
Using LOTOS for Rigorous Specifications of
Workflow Patterns

(Invited Paper)

Pedro L. Takecian and João E. Ferreira
IME, University of São Paulo

Rua do Matão 1010, 05508-090
São Paulo, Brazil

Email: {plt, jef}@ime.usp.br

Simon Malkowski and Calton Pu
CERCS, Georgia Institute of Technology

266 Ferst Drive, 30332-0765
Atlanta, USA

Email: {zmon, calton}@cc.gatech.edu

Abstract—Collaborative applications require understanding
of the theoretical foundations. In case of workflow systems,
one possibility to achieve this is an accurate description of
workflow functionalities. Despite its growing popularity and
success, it has not yet been evaluated whether Language of
Temporal Ordering Specification (LOTOS) is actually suitable
for representing comprehensive workflow functionality in real-
world workflow systems describing the behavioral perspective of
control-flow. Our primary contribution is the complete mapping
of a collection of workflow patterns to LOTOS notation. We
further discuss suitability and expressiveness of LOTOS in the
context of workflow patterns. This study can be used for pattern-
based workflow execution, reasoning, and simulation as well
as for future research on theoretical aspects of workflows for
collaborative applications.

I. INTRODUCTION

It is well understood that embedding workflow systems
in formal frameworks is highly beneficial during their entire
life cycle [1]. Sound models as a foundation for workflow
systems enable the use of a battery of sophisticated methods
for verification, validation, diagnosis and execution control.
Despite the popularity of standards such as BPMN [2] and
BPEL [3], there is little consensus on the “right” choice of
formalism [4], [5]. Advocators of modern process algebra as
foundation for corporate workflow emphasize features such as
powerful communication [6] or direct translation into actual
implementation [7], [8]. The Language of Temporal Ordering
Specification (LOTOS) [9] is one of the most expressive
process algebraic notations with rich repository for process
data encapsulation and process communication functionality.
Consequently, LOTOS has been previously used as rigorous
foundation for workflow systems [10], [11]. However, no sys-
tematic and complete investigation of LOTOS in the context
of real-world workflow has been conducted yet.

The first contribution of this paper is the complete transla-
tion of comprehensive workflow functionality to LOTOS. We
use a control-flow pattern repository [12] to systematically
formalize comprehensive real-world workflow requirements
and equip them with unambiguous execution semantics. The
second contribution of this paper is a mature suitability and ex-
pressiveness analysis of LOTOS based on workflow patterns.

The remainder of this paper is organized as follows. Sect. II

provides a brief introduction to LOTOS. In Sect. III we
introduce the complete mapping of the control-flow pattern set.
Sect. IV evaluates our expressiveness and suitability results.
Sect. V discusses related work followed by the conclusion in
Sect. VI.

II. LOTOS

Process algebras extend classical automate theory and are
well suited for description of reactive systems; e.g., operating,
automation, or communication systems. With a special focus
on concurrency and their compositional property, these formal
notations allow building modular and hierarchical system
descriptions in an intuitive fashion. LOTOS is a highly ex-
pressive formal description standard (ISO 8807) for design
of distributed systems tailored towards OSI services and
protocols. The key idea is to define temporal relations between
system events instead of using system state representation.
LOTOS is formed by two orthogonal components, which are
mainly based on three algebraic theories: the process algebras
CCS [13] and CSP [14] for system dynamics and the abstract
data type language ACT ONE [15] for data structures and
value expressions. The LOTOS formalism has been widely
applied in large communication system specification. Sound-
ness, formal semantics, different abstraction levels, and rich
description repository for concurrency and communication are
some of its characteristic properties.

A LOTOS process performs unobservable internal actions
and also has the ability of interacting with other processes.
These interactions are made in a synchronous way through
atomic units of synchronization and are called observable
actions. Interactions may involve the exchange of data and
use gates as points of interaction. As convention, a synchro-
nization and its corresponding observable action are named
identically. If a process is ready for interaction through a
particular synchronization ai, it is said to offer the observable
action ai to the environment. Apart from observable actions
for synchronization and communication between processes,
unobservable internal actions represent atomic internal system
decisions, which cannot be influenced by the environment.

