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Abstract—Resource allocation entails deciding how to split a 
resource of restricted availability among various demands in a 
way that optimizes current objectives. In this paper, we focus on 
one type of distributed resource allocation problems in which a 
distributed system comprising networked heterogeneous agents 
and processors/servers where the agents strive to boost their 
efficiencies by issuing more work transactions for higher 
throughput. Each agent can issue work transactions which 
comprise a set of tasks that have to be completed by a networked 
set of servers. The agents get more utilities as their transactions 
delivery rate increases, however, network administration entails 
a set of constraints on the tolerable delay on the transactions. An 
optimization model is constructed to characterize the system in 
which the available servers are allocated to the present agents. 
The optimization model is solved in a decentralized way so that 
the agents can work separately to maximize the global benefit 
measure of the network. The presented model numerical solution 
is put together using ARENA simulation package and 
experimented for different network topologies. The simulation 
results show fair allocation of the resources whereas the 
anonymous agents work in parallel to achieve optimality. 
 
Keywords: Resource allocation; Parallel computing; Primal 
dual optimization; Cooperative control. 

I. INTRODUCTION 

Algorithms for resource allocation date back to the 1960s [1, 
2]. Classical resource assignment problems usually deal with 
the optimal allocation of tasks to agents in such  a way that 
each member is given one task to be completed in a busy 
environment, [3].  Such problem has been dealt with under the 
consideration of constraints on the resource consumption. 
Literature has dealt also with more generalized assignment 
problems where multiple tasks are assigned too. It was also 
seen that several location problems can be represented and 
solved as generalized assignment problem. In the multi 
resource generalized problems the agents consume multiple 
resource types in performing their task. Although a single 
resource type can be successful in modeling some of the 
allocation problems, however, recent advances in business and 
business administration with fully integrated and automated 
systems make the problem further intricate, [4]  

Resource allocation problems can be found in different 
applications going back to the early research in transportation 
and truck routing [5], to the recent nowadays communication 
networks. In fact, the research in such field has achieved quite 
interesting and pioneering advances particularly in 
communication networks taking the advantage of fast system 

response as compared to allocating resources in other areas 
such as transportation, machines, human and social networks 
[4, 6, 7, 8, 9]. 

The recent advances in internet and intranet communication 
brought such motivation for the need of efficient and fair 
algorithms that can cope with the massive number of network 
users. Indeed, numerous approaches were used in internet 
traffic control and resource allocation such as the optimization 
techniques as in [10], the economic optimization approaches 
[11, 12, 13, 14, 15,16], control theoretic based solutions [17, 
18] and per-flow queuing [19].  

Scarce attention has been paid to the other types of networks 
such those which deal with people, machines, work and 
multiple task allocation as compared to communication 
networks.  As a matter of fact, the flow of work inside a 
business organization or the flow of work among people, 
processes, and tasks directly impacts the productivity and 
quality of the organization outcomes. An effective workflow 
can dramatically improve projects throughput and the return 
on investment for any production facility. One of the 
fundamental tasks in business administration consists of the 
performance or management of business operations by 
organizing people and resources efficiently so as to direct 
activities toward common goals and objectives, [20]. 

Administrators, broadly speaking, engage in a common set of 
functions to meet the organization's goals. These "functions" 
include planning which maps the path from where the 
organization is to where it wants to be. Other functions include 
organizing, staffing, commanding, and controlling which is a 
function that evaluates quality in all areas and detects potential 
or actual deviations from the organization's plan. Accordingly, 
resources allocation seems to be an important factor for 
perfect administration of an organization, [21]. 

This paper introduces a novel framework in a particular 
business environment for the analysis and design of business 
network which simply consists of distributed agents and 
processors (servers) who/which work together to complete 
transactional type of work.  Here, the distributed agents can 
issue transactions which have to be processed by a set of 
servers.  

