

Decentralized Work-In-Process Optimization in
Cooperative Resource Allocation

Doraid Dalalah

Industrial Engineering Department, Faculty of Engineering, Jordan University of Science and Technology
PO Box 3030, Irbid, 22110, Jordan

E-mail: doraid@just.edu.jo

Abstract—Resource allocation entails deciding how to split a
resource of restricted availability among various demands in a
way that optimizes current objectives. In this paper, we focus on
one type of distributed resource allocation problems in which a
distributed system comprising networked heterogeneous agents
and processors/servers where the agents strive to boost their
efficiencies by issuing more work transactions for higher
throughput. Each agent can issue work transactions which
comprise a set of tasks that have to be completed by a networked
set of servers. The agents get more utilities as their transactions
delivery rate increases, however, network administration entails
a set of constraints on the tolerable delay on the transactions. An
optimization model is constructed to characterize the system in
which the available servers are allocated to the present agents.
The optimization model is solved in a decentralized way so that
the agents can work separately to maximize the global benefit
measure of the network. The presented model numerical solution
is put together using ARENA simulation package and
experimented for different network topologies. The simulation
results show fair allocation of the resources whereas the
anonymous agents work in parallel to achieve optimality.

Keywords: Resource allocation; Parallel computing; Primal
dual optimization; Cooperative control.

I. INTRODUCTION

Algorithms for resource allocation date back to the 1960s [1,
2]. Classical resource assignment problems usually deal with
the optimal allocation of tasks to agents in such a way that
each member is given one task to be completed in a busy
environment, [3]. Such problem has been dealt with under the
consideration of constraints on the resource consumption.
Literature has dealt also with more generalized assignment
problems where multiple tasks are assigned too. It was also
seen that several location problems can be represented and
solved as generalized assignment problem. In the multi
resource generalized problems the agents consume multiple
resource types in performing their task. Although a single
resource type can be successful in modeling some of the
allocation problems, however, recent advances in business and
business administration with fully integrated and automated
systems make the problem further intricate, [4]

Resource allocation problems can be found in different
applications going back to the early research in transportation
and truck routing [5], to the recent nowadays communication
networks. In fact, the research in such field has achieved quite
interesting and pioneering advances particularly in
communication networks taking the advantage of fast system

response as compared to allocating resources in other areas
such as transportation, machines, human and social networks
[4, 6, 7, 8, 9].

The recent advances in internet and intranet communication
brought such motivation for the need of efficient and fair
algorithms that can cope with the massive number of network
users. Indeed, numerous approaches were used in internet
traffic control and resource allocation such as the optimization
techniques as in [10], the economic optimization approaches
[11, 12, 13, 14, 15,16], control theoretic based solutions [17,
18] and per-flow queuing [19].

Scarce attention has been paid to the other types of networks
such those which deal with people, machines, work and
multiple task allocation as compared to communication
networks. As a matter of fact, the flow of work inside a
business organization or the flow of work among people,
processes, and tasks directly impacts the productivity and
quality of the organization outcomes. An effective workflow
can dramatically improve projects throughput and the return
on investment for any production facility. One of the
fundamental tasks in business administration consists of the
performance or management of business operations by
organizing people and resources efficiently so as to direct
activities toward common goals and objectives, [20].

Administrators, broadly speaking, engage in a common set of
functions to meet the organization's goals. These "functions"
include planning which maps the path from where the
organization is to where it wants to be. Other functions include
organizing, staffing, commanding, and controlling which is a
function that evaluates quality in all areas and detects potential
or actual deviations from the organization's plan. Accordingly,
resources allocation seems to be an important factor for
perfect administration of an organization, [21].

This paper introduces a novel framework in a particular
business environment for the analysis and design of business
network which simply consists of distributed agents and
processors (servers) who/which work together to complete
transactional type of work. Here, the distributed agents can
issue transactions which have to be processed by a set of
servers.