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USACopyright © 2011 ICSTDOI 10.4108/icst.collaboratecom.2010.57

TABLE I
BASIC LOTOS OPERATOR SUMMARY.

Operator Name
; action prefixing
[] choice between behaviors

|[. . .]| parallel composition in general
|| full synchronization parallel composition
||| pure interleaving parallel composition
>> sequential composition
[> disabling behavior

hide hiding actions in behaviors
stop inaction indicator
exit successful termination indicator

A. Basic LOTOS

The high expressiveness of LOTOS comes at the cost
of increased complexity, which may result in understanding
difficulties. In an effort to address this issue and to emphasize
the importance of the algebraic operators, the simplified no-
tation Basic LOTOS was created. This subset of Full LOTOS
facilitates understanding and is beneficial in the development
of process equivalence theory. Basic LOTOS focuses on de-
scribing the temporal ordering of actions and there is no data
exchange between processes during synchronization. Actions
are identified by the names of the gates that offer them to the
environment. These gate names are sufficient for establishing
process synchronizations and the algebraic expressions that
reflect process behavior become the central part of the process
definition. The latter, referred to as behavior expressions, are
built in a modular fashion from actions, LOTOS operators,
and other behavior expressions. For this paper it is important
to understand the Basic LOTOS operators in Tab. I. Please
refer to [9] for a comprehensive introduction to Basic LOTOS
and a detailed description of operator syntax and semantics.

B. Full LOTOS

Full LOTOS (or LOTOS for short) contains additional struc-
tures for data representation and exchange. In Full LOTOS,
the idea of identifying synchronizations through identically
named actions remains the same, but it is now necessary to
specify data to be exchanged during synchronization. There-
fore, actions need to be represented by the name of a gate with
an additional list of values and variables associated with this
gate. For example, sinc〈5〉 and p〈‘teste’, 17〉 are valid actions
offering their values at the specified gates. Synchronization is
possible when actions have the same name.

The structure used to prefix behavior expressions is called
action denotation. Bolognesi et al. [9] describe it as a structure
composed by a gate name p, followed by a finite list of n
attributes (i.e., value or variable declarations), in the form
p α1 α2 . . . αn.

A value declaration uses the notation !E where E is an
expression that describes a value. Therefore, !5 and !(x+ y+
4) constitute valid declarations. By placing an attribute value
declaration αi in the list belonging to gate p, the value αi will
be offered through gate p. If the expression contains variables

such as !(x + 4), they will be replaced by values according
to their context. Therefore, in the structure sinc !(6 − 2), the
gate sinc offers expression (6− 2), which describes sinc〈4〉.

A variable declaration uses the notation ?x:t where x is
the name of a variable, and t is the name of a data set
that can be attributed to x. Therefore, ?y:char and ?x:nat are
valid declarations. In a synchronization every value contained
in the specified data set can be accepted into the variable.
Setting the variable x with value v, any occurrence of variable
x in the behavior expressions following the synchronization
will automatically be replaced by the value v. Following the
notation in [9] we can generalize: p ?x:t;B(x)

p〈v〉−→ B(v).
Furthermore, it is possible to associate data facilities as

conditions to behavior expressions imposing some rules on
their execution. Variable declarations can also be used to
define parametric processes, such that these variables can
be used inside behavior expressions. Due to the rigid space
constraints of this paper it is out of scope to provide a complete
introduction to LOTOS. However, the knowledge of LOTOS
is crucial in the understanding of Sect. III. Please refer to [9]
for a comprehensive discussion.

III. MAPPING CONTROL-FLOW WITH LOTOS
In this section, we map the complete control-flow patterns

repository [12] to LOTOS. This methodology has been previ-
ously applied for systematic analysis of workflow technology
and specification in different contexts (e.g., BPEL [16], BPM
with process algebra [7], and π-calculus [17]) and has evolved
into the Workflow Patterns Initiative [18]. For each pattern, we
provide a brief description, the formal algebraic expression for
an example, and a short discussion. The pattern is represented
by the algebra, if it provides the functionality to build an
expression, equivalent to the graphical pattern representation.

