Change Propagation in Decentralized Composite Web Servise

Walid Fdhila, Aymen Baouab, Karim Dahman,
Claude Godart, Olivier Perrin, and Frangois Charoy
LORIA - INRIA - UMR 7503
BP 239, F-54506 Vandceuvre-les-Nancy Cedex, France
{firstname.lastnam&Iloria.fr

Abstract—Every company wants to improve the way it does change in the decentralized composite web services. Iipshar
business, or produce things more efficiently, and make great contrast to previous works [5], [6], our change adaptation
profit. Therefore, business processes have become subjedt t c4ncarns decentralized orchestrations. Given a wellamha

evolutionary changes, which in turn increase the need for an tructural updat tralized hestrati
efficient change support. In this sense, many researches veer structural update on a centralized orchestration, ourcmbr

conducted to deal with business process adaptation to chaeg. ~ @utomates the change forward propagatibat consistently
The latter may result in the restructuring of the whole or a propagates the update to the derived decentralized pastiti
part of the process. Most of the proposed approaches focus on This includes the identification of the partitions concerne
adaptation to changes in centralized processes. In sharp B0y, the modification, and the incorporation of the necessary

trast to these works, our operation of change adaptation tha . . .
we present in this paper, concerns decentralized orchesttians. changes in each of them. The main advantage of this method,

Indeed, many recent approaches were proposed to decompose a IS that only concerned partitions by the change are affected
composite web service into small partitions. Since the adfities, and there is no need to recompute the whole decentralization
the control and data flows are distributed over these partitons, or redeploy all the partitions.

it becomes difficult to specify the changes directly. Moredar, This paper is structured as follows. Section Il presents

changing a derived partition may affect the way it interacts o . .
with others. In order to overcome these deficiencies, we prgse ("€ formal definitions needed to provide a generic approach,

a design-time methodology to support changes in decentrakd ~ While section Ill details our adaptation to change mechmanis
business processes. We mainly demonstrate how to propagate for the decentralized processes. In sections IV and V we
the changes made on a centralized specification of composite djscuss the related work, summarize the contribution and
web service to its resulting decentralized sub-processes. outline future directions.

Keywordsdecentralized orchestrations, business process,
change propagation, web service. Il. FORMAL MODEL

|. INTRODUCTION In order to provide a generic approach for change adap-
Recently. manv aporoaches were proposed to artitiotation in the decentralized business processes, we adopt a
Y. Y app brop b ﬂigh level reasoning using an abstract notation. The com-

business processes [1], [2], [3]. The partitioning transf® : .
.) : . ._posite web services are generally captured by means of an
the centralized process into behaviorally equivalent dis- . i : . .-
. " .orchestration model: a process model in which each activity
tributed sub-processes. These partitions are executed in- . . .
S . . represents either an intermediate work step (e.g. a data
dependently at distributed locations and can be invoke
) : . . ransformation) or an interaction with one of the services
remotely. They directly interact with each other using asyn s o :
: . ; articipating in the composition (theomponent servicgs
chronous messaging without any centralized control. Th

o . : he process model specifies the control-flow and data-flow
flexibility introduced by the derived decentralized prosess . o : o

’ . . . relations between activities, using a specialized languag

on the other hand raises new requirements like adaptation

to change. Indeed, in today’s dynamic business world, th such as the Business Process Execution Language (WS-

- L . %PEL) or the Business Process Modeling Notation (BPMN).
economic success of an enterprise increasingly depends on__ ‘ ~ . .
Definition 1 (Process):Formally, a proces® is a tuple

its ability to react to changes within its environment in a

quick and flexible way [4]. Changes may range from simple(O’ D, &c, £d, S) where
modifications of the process to a complete restructuring of O is a set of objects which can be partitioned into
the business process to improve efficiency. In the context disjoint sets of activitiesd, events ¢tart andend) and

of the decentralized service orchestrations, applyingehe control pattern€7R (AND,XOR,Sequence, etc),
changes in a straightforward manner on the derived par- « D is a set of data,

titions is a complex maintenance task, since the control * &c is a set of control edges wherg&; C OxO.

and data flows are decomposed over multiple partitions. In ¢ £d is a a set of data edges whefej C AxAXD,

this sense, this paper presents a method for adaptation toe S is the set of services invoked by the process.

