, leads to a
set of interconnected partitions, each of which defines the
relationship between the objects it includes. Each partition
communicates with other partitions using the interaction
patterns (i.e. send, receive..) [8].

Definition 2 (Partition): A sub-process or a partition is a
tuple Ps = (Os, Ds, Ecs, Eds) where

• Os is a set of objects ofPs. Os ⊂ O ∪ Adummy(i)

whereAdummy(s) is a set of dummy activities. Dummy
activity is an activity with zero execution time (used for
synchronization).

• Ds⊂D∪Sync, where Sync is a set of control data
necessary for synchronization with other partitions.

• Ecs is the set of control edges,Ec ⊂Os×Os,
• Eds is the set of data edges,Ed ⊂As×A×Ds. (control

edges between partitions are transformed to data edges
since they are routed in messages).

• s ∈ S is the set of services invoked by the partition.

Next, we define the transitivepostset(resp., transitive
preset) of an activityai denotedT ai• (•T ai), as the set
of activities in the same partition asai, which may execute
just after (before) it, and linked to it by a set of control
dependencies.

III. C HANGE PROPAGATION

In this section, we present our methodology for
decentralized business processes adaptation to change. We
remind that our approach concerns only already partitioned
processes. This means that we do not seek to provide
a change support for a centralized process. Instead, we
demonstrate how to propagate the changes made on a
centralized specification of a composite web service to
its resulting decentralized sub-processes. The approach
is structured as follows. First the designer specifies the
changes using the centralized process specification, then
we compute the new configurations of the decentralized
fragments enclosing the changes. Finally, we propagate
the changes to the concerned partitions. In this way, only
the fragments which are concerned by the changes would
be affected. Moreover, there is no need to re-partition the
centralized process and re-deploy all the derived partitions.

A. Change operations

In general, process models can be decomposed into SESE
fragments [9]. A SESE fragment is a non-empty subgraph
in the process model with a single entry and a single exit
edge. For every change in the process model, there is at least
one enclosing fragment. Here, we consider only the smallest
fragment that encloses the changes. This can be achieved
using the process structure tree (PST) [9]. In the following,
we consider that the fragments enclosing the changes are
already identified (the identification issue is out of scope
of this paper). Formally, a fragment has the same definition
as a process (c.f. definition 1), except it has no start and
end events, instead it has one entry and one exit edges.
The changes that can be made on a process model can be
resumed using three formal operations as follows:

• Insert(fragment, entry, exit): this operation is used to
insert a new fragment into the process. This fragment
should be inserted between theentry and exit edges
in the centralized process model.

• Delete(entry,exit): this operation is used for the deletion
of the fragment between theentry and exit edges in
the centralized process model.

• Update(fragment,entry,exit): this operation updates
the existing fragment betweenentry and exit edges
in the centralized process model, and replace it by
fragment. This operation can also be replaced by the
two consecutive operationsdelete(entry, exit) and
insert(fragment, entry, exit).

 pattern

join i

Fragment F

 pattern

split i

Fragment F"

 pattern

split k
 pattern

join k

 Change

Entry

Edge

Exit

Edge

..................

Figure 1. generic process example

B. Change adaptation

This section describes the different steps to propagate
the changes made on the centralized process model to the
derived decentralized partitions. To have a better under-
standing, we consider a general example of a centralized
process modelP , as depicted in Figure 1. The process model
is structured through split and join patterns, and enclosed
with start andend events. The partitioning of this process,
results in|S| interconnected partitionsPI , PJ , PK , etc, each
of which executed by a separate orchestrator (c.f. Figure 2).

FPI

Fragment

F

Entry Exit

FPI FPJ

Inter-partitions
interaction

Fragment

F"
F'PJ F'PK

PKPJPI

Inter-partitions
interaction

-- delete -- -- update -- -- insert --

Entry Exit

FPJ
Entry Exit

Figure 2. generic example for change management

Now we assume that the user want to replace the
fragmentF in the centralized process by the fragmentF ′.
For this purpose, we first identify the partitions affected by
this change using activities identifiers. Then, we identifythe
blocs of activities to change inside the affected partitions.
Indeed, a simple change in a partition may result in other
modifications (including interactions with other partitions
or control patterns). For each identified fragment, we notice
the entry and the exit edges. Two use cases are possible:
the fragment is updated and replaced by another fragment,
or deleted. Using the new fragmentF ′, the next step is to
determine what to insert in each affected partition. For this
purpose, we have to partitionF ′.The steps toward change
propagation are as follows:

1- Change specification: the designer specifies the
changes to do using the operations: Insert, Delete and
Update. If the operation is a delete, then he has
to indicate the concerned fragment (i.e. in figure 1
Delete(Entryedge, Exitedge)). If the operation is an In-
sert, then he has to specify the fragment to add and
in which place in the process model (i.e. in figure 1
Insert(F ′, Entryedge, Exitedge)). Otherwise, he has to
specify both the fragment to update and the new fragment
to insert (i.e. in Figure 1Update(F ′,F .entry,F .exit)).