An elementary activity such as a business step can be
regarded as atomic unit of work. However, the concept of
an atomic action has no explicit equivalent in LOTOS since
actions represent synchronizations. Instead, we will use a basic
activity process to represent this concept (see Fig. 1).

process K[k1, k2, kc]
(k1; k2; exit) [> (kc; stop)

endproc

Fig. 1. Basic activity

Say, the basic activity process K coordinates the execution of
an external process S, responsible for carrying out the work of
the activity. S could constitute an interface between LOTOS
and a web service, for instance. The action k1 invokes the
elementary activity since K synchronizes with S through k1.
Once invoked S executes the internal work of the activity.
After execution the process S synchronizes with K using
the action k2. The successful termination is flagged by exit.
During the activity’s execution, it is possible to flag its failure

or invalidation with the disabling operator. The cancellation
is reported through synchronization with the action kc, which
interrupts the main flow and uses stop instead of exit.

In addition to the concept of elementary activity, the term
activity is also used in the pattern context. This results in
a two-fold interpretation. An activity is a basic activity as
well as a set of activities with an execution order. The term
activity will be used to represent elementary activities as
described above and processes whose behavior expressions
represent an ordered execution of several elementary activities.
For facilitated understanding we employ a simplified notation.
To instantiate a process in a behavior expression, we use the
process name omitting the gates. To define a process, the
structure “process name = behavior expression” is used, since
it already contains all necessary information.

A. Basic Control-Flow Patterns
Sequence (Pattern 1): Activity B will only be enabled
to execute after successful completion of activity A, which
constitutes a sequence of these activities. See Fig. 2 (a).

P = A >> B

In this representation it is important to notice that we use the
sequential composition operator (“>>”) instead of the action
prefix (“;”) because processes may be used as activities.

Parallel Split (Pattern 2): The end of the execution of activity
A, which represents a single thread of control, splits into
multiple threads enabling the parallel execution of activities
B and C. See Fig. 2 (b).

P = A >> (B ||| C)

The use of the interleaving operator (“|||”) reflects the
concurrent, independent execution of activities. The sequential
composition operator guarantees that the split will only occur
after A has terminated its execution.

Synchronization (Pattern 3): Multiple parallel activities rep-
resented by activities A and B converge into a single thread of
control represented by activity C. C will only be enabled after
both A and B complete their executions and synchronize. It
is assumed that each incoming branch of the synchronizer is
executed only once. See Fig. 2 (c).

P = (A ||| B) >> C

The synchronization between parallel branches is guaranteed
by the interleaving operator imposing synchronization of the
successful terminations of A and B. The execution of C can
only proceed after this synchronization occurs.

Exclusive Choice (Pattern 4): After the execution of activity
A, one of several branches must be chosen (i.e., activity B or
C). See Fig. 2 (d).

P = A >> (([cond1] → B) [] ([cond2] → C))

The choice operator (“[]”) allows the representation of this
pattern. Mutually exclusive conditions [cond1] and [cond2]
relate to guarded expressions and reflects the runtime decision
that has to be made based on some control-flow data. This rep-
resentation illustrates a clear advantage of using LOTOS over

simpler process algebras due to its capability of representing
encapsulated data.

Simple Merge (Pattern 5): Although, both activities A and
B are initially enabled, it is assumed that only one of the
alternative branches will execute. After the chosen activity
finishes execution, activity C is enabled. See Fig. 2 (e).

P = (A [] B) >> C

or
P = (([cond1] → A) [] ([cond2] → B)) >> C

Considering the existing patterns of choice, the Simple Merge
can only occur after an Exclusive or a Deferred Choice. The
first algebraic expression indicates a merge situation after a
Deferred Choice. The second defines a merge after an Exclu-
sive Choice. Despite the difference, the merged itself remains
the same and is represented by a sequential composition with
C.