A distributed asynchronous policy is presented that 
dynamically adjusts the transactions flow across the network 



  
 

of agents and servers. It is shown that even though agents 
independently adjust their transactions issuance rate, the set of 
all agents’ tendencies converges to the unique equilibrium of a 
cooperation game. The presented framework will stabilize the 
size of work-in-process and provides a better control on the 
work flow between the servers. 

The presented model entails that the agents are anonymous to 
each other and have to work in parallel to maximize the 
benefits of the whole network. Here, a global objective 
function is proposed subject to a certain level of work-in-
process which has to be set by the network administration. The 
model is solved in a decentralized way, where the agents can 
stick to some transactions delivery rates by which the network 
can reach a steady state operation while allocating the 
necessary proportions of the servers’ capacities to the different 
agents.   

The presented model is tested for different network 
configurations using ARENA simulation package. The 
simulation results show that the model can drive the network 
to steady work-in-process levels. The servers were seen to 
have limited queues and the agents -once committed to the 
assigned delivery rates- will drive the network to optimality in 
a decentralized manner.  Further, the network throughput is 
calculated for the given experiments, however, our model does 
not target the throughput, instead, it promises constant work-
in-process and steady state operation.  

The rest of the paper is organized as follows: next to this 
introduction, the optimization model is presented followed by 
the constraint relaxation in section III. The agents adaptation 
is illustrated in section IV followed by the experimental part in 
section V. The rates and queues proportionality are presented 
in section VI and finally the conclusions in section VII.  

 

II. THE MODEL 

Here, we assume a set of agents A={1, 2, …, n}, the agents 
can initiate their own transactions/work orders that have to be 
processed by a set of servers S={1, 2, …, m}.  Essentially, in 
order to complete a transaction, it has to go through a 
predetermined sequence of tasks. Each server is held 
responsible for performing one single task, however, the same 
task may be required by different transactions where in such 
scenario the server will have to perform the similar task for 
transactions belonging to different agents. The processing 
capacities of the servers is given by cs (transactions/time unit) 
sS. 
 
The transactions issued by agent ‘a’, (a  A) will be processed 
by a subset of servers  S(a) ⊆ S.  Similarly, each server ‘s’ 
will have a subset of agents A( s) whose transactions are 
processed by ‘s’. That is, A( s ) = {a A | s  S(a)}. The 
agents are competing against each other so as to process as 
many transactions as possible, however, the limited servers’ 
processing capacities as well as the tolerable delays due to 

transactions waiting at the buffer of the servers make such 
competition unfair, particularly, if not governed by a control 
mechanism that guarantee some fairness scheme among the 
agents. Fig. 1 depicts the proposed concept. 
 

 
 

Fig. 1: Agent-Server network concept. 
 

 
We present an optimization model composed of a general 
objective function which measures the social benefit of all the 
agents. It is assumed that an agent gets a utility according to 
the rate of transactions delivery where the more transactions 
issued by agent ‘a’ the more returns/benefits are expected. Let 
( ax ) denote the rate of transactions delivery of agent ‘a’ and 

)( axU denotes the utility the agent attains at such transaction 

rate. The function )( axU has to be strictly increasing and 

differentiable over some period [0, Ma]. In this paper, we 
suggest the following function which is strictly increasing 
over the given period above: 
 

aaaa MxxxU /)ln()(                        (1) 

 
From the network stand point, maximizing the aggregation of 
such objective function will maximize the overall agents’ 
utility. However, the agents cannot just issue transactions and 
overwhelm the servers by piles of transactions. As a part of 
our model, the set of servers can take a certain limit of work-
in-process; such work includes the transactions being serviced 
and those waiting in queues. 
 