A distributed asynchronous policy is presented that
dynamically adjusts the transactions flow across the network

of agents and servers. It is shown that even though agents
independently adjust their transactions issuance rate, the set of
all agents’ tendencies converges to the unique equilibrium of a
cooperation game. The presented framework will stabilize the
size of work-in-process and provides a better control on the
work flow between the servers.

The presented model entails that the agents are anonymous to
each other and have to work in parallel to maximize the
benefits of the whole network. Here, a global objective
function is proposed subject to a certain level of work-in-
process which has to be set by the network administration. The
model is solved in a decentralized way, where the agents can
stick to some transactions delivery rates by which the network
can reach a steady state operation while allocating the
necessary proportions of the servers’ capacities to the different
agents.

The presented model is tested for different network
configurations using ARENA simulation package. The
simulation results show that the model can drive the network
to steady work-in-process levels. The servers were seen to
have limited queues and the agents -once committed to the
assigned delivery rates- will drive the network to optimality in
a decentralized manner. Further, the network throughput is
calculated for the given experiments, however, our model does
not target the throughput, instead, it promises constant work-
in-process and steady state operation.

The rest of the paper is organized as follows: next to this
introduction, the optimization model is presented followed by
the constraint relaxation in section III. The agents adaptation
is illustrated in section IV followed by the experimental part in
section V. The rates and queues proportionality are presented
in section VI and finally the conclusions in section VII.

II. THE MODEL

Here, we assume a set of agents A={1, 2, …, n}, the agents
can initiate their own transactions/work orders that have to be
processed by a set of servers S={1, 2, …, m}. Essentially, in
order to complete a transaction, it has to go through a
predetermined sequence of tasks. Each server is held
responsible for performing one single task, however, the same
task may be required by different transactions where in such
scenario the server will have to perform the similar task for
transactions belonging to different agents. The processing
capacities of the servers is given by cs (transactions/time unit)
sS.

The transactions issued by agent ‘a’, (a  A) will be processed
by a subset of servers S(a) ⊆ S. Similarly, each server ‘s’
will have a subset of agents A(s) whose transactions are
processed by ‘s’. That is, A(s) = {a A | s  S(a)}. The
agents are competing against each other so as to process as
many transactions as possible, however, the limited servers’
processing capacities as well as the tolerable delays due to

transactions waiting at the buffer of the servers make such
competition unfair, particularly, if not governed by a control
mechanism that guarantee some fairness scheme among the
agents. Fig. 1 depicts the proposed concept.

Fig. 1: Agent-Server network concept.

We present an optimization model composed of a general
objective function which measures the social benefit of all the
agents. It is assumed that an agent gets a utility according to
the rate of transactions delivery where the more transactions
issued by agent ‘a’ the more returns/benefits are expected. Let
(ax) denote the rate of transactions delivery of agent ‘a’ and

)(axU denotes the utility the agent attains at such transaction

rate. The function)(axU has to be strictly increasing and

differentiable over some period [0, Ma]. In this paper, we
suggest the following function which is strictly increasing
over the given period above:

aaaa MxxxU /)ln()( (1)

From the network stand point, maximizing the aggregation of
such objective function will maximize the overall agents’
utility. However, the agents cannot just issue transactions and
overwhelm the servers by piles of transactions. As a part of
our model, the set of servers can take a certain limit of work-
in-process; such work includes the transactions being serviced
and those waiting in queues.

For every agent, denote the network allowable limit of
transactions-in-queues by a, meaning that, the number of
transactions waiting in lines of agent ‘a’ should not exceed the
limit a. Accordingly, the total transactions processing time

aT

spent in the whole system consists of two components, the

total transaction service times and the total queuing delay (a)

at the servers of ‘a’, alternatively, this can be put across as

aaSs sa cT  )(
/1 . Consequently, the average total number

of transactions in service is given by )(
/1.

aSs sa cx while the

number of transactions waiting in queues for the same agent is
aax . . Under such notation, the optimal network transactions

flow rate, will solve the following optimization problem:

0,...,

.