B. Advanced Branching and Synchronization Patterns
Multi-Choice (Pattern 6): After executing activity A, a
number of branches are chosen based on decision or workflow
control data. Therefore, one of the following three options
will be enabled: B, C, or both in parallel. Differently than in
the Exclusive Choice, it is possible to execute more than one
branch in parallel. See Fig. 2 (f).

P = A >> (([cond1] → B [] [¬cond1] → exit)
||| ([cond2] → C [] [¬cond2] → exit))

We employ the interleaving operator to represent the pos-
sibility of parallel execution of all branches. However, it
is necessary to evaluate for each branch whether it will
actually be executed or not. This is done by the structure
([cond] → X [] [¬cond] → exit). Depending on the
condition cond, this structure handles the execution decision
of activity X . If the condition evaluates to ’true’, the activity
will be executed. Otherwise (¬cond evaluates to true), and exit
guarantees synchronization with other branches at the end of
the parallel execution. In order to continue with the execution
flow, all branches have to synchronize.

Synchronizing Merge (Pattern 7): After executing activity
A in Multi-Choice, the Synchronizing Merge has to wait
for the termination of all activated paths. If more than one
path are activated (i.e., activities B and C), they have to be
synchronized into a single thread before the next activity (D)
can be executed. In case only one of them has been activated,
D will be enabled after the chosen activity has terminated
execution. It is assumed that each branch can only execute
once. See Fig. 2 (g).

P = A >> (([cond1] → B [] [¬cond1] → exit)
||| ([cond2] → C [] [¬cond2] → exit)) >> D

This pattern is easily representable, due to the behavior
of the Multi-Choice structure, which already enforces the
required synchronization. To represent, that D follows the
synchronization, we use the sequential composition operator
to merge the threads.

Fig. 2. Control-flow patterns (adapted from [18]).

Multi-Merge (Pattern 8): After executing activity A in Multi-
Choice, more than one branch might get activated (i.e., activity
B and C). In this case activity D, which follows the merge,
is invoked each time one of the parallel branches finishes its
execution, and there is no synchronization between the parallel
branches. In case only one branch is initially activated (i.e., B
or C), D will be invoked only once after the chosen branch
has terminated its execution. See Fig. 2 (h).

P = A >> (([cond1] → (B >> D) [] [¬cond1] → exit)
||| ([cond2] → (C >> D) [] [¬cond2] → exit))

The structure used to represent this pattern is very similar
to the Synchronizing Merge. The only difference concerns the
location of D, which is located inside of each parallel branch
of the Multi-Choice in this pattern. This ensures that D is
executed every time a branch is activated. Note that D can be
interpreted as subprocess, which makes this pattern a central
means of composition in more complex structures.

Discriminator (Pattern 9): After executing activity A, in
Multi-Choice, the discriminator waits for one of the incoming
branches (i.e., activity B or C) to complete execution before
activating activity D. Subsequently, each terminating branch is
ignored until all activated branches have terminated execution.

This resets the pattern, so that it can be triggered again. Note
that unlike the Multi-Merge D is not enabled again once a
potential subsequent branch finishes execution. See Fig. 2 (i).

P = hide q in P1

P1 = A >> (([cond1] → (B >> q) [] [¬cond1] → exit)
||| ([cond2] → (C >> q)

[] [¬cond2] → exit))|[q]| (q; (D ||| P2))

P2 = (q;P2) [] exit

To express this pattern, it is necessary to use an additional
gate q and the additional process P2. q is responsible for
invoking the subprocess (q; (D ||| P2)) that enables activity D.
P2, which is executed in parallel recursively, waits for other
potentially enabled activities and ignores their termination.
Once no more active branches remain, the P2 exit operator
is used to terminate the execution of P2. The gate q remains
hidden inside the discriminator avoiding the need of external
synchronizations.