For every agent, denote the network allowable limit of 
transactions-in-queues by a, meaning that, the number of 
transactions waiting in lines of agent ‘a’ should not exceed the 
limit a. Accordingly, the total transactions processing time 

aT
 
spent in the whole system consists of two components, the 

total transaction service times and the total queuing delay ( a ) 

at the servers of ‘a’, alternatively, this can be put across as 

aaSs sa cT   )(
/1 . Consequently, the average total number 

of transactions in service is given by  )(
/1.

aSs sa cx  while the 

number of transactions waiting in queues for the same agent is  
aax . . Under such notation, the optimal network transactions 

flow rate, will solve the following optimization problem: 
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Note that the above model imposes an upper bound on the 
number of transactions currently being in queues. The model 
is non-linear in its objective function as well as the constraints. 
In fact the LHS of the first constraint is a function of the 
transactions rates vector x = },...,{ 1 nxx . However, to simplify 

our solution analysis, few sound assumptions will be made 
accordingly as will be illustrated shortly.  
 

III. CONSTRAINT RELAXATION 

 
In our model, the agents have to work in parallel to maximize 
the overall utility. But the dilemma is that agents are 
anonymous to each other, in fact they don’t have the access to 
any global network parameters except the feedback about their 
transactions delays and minimum processing times. As matter 
of fact, each transaction has a predetermined sequence of tasks 
and hence, an agent is allowed to know its own server 
processing times as well as the encountered delay. The 
minimum processing time in the case of uncongested network 
is simply the sum of the processing times of all the tasks of 
each transaction.  
 
The above model has to be solved in a decentralized manner 
where no coordination between the agents will take place. To 
ease the analysis, we assume that the servers receive heavy 
traffic arriving from the different agents to the extent that the 
queuing delay is not affected by only one single agent. This 
assumption has been recognized in queuing networks [16, 22], 
which can be represented as: 
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Now that such assumption has been made, we may relax the 
constraint using the dual of problem 2. The dual of the primal 
problem is given by: 
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where is a vector of Lagrange multipliers. The above 

relaxation shows that if the number of transactions in queues 
is equal to the limit a , then the objective function is strictly 

increasing and there exists a rate vector that may further 
maximize the objective function, however, increasing the rates 
little more will result in queues that will build up at the 
servers. Hence, the above objective function will have a 
unique maximum at some optimal vector of Lagrange 
multipliers * = { **

1 ,..., n }. The gradients of the above 

objective function is given by: 
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Accordingly, the optimal solution happens when the above 
two expressions equal to zero, meaning that the problem of 
maximizing  a strictly increasing objective function cannot be 
bounded unless enclosed by an upper bound constraint, 
whereas, the optimal rates cannot be calculated only when the 
optimal vector  is known. Now, the gradient projection 
algorithm in [23] can help in such situation. Equating the 
expression axxg  /),(   to zero results in: 
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while the Lagrange multiplier can be found as follows: 
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where  is small scalar and [.]+ refers to the maximum of 0 and 
the expression inside the brackets. 
 

IV. AGENTS ADAPTATION 

 
In order to maximize the objective function in a decentralized 
manner while not exceeding the upper bound on the queues 
belonging to each agent, the agents have to be able to observe 
the delay on their transactions through some feedback system 
which is an available service in recent automated queuing 
systems (the feedback in Fig. 1). When the quantity a  is 

available at the agent side, the agent can easily compute the 
transactions delivery rate which will drive the network to 
optimality or at least optimality neighborhood. To do so, the 
agents have to stick to following rules. 
 

 Starting from a zero value, the agent multiplier a  

has to be calculated as follows:  
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 Further, the agents should issue transactions at a rate 

calculated by the following expression:  
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Note that when Ma increases, the rate expression will reduce to 

aaax /1  while the objective function will approach the 

logarithmic shape. The higher the value of Ma, the more 
guarantees that the constraint of the primal problem will 
remain active. Accordingly, to avoid under estimation of the 
LHS of the first constraint, Ma of each agent has to be as large 
as possible. Once the agents update their rates according to the 
above mentioned rules, steady state rates will be achieved 
while keeping constant work in queues without having to 
overwhelm the network of servers. Note that the parameters  
can only affect the stability at real-time implementation as 
illustrated in the experimental examples in the next section. 
 