A process activity consists of a one-way or a bidirectionalA. Change operations
interaction with a service via the invocation of one of its
operations. The set of activities that refer to the sameaserv
s is denotedA; | s € S. We define thepreset (postset)

In general, process models can be decomposed into SESE
fragments [9]. A SESE fragment is a non-empty subgraph
L N in the process model with a single entry and a single exit
of an activitya;, denotedea; (a;e), as the set of activities o440 For every change in the process model, there is at least
which may executgust before_(after)ai_and related to 't, one enclosing fragment. Here, we consider only the smallest
by a set of control dependencies. In this paper, we Cons'dqfagment that encloses the changes. This can be achieved
that the prc_)(_:es.ses are structure_d 71 _ using the process structure tree (PST) [9]. In the following

The partitioning of a composite web service, leads to aye consider that the fragments enclosing the changes are
set of interconnected partitions, each of which defines thgready identified (the identification issue is out of scope
relationship between the objects it includes. Each partiti f this paper). Formally, a fragment has the same definition
communicates with other partitions using the interactiongg 5 process (c.f. definition 1), except it has no start and

patterns (i.e. send, receive..) [8]. end events, instead it has one entry and one exit edges.

Definition 2 (Partition): A sub-process or a partition is a The changes that can be made on a process model can be

tuple Ps = (Os, Ds, Ecs, £ds) where resumed using three formal operations as follows:

« O, is a set of objects of’;. O, C O U Agummy(i) « Insert(fragment, entry, exit) this operation is used to
whereA ,,my(s) is a set of dummy activities. Dummy insert a new fragment into the process. This fragment
activity is an activity with zero execution time (used for should be inserted between thetry andexit edges
synchronization). in the centralized process model.

e D,CDUSync, where Sync is a set of control data « Delete(entry,exit)this operation is used for the deletion
necessary for synchronization with other partitions. of the fragment between thentry andexit edges in

« Ec, is the set of control edgese cO,xOq, the centralized process model.

o &ds is the set of data edgeSd C A, x AxD;. (control « Update(fragment,entry,exit) this operation updates
edges between partitions are transformed to data edges the existing fragment betweemtry and exit edges
since they are routed in messages). in the centralized process model, and replace it by

« s € S is the set of services invoked by the partition. fragment. This operation can also be replaced by the

two consecutive operationdelete(entry, exit) and

. .. .) t t,ent it).
Next, we define the transitivpostset(resp., transitive insert(fragment, entry, evit)

prese} of an activitya; denotedl’_a;e (¢7T_a;), as the set
of activities in the same partition ag, which may execute
just after (before) it, and linked to it by a set of control
dependencies.

Change
Entry

Exit

R . patr.crn pattern
[1l. CHANGE PROPAGATION : splitk Join k ;

-- > pattern
In this section, we present our methodology for ik
decentralized business processes adaptation to change. W L
remind that our approach concerns only already partitioned
processes. This means that we do not seek to provide
a change support for a centralized process. Instead, we
demonstrate how to propagate the changes made on a
centralized specification of a composite web service to .
its resulting decentralized sub-processes. The approarﬁr Change adaptation
is structured as follows. First the designer specifies the This section describes the different steps to propagate
changes using the centralized process specification, theahe changes made on the centralized process model to the
we compute the new configurations of the decentralizedlerived decentralized partitions. To have a better under-
fragments enclosing the changes. Finally, we propagatstanding, we consider a general example of a centralized
the changes to the concerned partitions. In this way, onlyprocess modéP, as depicted in Figure 1. The process model
the fragments which are concerned by the changes woulid structured through split and join patterns, and enclosed
be affected. Moreover, there is no need to re-partition thevith start andend events. The partitioning of this process,
centralized process and re-deploy all the derived pamstio results in|S| interconnected partitionB;, P;, Pk, etc, each
of which executed by a separate orchestrator (c.f. Figure 2)

T TERage

Figure 1. generic process example

Inter-partitions

' ition: Inter-partitions
A nteraction I\

A nteraction A

Fragment , ,
W g € Y

(Fragment
A g 70 K70 i

ATTEEIITTEITITTTENRSSSRIS

\

-- DELETE -- -- UPDATE -- == INSERT --

Figure 2. generic example for change management

Now we assume that the user want to replace therocesses. In figure 2, we take into consideration only the
fragmentF in the centralized process by the fragmemt sub-fragmentstp 7/, Fpi!, Fp; andFpy, since they cover
For this purpose, we first identify the partitions affectgd b the three possible scenarios: insert, delete or update-a sub
this change using activities identifiers. Then, we idenitify ~ fragment into a partition.
blocs of activities to change inside the affected part#ion 4. Change translation After F and F/ partition-