C. Structural Patterns

Arbitrary Cycles (Pattern 10):
A loop in a process allows activities to be performed

repeatedly. After executing activity F , a cyclical repetition of

activities can occur depending on which branches are selected
during process execution. See Fig. 2 (j).

P1 = ([cond1] → (A >> P2))

[] ([¬cond1] → (B >> P3))

P2 = C >> P3

P3 = D >> (([cond2] → E)

[] ([¬cond2] → (F >> ([cond3] → G

[] [¬cond3] → P2))))

or
P1 = (A >> P2) [] (B >> P3)

P2 = C >> P3

P3 = D >> (E [] (F >> (G [] P2)))

To represent the cyclical repetition of loops, it is necessary to
use recursive processes. The presence of choices are required
as well, in order to allow the choice between continuing the
repetition or leaving the loop structure. Both Exclusive Choice
and Deferred Choice (see Sect. III-E) can be used for this
purpose. Therefore, both cases are represented above. The
main difference is the presence of conditions (e.g., cond1)
when using the Exclusive Choice and the absence of such
when using the Deferred Choice.

Implicit Termination (Pattern 11): A given subprocess
should be terminated when there is nothing else to be done.
This means, that no more activities are classified as active in
the workflow and no other activities can be invoked and acti-
vated. In LOTOS the termination idea is represented through
the keyword stop, which indicates inaction and deadlock
situations. Even after successful termination symbolized by
the exit operator exit, a stop is generated to symbolize that
the process is inactive at that moment.

D. Patterns Involving Multiple Instances
Multiple Instances Without Synchronization (Pattern 12):
In the case of single process instances, multiple instances of an
activity (A) can be created through new independent threads.
There is no need for synchronization, and so other activities
or subprocesses (e.g., B >> C) are allowed to execute in
parallel with the threads of activity A.

P = P1 ||| (B >> C)

P1 = (P1 ||| A) [] A

The role of subprocess P1 is to represent all possible instances
of activity A. Being recursive, P1 can spawn new parallel
threads. The last parallel thread has to be created using the
right second option of the P1 choice operator, which stops
the recursion. The process P is responsible for representing
the parallel execution of the threads of A and the subprocess
(B >> C).

Multiple Instances with a Priori Design Time Knowledge
(Pattern 13): When activity A terminates its execution, ac-
tivity B is enabled. However, in this pattern an activity can
be enabled multiple times. The number of instances of such
an activity is known at design time (e.g., activity B will
be executed three times). Once every instance execution is

completed, a subsequent activity (C) needs to be started. See
Fig. 2 (k).

P = A >> P1 >> C

P1 = B ||| B ||| B

This pattern is easily represented using the interleaving
operator. Process P1 represents the parallel execution of all
three instances of B. This process will solely be enabled
after the end of the execution of A. After the execution of
all instances of B, C will be enabled to execute.

Multiple Instances with a Priori Runtime Knowledge
(Pattern 14): When activity A finishes its execution, activity
B is enabled. B can be executed several times, and the
number of instances will be determined at runtime, but before
the instances of this activity are created. This number may
potentially vary for each case and may depend on case
characteristics or availability of resources. Once all B instance
executions are completed, another activity (C) is enabled. See
Fig. 2 (l).

P = A >> P1(n) >> C

P1(x) = ([x <= 0] → exit)
[] ([x > 0] → (B ||| P1(x− 1)))

This patterns emphasizes the importance of encapsulated data
in an algebraic control-flow structure. The number of instances
(n) is simply passed as parameter of process P1. Instances are
created through recursion in this process. When all required
instances are created, the base of the recursion is reached,
which stops the recursive calls. Process P guarantees the
ordering between A, all instances of B, and C.

Multiple Instances without a Priori Runtime Knowledge
(Pattern 15): After activity A terminates its execution, activity
B is enabled. The number of instances of B is not known
before the instances are created. The number becomes known
during the activities’ execution. After the execution of all
created instances, C is enabled. The difference to the previous
pattern is that new instances of B can be created while others
are being executed or have already completed execution. See
Fig. 2 (m).