/)ln(max

1 





n

aaa

Aa
aaa

xx

Aax

st

Mxx


 (2)

Note that the above model imposes an upper bound on the
number of transactions currently being in queues. The model
is non-linear in its objective function as well as the constraints.
In fact the LHS of the first constraint is a function of the
transactions rates vector x = },...,{ 1 nxx . However, to simplify

our solution analysis, few sound assumptions will be made
accordingly as will be illustrated shortly.

III. CONSTRAINT RELAXATION

In our model, the agents have to work in parallel to maximize
the overall utility. But the dilemma is that agents are
anonymous to each other, in fact they don’t have the access to
any global network parameters except the feedback about their
transactions delays and minimum processing times. As matter
of fact, each transaction has a predetermined sequence of tasks
and hence, an agent is allowed to know its own server
processing times as well as the encountered delay. The
minimum processing time in the case of uncongested network
is simply the sum of the processing times of all the tasks of
each transaction.

The above model has to be solved in a decentralized manner
where no coordination between the agents will take place. To
ease the analysis, we assume that the servers receive heavy
traffic arriving from the different agents to the extent that the
queuing delay is not affected by only one single agent. This
assumption has been recognized in queuing networks [16, 22],
which can be represented as:

0



a

a

x

 (3)

Now that such assumption has been made, we may relax the
constraint using the dual of problem 2. The dual of the primal
problem is given by:

)(/)ln(),(aaaa
Aa

aaa xMxxxg  


 (4)

where is a vector of Lagrange multipliers. The above

relaxation shows that if the number of transactions in queues
is equal to the limit a , then the objective function is strictly

increasing and there exists a rate vector that may further
maximize the objective function, however, increasing the rates
little more will result in queues that will build up at the
servers. Hence, the above objective function will have a
unique maximum at some optimal vector of Lagrange
multipliers * = { **

1 ,..., n }. The gradients of the above

objective function is given by:

aaa

aa

M
xx

xg 





/1
1),(

aaa

a

x
xg 






),(

Accordingly, the optimal solution happens when the above
two expressions equal to zero, meaning that the problem of
maximizing a strictly increasing objective function cannot be
bounded unless enclosed by an upper bound constraint,
whereas, the optimal rates cannot be calculated only when the
optimal vector  is known. Now, the gradient projection
algorithm in [23] can help in such situation. Equating the
expression axxg  /),( to zero results in:

aaa

a M
x

/1

1





 (5)

while the Lagrange multiplier can be found as follows:
)]([aaa

old
a

new
a x  (6)

where  is small scalar and [.]+ refers to the maximum of 0 and
the expression inside the brackets.

IV. AGENTS ADAPTATION

In order to maximize the objective function in a decentralized
manner while not exceeding the upper bound on the queues
belonging to each agent, the agents have to be able to observe
the delay on their transactions through some feedback system
which is an available service in recent automated queuing
systems (the feedback in Fig. 1). When the quantity a is

available at the agent side, the agent can easily compute the
transactions delivery rate which will drive the network to
optimality or at least optimality neighborhood. To do so, the
agents have to stick to following rules.

 Starting from a zero value, the agent multiplier a

has to be calculated as follows:
)]([aaa

old
a

new
a x 

 Further, the agents should issue transactions at a rate

calculated by the following expression:

aaa

a M
x

/1

1






Note that when Ma increases, the rate expression will reduce to

aaax /1 while the objective function will approach the

logarithmic shape. The higher the value of Ma, the more
guarantees that the constraint of the primal problem will
remain active. Accordingly, to avoid under estimation of the
LHS of the first constraint, Ma of each agent has to be as large
as possible. Once the agents update their rates according to the
above mentioned rules, steady state rates will be achieved
while keeping constant work in queues without having to
overwhelm the network of servers. Note that the parameters 
can only affect the stability at real-time implementation as
illustrated in the experimental examples in the next section.