Indeed, a simple change in a partition may result in othejng, change operation for the process model is decom-
modifications (inC|uding interactions with other parti’tii) posed into one or more Change operationS. Each opera-
or control patterns). For each identified fragment, we ®otiC tjon represents the change to make on the corresponding
the entry and the exit edges. Two use cases are possiblgartition. The generic formula for operation transforma-
the fragment is updated and replaced by another fragmenfgon is operation(z,y,..) = operationy (z1,y1,..) A ..A

or deleted. Using the new fragmef, the next step is 10 gperations(xa, yo, ...), Whereoperation; is the change to
determine what to insert in each affected partition. Fos thi gpply to partition ;. For instance, the generated change
purpose, we have to partitiai7.The steps toward change gperations on partition®;, P; and Pk are as follows:

propagation are as follows: Updatep(F1, F.entry, F.exit) = Updatep(FIpy,
Fpy.entry, Fpy.exit) A Deletep;(Fpy.entry,
Fpr.exit) A Insertpr (FIpk, entry, exit).

1- Change specification the designer specifies the

changes to do using the operations: Insert, Delete a — - . —
Update. If the operation is a delete, then he has 5- Partitions adaptation to changeThis step consists in

to indicate the concerned fragment (ie. in figure 1applyingthe changes to the corresponding partitions.ier t
Delete(Entryoage, Exitoqge)). If the opera'tic.)n is an In. Purpose, we first, have to determine.exactly wh.ere to insert
sert, then he ?1:;13 to sgpecify the fragment to add an(yje sub-fragments™p,/, Fpi/. The first scenario related
in which place in the process model (i.e. in figure 1.2 the update ofFp,/ in P, is simple, since we already
Insert(F1, Entryeage, Exiteqye)). Otherwise, he has to know the entry and exit edges ofp;. So, we have just

specify both the fragment to update and the new fragme ralomoggfgg?ezgneigeﬁ tl)n mz fF; Zrtm%a?d_r;]ip(ljaeﬁzt%lrl] the
to insert (i.e. in Figure Tpdate(F1, F.entry, F.exit)). g W y 9 J% !

- _ T) of the latter, implies the deletion of all the interactionishw
2- Partitions identification Using the fragments” and qther activities in the same partition or other partitiofise
F'1, we identify all the partitions that would be affected partitions which interact with any activity concerned by th
by the change. Indeed, during partitioning, each activitychange are also concerned by the change, since we have
is assigned to a partition upon to a certain criteria. If they, update its corresponding interaction edges. Formdily, t
activity responds to the criteria of the partition then itue update ofFp; in a Py by Fp/ corresponds to the deletion
be assigned to it (i.e. activities having the same role, opf || objectso € O, ,, edgese € Ecx,, U Edr,,, and
invoking the same service). So, using the criteria assigned gata, and their substitution by the objects, edges, and data
each activity we can determine the partition it would belongos £/, ;.
to. By this way, each partition having a criteria of one/®f The pelete operation is similar to the update, except that we
or ¥/ activities would be affected by the change. do not insert a new sub-fragment. We simply look for the
3- Fragments partitioning this step consists in decentral- entry and exit of #p; in the partition P;. Then we delete
izing separately the fragmenfs’ andF into interconnected the sub-fragment between them. If the entry edge of the sub-
sub-fragments, using partitioning techniques for stmerdu fragment to delete, is linked to a (choice or parallel) split

D

control patterns (outside the sub-fragment), and the elgiee adaptation using the migration rules. In [14] the authors
is linked to its corresponding join element, then we look if present a unidirectional model incremental transfornmatio
the other branches linking these two elements include onhapproach. The aim of the work is the definition and the
dummy activities or not. If yes then we delete these tworealization of an automatic synchronizer for managing and
patterns. We iterate this operation on each nested cotstruae-establishing the structural consistency of heterogesie
linking the sub-fragmenfp; to its transitivepreset o1z, source and target models.

and postset T'r,, o (we extend the definition of transitive
postset (transitive preset) to that between a fragmenttand i)
subsequent (previous) activities). Otherwise, we reptaee !N this paper, we have presented an approach to adapt
sub-fragment to delete, by a dummy activity. decentrallzgd orchesfcranons to changes specified on the
Now, to insert sub-fragmenfx/ in the partition Py, we corresponding centralized process. The proposed appi®ach
have to identify thesntry andezit edges. For this purpose, Pased on three change pattefnsert, Update and Delete.

we first compute the transitive preset and postsefgf in The method consists in partitioning the fragment to change
Px (8 Fxt, Fxre). Then, we identify all the control patterns N0 sub—fra_gments,_ WhICh in turn, are integrated into the
that link them in the centralized process model. Next, wecorresponding partitions. To the best of our knowledge,
identify each split pattermtr in this control path linking this is the first work that takes on changes adaptation in
it to its Fy/e, such ascir is in the path linking it to its decentralized composite web services.