2- Partitions identification: Using the fragmentsF and
F ′, we identify all the partitions that would be affected
by the change. Indeed, during partitioning, each activity
is assigned to a partition upon to a certain criteria. If the
activity responds to the criteria of the partition then it would
be assigned to it (i.e. activities having the same role, or
invoking the same service). So, using the criteria assignedto
each activity we can determine the partition it would belong
to. By this way, each partition having a criteria of one ofF
or F ′ activities would be affected by the change.

3- Fragments partitioning: this step consists in decentral-
izing separately the fragmentsF ′ andF into interconnected
sub-fragments, using partitioning techniques for structured

processes. In figure 2, we take into consideration only the
sub-fragmentsFPJ ′, FPK ′, FPI andFPJ , since they cover
the three possible scenarios: insert, delete or update a sub-
fragment into a partition.

4- Change translation: After F and F ′ partition-
ing, change operation for the process model is decom-
posed into one or more change operations. Each opera-
tion represents the change to make on the corresponding
partition. The generic formula for operation transforma-
tion is operation(x, y, ..) ⇒ operation1(x1, y1, ..) ∧ ...∧
operation2(x2, y2, ...), whereoperationi is the change to
apply to partitionPi. For instance, the generated change
operations on partitionsPI , PJ andPK are as follows:

UpdateP (F ′, F .entry, F .exit) ⇒ UpdatePJ(F ′PJ ,
FPJ .entry, FPJ .exit) ∧ DeletePI(FPI .entry,
FPI .exit) ∧ InsertPK(F ′PK , entry, exit).

5- Partitions adaptation to change: This step consists in
applying the changes to the corresponding partitions. For this
purpose, we first, have to determine exactly where to insert
the sub-fragmentsFPJ ′, FPK ′. The first scenario related
to the update ofFPJ ′ in PJ is simple, since we already
know the entry and exit edges ofFPJ . So, we have just
to look for these edges in the partition and replace all the
fragment between them by the fragmentFPJ ′. The deletion
of the latter, implies the deletion of all the interactions with
other activities in the same partition or other partitions.The
partitions which interact with any activity concerned by the
change are also concerned by the change, since we have
to update its corresponding interaction edges. Formally, the
update ofFPJ in a PJ by FPJ ′ corresponds to the deletion
of all objectso ∈ OFPJ

, edgese ∈ EcFPJ
∪ EdFPJ

, and
data, and their substitution by the objects, edges, and data
of F ′PJ .
The Delete operation is similar to the update, except that we
do not insert a new sub-fragment. We simply look for the
entry and exit ofFPI in the partitionPI . Then we delete
the sub-fragment between them. If the entry edge of the sub-
fragment to delete, is linked to a (choice or parallel) split

control patterns (outside the sub-fragment), and the exit edge
is linked to its corresponding join element, then we look if
the other branches linking these two elements include only
dummy activities or not. If yes then we delete these two
patterns. We iterate this operation on each nested constructs
linking the sub-fragmentFPI to its transitivepreset •TFPI

and postset TFPI
• (we extend the definition of transitive

postset (transitive preset) to that between a fragment and its
subsequent (previous) activities). Otherwise, we replacethe
sub-fragment to delete, by a dummy activity.
Now, to insert sub-fragmentFK ′ in the partitionPK , we
have to identify theentry andexit edges. For this purpose,
we first compute the transitive preset and postset ofFK ′ in
PK (•FK ′, FK ′•). Then, we identify all the control patterns
that link them in the centralized process model. Next, we
identify each split patternctr in this control path linking
it to its FK ′•, such asctr is in the path linking it to its
•F ′K (ctr is the correspondent join element ofctr). For
eachchoice ctr found, we look if it already exists in the
partition. If yes, we just add a new branch linkingctr to ctr

in which we putF ′K . If no, we add it and its corresponding
ctr, then we put theF ′K between them (in parallel with a
dummy activity). In some cases, the update or the insertion
of a fragment may result in the creation of a new partition
or the deletion of an existing partition.
Due to lack of space, we do not present in this paper the
formal algorithm which resumes all the adaptation to change
steps.