 



  
 

 
V. SIMULATION EXPERIMENTS 

 
In this example, three agents issue transactions according to 
the routing sequence shown in Fig. 2.  Two servers are 
available for processing the assigned tasks. The processing 
capacity of the two servers is set to 50 transactions/hr and the 
transactions-in-queues upper bound is set to 10. The agents are 
to deliver their transactions according to the calculated rates in  
section IV.  
  

 
 

Fig. 2: A network consisting of 3 agents and two servers. 

 
The real-time simulation gives the transactions delivery rate of 
the three agents as shown in Fig. 3. Here, at the steady state, 
agents 2 and 3 will deliver at a rate of 33.333 transactions/hr, 
while the first delivers at a rate of 16.667 transactions/hr. At 
the equilibrium, the total of the inward rates of a bottleneck 
server is equal to the server capacity. Further, 15 transactions 
were queued at the buffer of server 1 and the same at server 2. 
Each agent will have 10 transactions queued in system where 
the first agent will have 5 of its transactions queued at server 1 
and the remaining at server 2 as shown in Table 1. The 
optimal Lagrange multipliers are also shown in Fig. 4. Note 
that both servers have 15 transactions queued at the buffer, 
hence for all agents we have 10iix . Now when 

667.161 x , 333.332 x  and 333.333 x , the multipliers can be 

easily found using (5) to conclude that 07222.01  , 

0444.02   and 0444.03   where  Ma = 60 a A in this 

example.  
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Fig. 3: Agents transactions delivery rates. 
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Fig. 4: Agents multipliers. 

 

Agent 
(a) 

Rate (trans/unit 
time) 

Entities-in-queues 

a aq1  aq2  

Total entities-in-
Queues per route  

= )(aSs

a
sq  

1 16.667 5 5 10 10 

2 33.333 10 - 10 10 

3 33.333 - 10 10 10 

  )( sAa

a
sq sq  15 15 30 30 

Table 1: Steady state simulated queues and rates, where a
sq refers to the 

number of tranasactions of agent ‘a’ at server ‘s’ and sq is the queue size at 

‘s’. Note that the “-” means the agent does not utilize the related server. 

 
The network throughput (neglecting the unsteady start phase, 
i.e., warm up period) is calculated as follows: The rate of the 
first agent is 16.667, the second and the third agents are 
33.333 which add up to 83.333 transactions/hr. The same 
example has been solved using LINGO where the same 
objective function was used while subjecting the rates to the 
processing capacities constraints. The delivery rates were 
found to be the same as those found in the numerical 
simulation. Noticeably, since agent 1 consumes more 
resources of the network, it has been assigned the lowest rate. 
 
Let us consider another experiment in which a single server 
with a processing capacity of 50 transactions/hr is in charge of 
processing the delivered transactions of three agents, where 
the first agent starts delivering at time 0, the second agent 
starts after 10 hrs and the third after 20 hrs. Likewise the 
agents terminate their sessions one after another in the same 
sequence. The simulation results are shown in Fig. 5. Note that 
the agents will start delivering at a rate equal to Ma which is 
set to 60 in this example, later, the rates will converge to the 
optimal value according to the existing number of agents. 
Here, since one server is available, even shares will be 
allocated to the agents. Clearly, the algorithm can track the 
optimal solution in a distributed way regardless the number of 
admitted/ terminated sessions. The observed oscillations in the 
rates are due to the search for optimal allocation. At any 
network condition, once close to the equilibrium, each agent 



  
 

will have 10 transactions queued at the server; hence the 
server will have a total of 30 transactions queues at its buffer.  
 

 
Fig. 5: Real-time simulated rates. 