V. SIMULATION EXPERIMENTS

In this example, three agents issue transactions according to
the routing sequence shown in Fig. 2. Two servers are
available for processing the assigned tasks. The processing
capacity of the two servers is set to 50 transactions/hr and the
transactions-in-queues upper bound is set to 10. The agents are
to deliver their transactions according to the calculated rates in
section IV.

Fig. 2: A network consisting of 3 agents and two servers.

The real-time simulation gives the transactions delivery rate of
the three agents as shown in Fig. 3. Here, at the steady state,
agents 2 and 3 will deliver at a rate of 33.333 transactions/hr,
while the first delivers at a rate of 16.667 transactions/hr. At
the equilibrium, the total of the inward rates of a bottleneck
server is equal to the server capacity. Further, 15 transactions
were queued at the buffer of server 1 and the same at server 2.
Each agent will have 10 transactions queued in system where
the first agent will have 5 of its transactions queued at server 1
and the remaining at server 2 as shown in Table 1. The
optimal Lagrange multipliers are also shown in Fig. 4. Note
that both servers have 15 transactions queued at the buffer,
hence for all agents we have 10iix . Now when

667.161 x , 333.332 x and 333.333 x , the multipliers can be

easily found using (5) to conclude that 07222.01  ,

0444.02  and 0444.03  where Ma = 60 a A in this

example.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
Time (hrs)

Ra
te

(tr
an

sa
cti

on
s/h

r)

Agent 1
Agent 2
Agent 3

Fig. 3: Agents transactions delivery rates.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0 10 20 30 40 50 60
Time (hrs)

La
gr

an
ge

 M
ul

tip
lie

rs

Nu 1
Nu 2
Nu 3

Fig. 4: Agents multipliers.

Agent
(a)

Rate (trans/unit
time)

Entities-in-queues

a aq1 aq2

Total entities-in-
Queues per route

=)(aSs

a
sq

1 16.667 5 5 10 10

2 33.333 10 - 10 10

3 33.333 - 10 10 10

 )(sAa

a
sq sq 15 15 30 30

Table 1: Steady state simulated queues and rates, where a
sq refers to the

number of tranasactions of agent ‘a’ at server ‘s’ and sq is the queue size at

‘s’. Note that the “-” means the agent does not utilize the related server.

The network throughput (neglecting the unsteady start phase,
i.e., warm up period) is calculated as follows: The rate of the
first agent is 16.667, the second and the third agents are
33.333 which add up to 83.333 transactions/hr. The same
example has been solved using LINGO where the same
objective function was used while subjecting the rates to the
processing capacities constraints. The delivery rates were
found to be the same as those found in the numerical
simulation. Noticeably, since agent 1 consumes more
resources of the network, it has been assigned the lowest rate.

Let us consider another experiment in which a single server
with a processing capacity of 50 transactions/hr is in charge of
processing the delivered transactions of three agents, where
the first agent starts delivering at time 0, the second agent
starts after 10 hrs and the third after 20 hrs. Likewise the
agents terminate their sessions one after another in the same
sequence. The simulation results are shown in Fig. 5. Note that
the agents will start delivering at a rate equal to Ma which is
set to 60 in this example, later, the rates will converge to the
optimal value according to the existing number of agents.
Here, since one server is available, even shares will be
allocated to the agents. Clearly, the algorithm can track the
optimal solution in a distributed way regardless the number of
admitted/ terminated sessions. The observed oscillations in the
rates are due to the search for optimal allocation. At any
network condition, once close to the equilibrium, each agent

will have 10 transactions queued at the server; hence the
server will have a total of 30 transactions queues at its buffer.

Fig. 5: Real-time simulated rates.