P = A >> P1 >> C

P1 = (P1 ||| B) [] B

To represent this pattern, two processes are required. P1 is
a recursive process responsible for the parallel execution of
instances of B . Note that at least one instance of B must
be executed before executing C. Multiple execution of B is
allowed in this structure until C terminates its execution.

E. State-based patterns
Deferred Choice (Pattern 16): After ending the execution
of activity A, one of several branches (i.e., B or C) have
to be chosen. In contrast to an Exclusive Choice, this choice
is not made explicitly. Several alternatives are offered to the
environment, which will choose one of them. The choice is
delayed until the processing in one of the alternative branches
is actually started.

P = A >> (B [] C)

This pattern is represented using the choice operator, and its
structure is similar to the Exclusive Choice. The difference
is that there is no need to use conditions due to the decision
being made by the environment.

Interleaved Parallel Routing (Pattern 17): The execution of
activity A enables a set of activities (i.e., B and C), which
can be executed in an arbitrary order. Each activity in this set
is executed, and the ordering is decided at runtime. Activities
are not allowed to execute in parallel. After the execution of
B followed by C or C followed by B, activity D is enabled
for execution. See Fig. 2 (o).

P = A >> P1 >> D

P1 = hide q, r in ((((q;B) >> (r; exit))
||| ((q;C) >> (r; exit))) |[q, r]| P2)

P2 = q; r;P2 [] exit

This pattern can be represented using the three processes
shown above. Process P is responsible for assuring the sequen-
tial ordering between A, process P1 and D. P1 handles the
execution of the arbitrarily ordered activities. In P1, each ac-
tivity is embedded in the structure ((q;Activity) >> (r; exit)),
preceded by a gate q, and succeeded by a gate r. These
two gates ensure the exclusive execution of the inner activity
at any time. The structures are joined by the interleaving
operator, which guarantees that all activities are terminated
before executing D. Process P2 is used as “resource container”
to control the interleaved activity execution. Every P1 activity
structure must synchronize with P2 at q and r. When q in P2 is
used in a synchronization with a P1 activity (e.g., B), the other
activity structures are blocked on q. When B is terminated,
its structure is synchronized with P2 at r flagging the end its
execution. This synchronization allows the recursive call of P2

offering q for the next activity to be executed.

Milestone (Pattern 18): This pattern models the execution of
an activity depended on the state of a process instance. The
enabling is determined by the state after the end of execution
of an activity and the beginning of the next activity. To
illustrate this pattern, we show two examples. Firstly, activity
A will only be enabled for execution after activity B has been
executed, but before activity C has been invoked. This state is
called a place M and considered a milestone for A. See Fig.
2 (p).

P = B >> (hide p in (P1 |[p]| P2))

P1 = p;P1 [] C

P2 = (p;A >> P2) [] exit

Secondly, we show a different usage example for this pattern.
The difference to the first example is the existence of parallel
execution threads. One of these threads contains the place M .
Different threads contain the milestone-dependent activity F ,
which can only be executed after the end of activity E. Note
that unlike the previous example, if the milestone-dependent
activity is not executed, the process goes into deadlock,
because activities F , G, and H will never be executed. See

Fig. 2 (q).

P = A >> (hide p in (P1 |[p]| P2)) >> H

P1 = B >> P3

P2 = E >> ((P4 >> G) [] stop)
P3 = (p;P3) [] (C >> D)

P4 = p;F >> (P4 [] exit)

Both examples are modeled by the principle of using a gate
to simulate a milestone. In the first example, we use three
processes to represent this pattern. Note that, once C has been
chosen, p cannot be offered anymore. P2 is responsible for
“consuming” the milestone p offered by P1 to execute A. The
activity can be executed several times while C is not chosen.
Despite of using more processes than the first example, the
representation idea remains the same in the second example.
A stop is used inside of process P2 to represent the deadlock
possibility.

F. Cancellation Patterns
Cancel Activity (Pattern 19): After executing activity A,
activity B is enabled with a disabling option before its
execution. If this happens, the thread waits for the execution
of the activity and activity C will never be executed. If the
cancellation is not used, activity C becomes enabled after
execution of B.