IV. RELATED WORK

Several issues related to change management have been
addressed in business process management and workflow
literature. For instance, the ADEPT proposal enables con-
trolled changes at the process type as well as the process
instance level [10]. In [5], authors present important issues
related to process changes and discuss organizational struc-
tures. In [6], the authors motivate the need for the controlled
change of organizational models and present different adap-
tations models to be supported by respective components.
In [11], the authors describe the Epsilon merging language
used to specify how models are merged. In [12], the authors
propose a metamodel for the specification and detection
of syntactical and semantical conflicts. All the mentioned
approaches, address change adaptation in a centralized pro-
cess. They also deal with how to dynamically adapt running
instances to changes. This, may be complementary to our
work.

In the decentralized setting, [13] presents a formal model
for a distributed workflow change management (DWFCM)
that uses a rule-topic ontology and a service ontology to
support the needed run-time flexibilty. This work is different
from our proposal, since they do not seek to propagate a
pre-defined changes on a centralized process to that on the
derived partitions. Their work is more focused on run-time

adaptation using the migration rules. In [14] the authors
present a unidirectional model incremental transformation
approach. The aim of the work is the definition and the
realization of an automatic synchronizer for managing and
re-establishing the structural consistency of heterogeneous
source and target models.

V. CONCLUSION

In this paper, we have presented an approach to adapt
decentralized orchestrations to changes specified on the
corresponding centralized process. The proposed approachis
based on three change patternsInsert, Update andDelete.
The method consists in partitioning the fragment to change
into sub-fragments, which in turn, are integrated into the
corresponding partitions. To the best of our knowledge,
this is the first work that takes on changes adaptation in
decentralized composite web services.

REFERENCES

[1] W. Fdhila, U. Yildiz, and C. Godart, “A flexible approach for
automatic process decentralization using dependency tables,” in ICWS
’09: Proceedings of the 2009 IEEE International Conferenceon Web
Services. Los Angeles, CA, USA: IEEE Computer Society, 2009,
pp. 847–855.

[2] R. Khalaf and F. Leymann, “E role-based decomposition ofbusiness
processes using bpel,” inICWS, 2006, pp. 770–780.

[3] W. Fdhila, M. Dumas, and C. Godart, “Optimized decentralization of
composite web services,” inCollaborateCom 2010, 6th International
Conference on Collaborative Computing: Networking, Applications
and Worksharing, 11-14 2010, pp. 1 –10.

[4] M. Hammer and S. A. Stanton,The reengineering revolution: A
handbook. New York: HarperBusiness, 1995.

[5] M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P. van der
Aalst, “Constraint-based workflow models: Change made easy,” in
OTM Conferences (1), 2007, pp. 77–94.

[6] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns and
change support features - enhancing flexibility in process-aware
information systems,”Data Knowl. Eng., vol. 66, no. 3, pp. 438–
466, 2008.

[7] B. Kiepuszewski, A. H. M. ter Hofstede, and C. Bussler, “On
structured workflow modelling,” inCAiSE, 2000, pp. 431–445.

[8] A. P. Barros, M. Dumas, and A. H. M. ter Hofstede, “Service
interaction patterns,” inBusiness Process Management, 2005, pp.
302–318.

[9] J. Vanhatalo, H. Völzer, and F. Leymann, “Faster and more focused
control-flow analysis for business process models through sese de-
composition,” inICSOC, 2007, pp. 43–55.

[10] M. Reichert and P. Dadam, “Adeptflex-supporting dynamic changes
of workflows without losing control,”J. Intell. Inf. Syst., vol. 10,
no. 2, pp. 93–129, 1998.

[11] D. S. Kolovos, R. F. Paige, and F. Polack, “Merging models with the
epsilon merging language (eml),” inMoDELS, 2006, pp. 215–229.

[12] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and
M. Löwe, “Algebraic approaches to graph transformation - part i:
Basic concepts and double pushout approach,” inHandbook of Graph
Grammars, 1997, pp. 163–246.

[13] V. Atluri and S. A. Chun, “Handling dynamic changes in decentral-
ized workflow execution environments,” inDEXA, 2003, pp. 813–
825.

[14] K. Dahman, F. Charoy, and C. Godart, “Towards consistency man-
agement for a business-driven development of soa,” inThe 15th IEEE
International Enterprise Distributed Object Computing Conference,
Helsinki, Finland, 2011.