V. CONCLUSION

o F 1 (ctr is the correspondent join element afr). For REFERENCES

eachchoice ctr found, we look if it already exists in the 1) . rdhila, U. vYildiz, and C. Godart, "A flexible approactorf
partition. If yes, we just add a new branch linkint: to ctr automatic process decentralization using dependencystal ICWS

in which we putF/k. If no, we add it and its corresponding 293 ProceeLdingz of tlhe 28%9 lLIJEgE IPIEteErgaéional fonfserepvewggog
ctr, then we put theF 7, between them (in parallel with a pslr\gﬁs_%;s ngetes, LA ' omputer Society, '

dummy activity). In some cases, the l_deate or the insgr-tion [2] R. Khalaf and F. Leymann, “E role-based decompositiomusiness
of a fragment may result in the creation of a new partition processes using bpel,” i€ WS 2006, pp. 770-780.
or the deletion of an existing partition, [3] W. Fdhila, M. Dumas, and C. Godart, “Optimized deceritetlon of

; ; composite web services,” iBollaborateCom 2010, 6th International
Due to lack of space, we do not present in this paper the Conference on Collaborative Computing: Networking, Aqgiions

formal algorithm which resumes all the adaptation to change and worksharing11-14 2010, pp. 1 —10.

steps. [4] M. Hammer and S. A. StantoriThe reengineering revolution: A
handbook New York: HarperBusiness, 1995.
IV. RELATED WORK [5] M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P. ven d

s i | d h h b Aalst, “Constraint-based workflow models: Change made easy
everal issues related to change management have been oy’ conferences (12007, pp. 77-94.

addressed in business process management and workfloys) B. weber, M. Reichert, and S. Rinderle-Ma, “Change patteand
literature. For instance, the ADEPT proposal enables con- change support features - enhancing flexibility in procesare
trolled changes at the process type as well as the process Tégm;g%%“ systems,Data Knowl. Eng. vol. 66, no. 3, pp. 438~
instance level [10]. In [5], authors. present imp_ortamt €&ssu (7] B. kiepuszewski, A. H. M. ter Hofstede, and C. Bussler, O
related to process changes and discuss organizationad stru structured workflow modelling,” irCAISE 2000, pp. 431-445.
tures. In [6], the authors motivate the need for the cordtbll [8] A. P. Barros, M. Dumas, and A. H. M. ter Hofstede, “Service
change of organizational models and present different-adap interaction pattemns,” irBusiness Process Manageme@005, pp.

tations models to be supported by respective components 302-318.
[9] J. Vanhatalo, H. Volzer, and F. Leymann, “Faster and erfocused

In [11], the authors describe the Epsilon merging language ~ control-flow analysis for business process models throwege sle-
used to specify how models are merged. In [12], the authors composition,” inICSOG 2007, pp. 43-55.

propose a metamodel for the specification and detectiol0] M. Reichert and P. Dadam, "Adgpiy-supporting dynamic changes
of syntactical and semantical conflicts. All the mentioned ﬂgv‘éorggovgz_vi’ggofggogs'”g control,"J. Intell. Inf. Syst. vol. 10,
approaches, address change adaptation in a centralized PrR1] b. S_'Kobvos’ R. F Paige, and F. Polack, “Merging medeith the
cess. They also deal with how to dynamically adapt running epsilon merging language (eml),” MoDELS 2006, pp. 215-229.

instances to changes. This, may be complementary to ouf2] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Hetkand
work M. Lowe, “Algebraic approaches to graph transformationastp:

. . Basic concepts and double pushout approachiandbook of Graph
In the decentralized setting, [13] presents a formal model Grammars 1%97, pp. 163_236_ P P

for a distributed workflow change management (DWFCM) [13] V. Atluri and S. A. Chun, “Handling dynamic changes incdatral-
that uses a rule-topic ontology and a service ontology to ized workflow execution environments,” IDEXA 2003, pp. 813-
support the needed run-time flexibilty. This work is differe 825. . _

f | since thev do not seek to propagate é14] K. Dahman, F. Charoy, ar_1d C. Godart, “Towards consggteman-
rom Ol_Jr proposal, y g propag agement for a business-driven development of soalhia 15th IEEE
pre-defined changes on a centralized process to that on the International Enterprise Distributed Object Computing rerence

derived partitions. Their work is more focused on run-time ~ Helsinki, Finland, 2011.