P = A >> B >> C

Instead of representing this pattern explicitly, we need to
remember that B = (k1; k2; exit)[> (kc; stop). If B is can-
celled, the stop guarantees the representation of an inaction
state, which allows removing the thread. Since the sequential
composition operator depends on a successful termination to
proceed, the use of stop will also ensure that C will never be
executed.

Cancel Case (Pattern 20): This pattern models the complete
removal of a process instance, which is related to the workflow
execution service and not process definition. Therefore, a
processes can be simply canceled by the execution controller.

IV. EVALUATION

Based on Sect. III, we can see that all proposed patterns can
be represented using LOTOS. The results clearly indicate that
LOTOS is very suitable for control-flow pattern representation.
Unlike simpler algebraic representations, LOTOS represents
the set exhaustively. Under the assumption that the set of
20 patterns identifies comprehensive workflow functionality of
real-world projects [12], we can conclude that the expressive
power of LOTOS suffices to model any required functionality
in real-world workflow. When compared to other algebraic no-
tations, LOTOS shows some important advantages, such as the
capability of modeling data types, variables and expressions, as
well as the presence of indicators of process inactivity. Apart
from expressiveness and suitability, it is important to remem-
ber that LOTOS expressions, in some patterns representation,
are very short compared to simpler process algebras. For
instance, ACP [19] generates very long expressions for certain

patterns due to necessary case-enumeration. While this does
not influence theoretic representativeness, it may constitute a
suitability problem in practice.

V. RELATED WORK

In [20] there was a first attempt to use LOTOS to describe
some workflow patterns. The aim of the authors, however,
was to provide a real workflow case example described in
LOTOS. To accomplish this task, they have mapped to LOTOS
a restricted set of patterns (only three of them), showing the
importance of the subject. However, they left uncovered the
representativeness and mapping of all control-flow patterns.
Our work comes to complete all the remaining mappings
and to discuss the expressiveness of LOTOS based on each
pattern. Formal definition of abstract syntax and operational
semantics for workflow patterns as a conceptual foundation for
process-aware information systems has also been previously
addressed using Petri Nets [21] and π-calculus [22]. The
workflow language YAWL [23] is based on Petri Nets and was
developed by Aalst et al. after their initial work on workflow
patterns [12]. Their pattern repository enables comparison
and evaluation of workflow specifications and has evolved
in the Workflow Patterns Initiative, currently spanning the
areas of control-flow, data and resource patterns [18]. The
most recent formalization of this functionality using Petri nets
was introduced by Russell as newYAWL [24]. In contrast to
these graphical approaches Puhlmann et al. [17] employ π-
calculus algebra to introduce complete execution semantics in
a formal mapping of the initial pattern repository. Despite the
close relationship between these efforts and our work, each
of them has a distinct contribution and a parallel background.
The native features of graphical representation, mobility and
abstract data type handling are uniquely attributed to Petri
nets, π-calculus, and LOTOS, respectively. It is necessary to
establish a common basis, before a sophisticated formalism
characterization can be undertaken on the grounds of actual
implementation. Our work closes this initial gap and answers
the question whether LOTOS is a suitable notation for the
workflow domain.

VI. CONCLUSION

This paper presents formal semantics for comprehensive
workflow functionality through precise mapping to algebraic
notation in LOTOS to support collaborative applications.
Systematic analysis of suitability requirements for real-world
workflows was achieved through a workflow pattern approach.
This work successfully closes the gap to formalisms, such as
π-calculus and Petri nets, providing a foundation for applica-
tion in the workflow domain.

By showing that LOTOS satisfies all examined behavioral
workflow requirements, this work opens the door to taking
advantage of the powerful LOTOS data model in collaborative
applications. Since the design-features of LOTOS include
rigorous data encapsulation in concurrent system specification,
it might constitute an innovative way of dealing with chal-
lenges in the workflow domain. As a next step this theoretic

contribution can be utilized towards rigorous and reliable
implementation at the core of collaborative application archi-
tectures. Future research topics include automated translation
of graphical workflow notation to LOTOS and collaborative
applications based on formal workflow structures.