 

Next, we consider a network consisting of 15 different agents 
which have the access to a network of 12 servers. The 
transactions issued by the agents are to be processed by the 
servers according to the routing matrix in Table 2. For 
instance, to close the transactions issued by agent 1, two 
successive tasks have to be completed at the servers 2 and 6. 
The upper limit of transactions-in-queues for all the agents is 
set by the network administrator to 5 transactions per agent. 
This means no one agent will have more than 5 transactions of 
its own waiting in queues at the buffer of the servers. The 
processing capacities of the servers are given in Table 3.  
 

 The servers set S 
Agents set A 1 2 3 4 5 6 7 8 9 10 11 12 

1  1    1       
2     1      1  
3  1  1    1     
4         1   1 
5  1       1   1 
6    1   1    1  
7      1       
8 1     1       
9   1       1   
10 1    1       1 
11           1  
12     1     1   
13 1        1    
14        1   1  
15     1     1       1     

Table 2: Agent-server routing matrix. 

 
Servers Processing capacity (trans/hr) 

1 10 
2 15 
3 15 
4 8 
5 20 
6 12 
7 50 
8 25 
9 10 
10 35 
11 18 
12 22 

Table 3: Servers’ processing capacities. 

After conducting the numerical simulation, the steady state 
transaction delivery rates were found as shown in Table 4. In 
Table 5 we show the flows belonging to each agent at each 
server. Clearly, the servers 1, 3, 4, 5, 6, 9 and 11 are the steady 
state bottlenecks as their inward flows are equal to their 
processing capacities. 
 

Agent Transaction delivery rates
1 3.427 
2 3.798 
3 5.258 
4 3.699 
5 3.699 
6 2.742 
7 3.427 
8 2.465 
9 12.319 
10 4.933 
11 5.730 
12 11.268 
13 2.602 
14 5.730 
15 2.681 

Table 4: Optimal rates. 

 
The steady state number of transactions queued at each server 
as well as the queue proportions belonging to the different 
agents are shown in Table 6. The sum of queue components at 
the different tasks of agent ‘a’ is given in the LHS column, 
i.e., the sum of rows, where for all agents, the total 
transactions-in-queue is equal to the upper bound . Here, we 
conclude again that the total number of different transactions 
waiting in queues inside the network is always equal 
toAa a . At such delivery rates, the steady state network 

throughput of the given example is equivalent to 157.713 
transactions/hr. 
 

VI. AGENT DELIVERY RATES AND SEVER QUEUES 
PROPORTIONALITY 

 

Suppose at the steady state that the proportion of a queue at 
server ‘s’ that belongs to agent ‘a’ is given by the ratio sa cx / , 

accordingly, the number of transactions of agent ‘a’ that are 
waiting in the queue at the server ‘s’ is given by sas

s
a cxqq / , 

where sq  is the queue size at ‘s’. Consequently, the ratio of the 

delivery rates of any two agents, say ‘o’ and ‘p’ that share one 
bottleneck ‘s’ is given by p

s
o
spo qqxx //  . Such conclusion is 

apparent in our all simulation results. Now consider any two 
agents who are sharing one bottleneck server, say for example 
agent 8 and 10 at the server 1, here, we have 10

1
8
1108 // qqxx  . 

Plugging the values from Table 4 and 6 results in 
2.465/4.933=1.404/2.811. Similarly, take agent 8 and 15 who 
share the server 6, that is 15

6
8
6158 // qqxx  . Plugging the values 

results in 2.465/2.681=3.596/3.912, (watch out, the rates and 
queues have been rounded to 3 decimal digits). Different 
experimental simulation examples have been test to verify the 
agent delivery rates and Sever queues proportionality. 
Interestingly, the results showed that such proportionality will 
hold for such objective function.  
 