Next, we consider a network consisting of 15 different agents
which have the access to a network of 12 servers. The
transactions issued by the agents are to be processed by the
servers according to the routing matrix in Table 2. For
instance, to close the transactions issued by agent 1, two
successive tasks have to be completed at the servers 2 and 6.
The upper limit of transactions-in-queues for all the agents is
set by the network administrator to 5 transactions per agent.
This means no one agent will have more than 5 transactions of
its own waiting in queues at the buffer of the servers. The
processing capacities of the servers are given in Table 3.

 The servers set S
Agents set A 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1
2 1 1
3 1 1 1
4 1 1
5 1 1 1
6 1 1 1
7 1
8 1 1
9 1 1
10 1 1 1
11 1
12 1 1
13 1 1
14 1 1
15 1 1 1

Table 2: Agent-server routing matrix.

Servers Processing capacity (trans/hr)

1 10
2 15
3 15
4 8
5 20
6 12
7 50
8 25
9 10
10 35
11 18
12 22

Table 3: Servers’ processing capacities.

After conducting the numerical simulation, the steady state
transaction delivery rates were found as shown in Table 4. In
Table 5 we show the flows belonging to each agent at each
server. Clearly, the servers 1, 3, 4, 5, 6, 9 and 11 are the steady
state bottlenecks as their inward flows are equal to their
processing capacities.

Agent Transaction delivery rates
1 3.427
2 3.798
3 5.258
4 3.699
5 3.699
6 2.742
7 3.427
8 2.465
9 12.319
10 4.933
11 5.730
12 11.268
13 2.602
14 5.730
15 2.681

Table 4: Optimal rates.

The steady state number of transactions queued at each server
as well as the queue proportions belonging to the different
agents are shown in Table 6. The sum of queue components at
the different tasks of agent ‘a’ is given in the LHS column,
i.e., the sum of rows, where for all agents, the total
transactions-in-queue is equal to the upper bound . Here, we
conclude again that the total number of different transactions
waiting in queues inside the network is always equal
toAa a . At such delivery rates, the steady state network

throughput of the given example is equivalent to 157.713
transactions/hr.

VI. AGENT DELIVERY RATES AND SEVER QUEUES
PROPORTIONALITY

Suppose at the steady state that the proportion of a queue at
server ‘s’ that belongs to agent ‘a’ is given by the ratio sa cx / ,

accordingly, the number of transactions of agent ‘a’ that are
waiting in the queue at the server ‘s’ is given by sas

s
a cxqq / ,

where sq is the queue size at ‘s’. Consequently, the ratio of the

delivery rates of any two agents, say ‘o’ and ‘p’ that share one
bottleneck ‘s’ is given by p

s
o
spo qqxx //  . Such conclusion is

apparent in our all simulation results. Now consider any two
agents who are sharing one bottleneck server, say for example
agent 8 and 10 at the server 1, here, we have 10

1
8
1108 // qqxx  .

Plugging the values from Table 4 and 6 results in
2.465/4.933=1.404/2.811. Similarly, take agent 8 and 15 who
share the server 6, that is 15

6
8
6158 // qqxx  . Plugging the values

results in 2.465/2.681=3.596/3.912, (watch out, the rates and
queues have been rounded to 3 decimal digits). Different
experimental simulation examples have been test to verify the
agent delivery rates and Sever queues proportionality.
Interestingly, the results showed that such proportionality will
hold for such objective function.

 The servers
agent 1 2 3 4 5 6 7 8 9 10 11 12
1 3.427 3.427
2 3.798 3.798
3 5.258 5.258 5.258
4 3.699 3.699
5 3.699 3.699 3.699
6 2.742 2.742 2.742
7 3.427
8 2.465 2.465
9 12.319 12.319
10 4.933 4.933 4.933
11 5.73
12 11.268 11.268
13 2.602 2.602
14 5.73 5.73
15 2.681 2.681 2.681

Total arriving rate/server 10.000 12.384 15.000 8.000 20.000 12.000 2.742 10.988 10.000 26.268 18.000 12.331

Server processing
capacity

10 15 15 8 20 12 50 25 10 35 18 22

Table 5: The agents’ optimal rates across each server.