ACKNOWLEDGEMENT

This work has been supported by grant# 06/00375-0, from
FAPESP (São Paulo State Research Foundation). Additional
support is provided by grant# 482139/ 2007-2 from CNPq
(Brazilian National Research Council).

REFERENCES

[1] M. Weske, Business Process Management: Concepts, Languages, Archi-
tectures. Springer, 2007.

[2] S. White, “Business process modeling notation (BPMN),” Business
Process Management Initiative (BPMI)–Version 1.0–BPMI.org, 2004.

[3] D. Jordan and J. Evdemon, “Web services business process execution
language version 2.0.” Public Review Draft OASIS WS-BPEL Technical
Committee, April 2007.

[4] W. M. P. van der Aalst, “Pi calculus versus petri nets: let us eat humble
pie rather than further inflate the pi hype,” Unpublished Discussion
Paper, 2003, http://tmitwww.tm.tue.nl/staff/wvdaalst/pi-hype.pdf.

[5] M. H. ter Beek, A. Bucchiarone, and S. Gnesi, “Web service composition
approaches: From industrial standards to formal methods,” in ICIW,
2007, p. 15.

[6] F. Puhlmann, “Why do we actually need the π-calculus for business
process management?” in BIS, 2006, pp. 77–89.

[7] K. R. Braghetto, J. E. Ferreira, and C. Pu, “Using control-flow patterns
for specifying business processes in cooperative environments,” in SAC
’07: Proceedings of the 2007 ACM symposium on Applied computing,
2007, pp. 1234–1241.

[8] ——, “Business processes management using process algebra and
relational database model,” in ICE-B, 2008.

[9] T. Bolognesi and E. Brinksma, “Introduction to the ISO specification
language LOTOS,” Comput. Netw. ISDN Syst., vol. 14, no. 1, pp. 25–59,
1987.

[10] A. Ferrara, “Web services: a process algebra approach,” in ICSOC, 2004,
pp. 242–251.

[11] K. J. Turner, “Representing and analysing composed web services using
CRESS,” J. Network and Computer Applications, vol. 30, no. 2, pp.
541–562, 2007.

[12] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros, “Workflow patterns,” Distributed and Parallel Databases,
vol. 14, no. 1, pp. 5–51, 2003.

[13] R. Milner, Communication and concurrency. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1989.

[14] A. W. Roscoe, C. A. R. Hoare, and R. Bird, The Theory and Practice
of Concurrency. Upper Saddle River, NJ, USA: Prentice Hall, 1997.

[15] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification I.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1985.

[16] W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede,
“Web service composition languages: Old wine in new bottles?” in
EUROMICRO, 2003, pp. 298–307.

[17] F. Puhlmann and M. Weske, “Using the π-calculus for formalizing
workflow patterns,” Business Process Management, pp. 153–168, 2005.

[18] W. van der Aalst and A. ter Hofstede, “Workflow patterns website,”
June 2008. [Online]. Available: http://www.workflowpatterns.com

[19] W. Fokkink, Introduction to Process Algebra. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2000.

[20] V. Carchiolo, A. Longheu, and M. Malgeri, “Using LOTOS in workflow
specification,” in ICEIS (3), 2003, pp. 364–369.

[21] C. A. Petri, “Kommunikation mit automaten,” Ph.D. dissertation, Tech-
nische Hochschule Darmstadt, Darmstadt, Germany, 1962.

[22] R. Milner, Communicating and mobile systems: the π-calculus. New
York, NY, USA: Cambridge University Press, 1999.

[23] W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL: yet another
workflow language,” Inf. Syst., vol. 30, no. 4, pp. 245–275, 2005.

[24] N. C. Russell, “Foundations of process-aware information systems,”
Ph.D. dissertation, Queensland University of Technology, Brisbane,
Australia, December 2007.