  
 

  The servers 
agent 1 2 3 4 5 6 7 8 9 10 11 12 
1    3.427    3.427    
2        3.798   3.798 
3    5.258    5.258 5.258    
4        3.699     3.699
5    3.699    3.699     3.699
6        2.742 2.742   2.742 
7        3.427    
8  2.465      2.465    
9      12.319  12.319   
10  4.933      4.933     4.933
11          5.73 
12        11.268 11.268   
13  2.602      2.602    
14        5.73   5.73 
15      2.681  2.681 2.681   

Total arriving rate/server 10.000  12.384  15.000  8.000 20.000 12.000 2.742 10.988 10.000 26.268  18.000  12.331

Server processing 
capacity 

10  15  15  8  20  12  50  25  10  35  18  22 

Table 5: The agents’ optimal rates across each server. 

 
        The servers    

Agent  1 2 3 4 5 6 7 8 9 10 11 12 LHS  
1  ‐  0  ‐  ‐  ‐  5 ‐ ‐ ‐ ‐ ‐ ‐  5  5
2  ‐  ‐  ‐  ‐  1.685 ‐ ‐ ‐ ‐ ‐ 3.315  ‐  5  5
3  ‐  0  ‐  5  ‐  ‐ ‐ 0 ‐ ‐ ‐ ‐  5  5
4  ‐  ‐  ‐  ‐  ‐  ‐ ‐ ‐ 5 ‐ ‐ 0  5  5
5  ‐  0  ‐  ‐  ‐  ‐ ‐ ‐ 5 ‐ ‐ 0  5  5
6  ‐  ‐  ‐  2.607  ‐  ‐ 0 ‐ ‐ ‐ 2.393  ‐  5  5
7  ‐  ‐  ‐  ‐  ‐  5 ‐ ‐ ‐ ‐ ‐ ‐  5  5
8  1.404  ‐  ‐  ‐  ‐  3.596 ‐ ‐ ‐ ‐ ‐ ‐  5  5
9  ‐  ‐  5  ‐  ‐  ‐ ‐ ‐ ‐ 0 ‐ ‐  5  5
10  2.811  ‐  ‐  ‐  2.189 ‐ ‐ ‐ ‐ ‐ ‐ 0  5  5
11  ‐  ‐  ‐  ‐  ‐  ‐ ‐ ‐ ‐ ‐ 5 ‐  5  5
12  ‐  ‐  ‐  ‐  5  ‐ ‐ ‐ ‐ 0 ‐ ‐  5  5
13  1.483  ‐  ‐  ‐  ‐  ‐ ‐ ‐ 3.517 ‐ ‐ ‐  5  5
14  ‐  ‐  ‐  ‐  ‐  ‐ ‐ 0 ‐ ‐ 5 ‐  5  5
15  ‐  ‐  1.088  ‐  ‐  3.912 ‐ ‐ ‐ 0 ‐ ‐  5  5

Trans. queues  5.698  0  6.088  7.607  8.874 17.508 0 0 13.517 0 15.708  0  75  75

Table 6: Queue components at each bottleneck. 

 
 

VII. CONCLUSIONS 

 
We have described an optimization approach to resource 
allocation in cooperative network and derived a simple 
asynchronous distributed algorithm to solve for the optimal 
allocation. The model considers a set of agents which have the 
access to a set of servers. Transactions are issued by the agents 
and have to be completed by a predetermined set of servers in 
the network. The agents are anonymous to each other and have 
no access to the global parameters of the network. The 
presented numerical solution once implemented by the agent 
could track the optimum allocation when network conditions 
vary slowly. The allocation scheme has desirable fairness 
properties where agents consuming more resources are 
assigned less delivery rates.  Further, steady state 
queues/work-in-process is maintained at the equilibrium 
operation. The algorithmic solution has been implemented in 
ARENA simulation package and has been test for different 
network topologies. The results conform to the stated 
assumptions and the scheme provides reasonable allocation in 
a distributed manner where the agents can work 

collaboratively to maximize the network global objective 
function. 
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