 The servers

Agent 1 2 3 4 5 6 7 8 9 10 11 12 LHS 
1 ‐ 0 ‐ ‐ ‐ 5 ‐ ‐ ‐ ‐ ‐ ‐ 5 5
2 ‐ ‐ ‐ ‐ 1.685 ‐ ‐ ‐ ‐ ‐ 3.315 ‐ 5 5
3 ‐ 0 ‐ 5 ‐ ‐ ‐ 0 ‐ ‐ ‐ ‐ 5 5
4 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 5 ‐ ‐ 0 5 5
5 ‐ 0 ‐ ‐ ‐ ‐ ‐ ‐ 5 ‐ ‐ 0 5 5
6 ‐ ‐ ‐ 2.607 ‐ ‐ 0 ‐ ‐ ‐ 2.393 ‐ 5 5
7 ‐ ‐ ‐ ‐ ‐ 5 ‐ ‐ ‐ ‐ ‐ ‐ 5 5
8 1.404 ‐ ‐ ‐ ‐ 3.596 ‐ ‐ ‐ ‐ ‐ ‐ 5 5
9 ‐ ‐ 5 ‐ ‐ ‐ ‐ ‐ ‐ 0 ‐ ‐ 5 5
10 2.811 ‐ ‐ ‐ 2.189 ‐ ‐ ‐ ‐ ‐ ‐ 0 5 5
11 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 5 ‐ 5 5
12 ‐ ‐ ‐ ‐ 5 ‐ ‐ ‐ ‐ 0 ‐ ‐ 5 5
13 1.483 ‐ ‐ ‐ ‐ ‐ ‐ ‐ 3.517 ‐ ‐ ‐ 5 5
14 ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0 ‐ ‐ 5 ‐ 5 5
15 ‐ ‐ 1.088 ‐ ‐ 3.912 ‐ ‐ ‐ 0 ‐ ‐ 5 5

Trans. queues 5.698 0 6.088 7.607 8.874 17.508 0 0 13.517 0 15.708 0 75 75

Table 6: Queue components at each bottleneck.

VII. CONCLUSIONS

We have described an optimization approach to resource
allocation in cooperative network and derived a simple
asynchronous distributed algorithm to solve for the optimal
allocation. The model considers a set of agents which have the
access to a set of servers. Transactions are issued by the agents
and have to be completed by a predetermined set of servers in
the network. The agents are anonymous to each other and have
no access to the global parameters of the network. The
presented numerical solution once implemented by the agent
could track the optimum allocation when network conditions
vary slowly. The allocation scheme has desirable fairness
properties where agents consuming more resources are
assigned less delivery rates. Further, steady state
queues/work-in-process is maintained at the equilibrium
operation. The algorithmic solution has been implemented in
ARENA simulation package and has been test for different
network topologies. The results conform to the stated
assumptions and the scheme provides reasonable allocation in
a distributed manner where the agents can work

collaboratively to maximize the network global objective
function.

REFERENCES

[1] Laue HJ (1968), “Efficient methods for the allocation of resources in
project networks”. Unternehmensforschung 12:133-143.

[2] Davis, E. W. (1966), "Resource Allocation in Project Network Models - A
Survey," The Journal of Industrial Engineering, vol 17: 177-188.

[3] Hillier, F.S. and G.J. Lieberman. Introduction to Operations Research
Holden Day, 1980.

[4] Yanfeng Wang, James R. Perkins (2002), “Optimal Resource Allocation in
New Product. Development Projects: A Control- Theoretic. Approach.”,
IEEE transactions on automatic control, Vol. 47, pp 1267-1276.

[5] Murphy, R. A. (1986) “A Private Fleet Model with Multi-Stop Backhaul.”
Optimal Decision Systems.

[6] Alvaro E. Gil, Kevin M. Passino: Stability analysis of network-based
cooperative resource allocation strategies. Automatica 42(2): 245-250
(2006)

[7] Gil, A.E., K.M. Passino, S. Ganapathy, and A. Sparks, “Cooperative
scheduling of tasks for networked uninhabited autonomous vehicles”,
Proceedings of the IEEE Conference on Decision and Control (Maui,
Hawaii), (December 2003), 522–527.

[8] S. Andradóttir, H. Ayhan and D.G. Down. Dynamic server allocation for
queueing net- works with flexible servers. Operations Research, 51:952-
968, 2003.

[9] Song, Y., Zhang, M. T., Yi, J., Zhang, L., Zheng, L., Bottleneck Station
Scheduling in Semiconductor Assembly and Test Manufacturing using
Ant Colony Optimization, IEEE Transactions on Automation Science and
Engineering, 4(4), 569 – 578, (2007)

[10] Low S. H. (2003). A duality Model of TCP and Queue Management
Algorithms, IEEE/ACM Transactions on Networking (TON) ,Vol. 11 ,
No. 4, pp. 525-536.

[11] Kelly F.P. (1997). Charging and rate control for elastic traffic, Eur.
Trans. Telecommunication. Vol. 8, pp. 33-37. Available:
http://www.statslab.cam.ac.uk/~frank/ elastic.html.

[12] Kelly F.P., A. Maulloo, and D. Tan, (1998). Rate control for
communication networks: Shadow prices, proportional fairness and
stability, J. Oper. Res. Soc., Vol. 49, No. 3, pp. 237-252.

[13] Low S. H. (2000). A duality model of TCP flow controls, in Proceedings
of ITC Specialist Seminar on IP Traffic Measurement, Modeling and
Management, September 18-20. http://netlab.caltech.edu.

[14] Low S. H. (2002)b. Understanding Vegas: A duality Model, Journal of
the ACM, Vol. 49, No. 2, pp 207-235. Available:
http://netlab.caltech.edu/ pub.html.

[15] Dalalah Doraid. 2010. “Real time optimization flow control” 2010.
Computer Networks, Vol. 54, No. 5, pp. 797-810.

[16] Dalalah Doraid and Omar Al-Araidah, (2010). Dynamic decentralised
balancing of CONWIP production systems. International Journal of
Production Research, Volume 48, Issue 13 , pages 3925 - 3941

[17] Hollot C., Misra V., Towsley D., and Gong W. B. (2001). A control
theoretic analysis of RED, in Proc IEEE Infocom, pp. 1510-1519,
Anchorage, Alaska, April 22-26. Available at: http://www-
net.cs.umass.edu/papers.html.

[18] Lachlan L. H. Andrew, Stephen V. Hanly and Rami G. Mukhtar, (2007).
Active Queue Management For Fair Resource Allocation in Wireless
Networks, IEEE Trans. Mobile Computing.

[19] Lachlan L. H., Tony Cui, Andrew, Moshe Zukerman and Liansheng Tan,
(2006). Improving the fairness of FAST TCP to new flows, IEEE
Comm. Letters, 10(5), pp414-416.

[20] Lee J. Krajewski, Larry P. Ritzman , Manoj K. Malhotra “Operations
management”, 9th ed., pearson.

[21] Morgen Witzel (2003). Fifty key figures in management. Routledge,
2003. ISBN 0415369770, p.96.

[22] Kelly Tom, Sally Floyd, and Scott Shenker. (2003). Patterns of
Congestion Collapse, International Computer Science Institute, and
University of Cambridge.

[23] Bertsekas D., 1997. Parallel and Distributed Computation: Numerical
Methods, Prentice-Hall, 1989; republished by Athena Scientific.

